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In this case (5) reduces to p3(xqx2R, x~xq R') =fp(xgx2R)
&&f t' (xix& 8'), and the desired result follows immediately
from (26) upon noting that fp is translationally invariant
and normalized.

34In fact it is easy to show, in analogy with the deriva-
tion of (82), that if one replaces (38) by an uns~nmetrized
product g(x~x2)g(x3x4) g(x2n-g x2n) then (21) implies

fg=n~p& if g is any normalized and translationally invar-
iant two-electron state. However, this result is incom-
patible with the exclusion principle.

35We assume, without essential loss of generality, that
gl, is real and an even function of k.

368ee, e. g. , M. Girardea~'. and R. Arnowitt, Phys.
Rev. 113, 755 (1959).
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The transport coefficients of 3Z molecular oxygen in magnetic fields show large deviations
from an H/p law, even at moderate pressures and fields. This complex behavior is explained
by the effect of a quadratic Zeeman splitting of the 0=0 multiplets, superimposed on the nor-
mal linear splitting. Because the normal linear splitting is very small for 0 = 0, the anomalous
effects occur at fields far below the true Paschen-Back region. Collisionally uncoupled model
calculations give the transverse viscosity coefficients in quite detailed agreement with experi-
ment. The distinct behavior of the single- and double-frequency viscosity coefficients reflects
distinct selections from the internal-state frequency spectrum, determined by weight factors
( F ~(6, &f&) ( in the orientation of J. The anomalous behavior of the even coefficients is pre-
dicted to be quite complex. In particular the H/p curves of g& at about 4 Torr should show
three steps, instead of the usual two, and the behavior of g» should be similar.

I. INTRODUCTION

The effect of a magnetic field on the thermal con-
ductivity and viscosity of dilute gases is commonly a
function of the ratio H/p of the field strength to the
pressure. According to the picture of Gorter, ' the
explanation of this H/P dependence is that the ef-
fects are functions of the product ~~ of a preces-
sion frequency, proportional to the field, and a
relaxation time, of the order of the time between
collisions and proportional to I/p. Kikoin et af. ,

a

however, found very large deviations from H/p be-
havior for one of the transverse viscosity coeffi-
cients of 'Z oxygen. Recent very precise measure-
ments of Hulsman et al. not only confirm Kikoin's
result, but show that the other transverse coeffi-
cient is also anomalous, and furthermore that the
behavior of the two coefficients is quite distinct.
In both H/p plots the shoulder . which occurs at
lower H/p behaves normally at constant pressures
up to one atmosphere. This feature is associated '5

with molecules in states belonging to multiplets
having total angular momentum J=N+1, where X
is the [Hund's case (b)] rotational quantum number.
Alternatively, these multiplets may be labeled by
o = + 1, where a =J—N is the spin projection on J in
the classical (large N) limit. The peak occurring

at higher H/p however, and which is associated
with multiplets having o = 0 (J=N), disappe'ars with
increasing pressure. Significant cutting off on the
high-field side of this peak occurs at pressures of
only a few Torr, and one of the viscosity coeffi-
cients, but not the other, changes sign.

Deviations from H/p behavior can likewise be
seen in the even thermal-conductivity and viscosity
coefficients measured by Kikoin et a/. , Korving
et al. , and Hermans et al. at room temperature,
and indeed —though for higher pressures —in the
early measurements of Senftleben and Pieznera (see
IIermans~ for a comparison). The very pronounced
scatter of the points near saturation is shown clear-
ly in Korving'ss H/p plots on "probability" paper.

It is the object of this paper to give an explanation
of this behavior. The quantitative theory is given
for the viscosity only, but the qualitative picture
applies, with minor modifications, to the thermal
conductivity also.

II. VISCOSITY THEORY FOR SMALL DEVIATIONS FROM
LOS(-FIELD STATES

Deviations from H/p behavior in the paramagnetic
Senftleben effects usually reflect the mixing by the
field of states belonging to different zero-field
multiplets (the Paschen-Back effect), and in par-
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ticular the associated deviations from a linear
Zeemann energy-level splitting. ' The deviations
from H/p behavior increase with increasing pres-
sure because the normal H/p relation means that
higher pressures imply higher fields. It will be
shown that the explanation of the oxygen anomalies
is the mixing of the 0 = 0 states with the 0 = ~ 1 states
having the same rotational quantum number N, even
though the fields involved are relatively low.

The effect of level splittings nonlinear in the field
can be taken into account very simply in a collision-
ally uncoupled model. Nonlinear splittings imply
that the spacing between energy levels is not con-
stant. Hence the single Larmor frequency for the
multiplet is broadened into a spectrum of frequen-
cies. According to collisionally uncoupled theory,
each frequency &u(H) is associated with an indepen-
dent contribution to the transport coefficients,
characterized by a separate product coy. The trans-
port coefficients are suitably weighted superposi-
tions of these contributions. For a detailed formal
development see Ref. 5.

In oxygen, the eigenstates of the free-molecule
Hamiltonian, including the effect of the field, can

be labeled l¹m) in the Hund's case (b) approxi-
mation. Formally, ' each internal-state polariza-
tion 1¹m)(Nom I makes an independent contribu-
tion to the viscosity characterized by the frequency
&d„'„.= (E„, —E„,„.)/ff of its harmonic motion be-

tween collisions, and by an orientational relaxation
time 7N, which depends on the multiplet, but which
is assumed not to depend on m and m'. For a uni-
form magnetic field along the z axis, m and m' label
the eigenvalues of J, =N', + S, (which is well defined
in the energy states even in strong fields). If cor-
related velocity-angular-momentum polarizations
of the type [W]'" INom) (Nom'I (cf. [W]' '[J]' ')
are neglected, where W denotes the reduced peculi-
ar velocity and [W]"' an irreducible tensor of rota-
tional symmetry j constructed from W, then the po-
larizations contributing to the nonvanishing even and

odd elements g', and g, of the real spherical viscos-
ity tensor, appropriate to this case, ' obey the selec-
tion rule

I6m=m —m= p, .
The viscosity coefficients g'„relate the real spheri-
cal components of the symmetry-2 (traceless sym-
metric) parts of the pressure and velocity gradient
tensors by

Ii&2»'= 2/q„'[/v ] '"~ T)l„[27v ] (2a)

and, apart from notation, differ in only two re-
spects from the five nontensorial parameters of
Hooyman, Mazur, and DeGroot, " in terms of which
considerable experimental data has been reported
(see Table I). Explicitly, Eq. (2) is

(2 )1/2II(2) (2 )1/2$

(2b)

712 -n2

~ gp

where $„, has been written for

X((I Xg"

and where the dots indicate those tensor elements
which vanish because of the axial symmetry.

For the relatively low fields of interest here, and
with correlated polarizations neglected, the ex-
pression given by the uncoupled model for the rela-
tive contributions of the orientational polarizations
to the viscosity coefficients is

"=2 2„2„,((2Z+() '
N, e

&&Z ~(J, m+ /&~ Y "(J)~J, m)( f"((u,„r„,)~. (3)
m ] Y2(J) (~5)Q (2 J2(J2 2)}-1/2 [J](2)(p (4)

where J= N+ 0. Here g is the scalar viscosity co-
efficient in the absence of orientational polariza-
tions, bN is the Boltzmann probability factor for the
multiplet (N, v}, which can be taken as Q 'e 2

independent of 0, „, is an intensity factor for the
whole multiplet, while the purely geometric inten-
sity factors I( J, m+ (((I Y "(J) I J, m) I give the rela-
tive weighting of the contributions associated with
the different frequencies within the multiplet. The
symmetry-2 tensor operator Y'2'(J) is the quantum
analog of the purely angular spherical harmonic
y (8, P) in the orientation of J. It is defined in
terms of the corresponding solid harmonic [J](2),
having Cartesian components [J](2)= —,'(J„J,+ J',J„)

rs~ by
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where 6'~ is a projection onto the space of angular
momentum states having quantum number J. The
normalized tensor Y~(J) is essentially independent
of the magnitude of J, and describes purely angular
polarizations. The functions f ' and f are Lorentz
absorption and dispersion shape functions, namely,

f'(x) =(1+2) ',
f-(z) = x(l+ 2)-' .

Explicitly, the multiplet intensity factor is given
by

,= (2J+ 1)q 'N, rN, /R~ .
Here yN, is a scalar collision integral which gives
the coupling between the velocity polarization [W]~2'

and the angular momentum Yag) polarization asso-
ciated with molecules in states belonging to the
fN, o}multiplet (i. e. , Y'p)PN, ). It is defined by

(2J+ I) 1 tr J' &f (0)Y2(J) . (Q[W](2)) dp (7)

-3/a -w~ .where f v+' = (2vmkT) ~t~ e ~ is the local equilibrium
velocity distribution, and (R the collision operator.
The trace is only over the (2J+1) substates of the
IN, a}multiplet. The normalization is such that
yN, can reasonably be assumed to be multiplet in-
dependent, so that yN, = rp for all IN, o}. For the
present considerations p can be regarded as an un-
known constant'. t. The quantity B~ is the scalar col-
lision integral defined by

R,=(n '/S)tr ff"'[W]"' (R[W]"&)dp

where f 'o' includes the equilibrium internal-state
density matrix as well as f ~~' and where the trace
is over all internal states, unlike the trace in Eq.
(7). This integral determines the scalar viscosity
coefficient q when the contribution of internal-state
polarizations is neglected, in which case g', = g

,nkTR~' and q, =0—(all p, ).
It should be noted that Zg', given by expression

(3) is the actual contribution of the internal-state
polarizations to q', (to second order in the velocity-
internal-state coupling), and not the change

h„„~(q',) = q', (H) —q'„(0) in the viscosity produced
by the external field. The latter is the quantity
measured experimentally. For the odd coefficients
there is in fact no distinction since g~ vanishes at
zero field. However, for the even coefficients the
relation is

&„.„(q„)= Zq', (If) Zq'„(0),—

and this is given by Eq. (3) on replacing f ' by

cos8 = m/g')'t' . (12)

In fact (J, m+ p I Y "(J)IJ, m) -2 t2Pz (cos8)
= (4v)'~~I F2"(8p) I for J» p, where p2 (cos8) is the
normalized associated Legendre function. In this
large J approximation the frequencies can be writ-
ten

".";...= ~~N. (8), (13)

and, if 8 is treated as a continuous variable, the
cr =0 contribution to Zq~ becomes

(+Op, /8)a= ~ON bN ~NO

&& f, ~ p,'(cos8) ~'f'(t ar»(8)r„,) d cos8, (14)

where, in particular

P2(cos8) = (~~)'~' sin8 cos8,

P, (cos8) = (I)' t' sin 8 . (ls)

The weight factor I p2 (cos8) I can equally well be
written I

Y2" (8, P) I', with integration over the whole
orientation sphere of S, emphasizing the corre-

TABLE I. Relation of the parameters of Hooyman,
Mazur, and DeGroot (Ref. 11) to the real tensorial vis-
cosity coefficients Q ~.

The 0 = 0 and o =+ 1 contributions may be con-
sidered separately. For the 0 =+1 multiplets there
is no significant deviation from the linear Zeemann
effect over most of the region of field strengths con-
sidered. Consequently, for given p, there is only
a single frequency co"'

~ = ]U,~„,for each multiplet,
where wN is the multiplet Larmor frequency. The
o =+1 terms in Eq. (3) then reduce to

( bN&iV~f (&&N 7'Ne) ~

0 iI=+1 N, e=+1

This expression accounts for the low field 0 =+1
feature satisfactorily.

For 0 =0, on the contrary, the existence of a
spectrum of frequencies within each multiplet must
be taken into account. The weight factors
l(J, m+ plY (J)IJ,m)l = Itr{(IJ,m)(Z, m+ pl)

xY "g) I represent, loosely, the square of the
probability distribution of J and m associated with
the polarization Y "g). For large J, corresponding
to the fact that Y"g) represents angular polariza, -
tion, this probability distribution is a function only
of the orientation of 8 with respect to the field, as
defined by

f f+g gd(x) =f +.(x) 1 = 2(1+x ) (lo)

The point is that the field destroys the contribution
of internal polarizations to the even viscosity coef-
ficients.

Tl1

"t3

2/2 ~ 7)1

g5

l4
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syondence to the classical polarization tensor
[J]'„" „„,= (~»z)'~~J y '(8, &f&) .The partially classi-
cal expression (14) is useful in understanding the
anomalous effects qualitatively, and it is sufficient-
ly accurate for the calculation of the viscosity co-
efficients at room temperature.

III. FREQUENCY SPECTRUM

I

0 (dL

l

0 (d„

P, {(d)

(di-(d2 0 (dL

(dL-(d2 0 (dL

(dL+(d2

(dL+(d2

The first point to be understood in the oxygen ef-
fects is why the deviations from H/p behavior set
in at very low fields. Anomalies are significant
even at 300 Oe, whereas the critical Paschen-Back
region of intermediate coupling, corresponding to
the 2-cm ' energy separation between the a =0 and
0 = + 1 multiplets on an N shell, occurs in the re-
gion 20000 Oe.

It may be enquired first whether high-field anom-
alies occurring at comparatively low fields could be
associated with the mixing of the closely spaced
0 =+ 1 and cr = —1 multiplets on the same N shell.
However, since the field does not mix the 0 =+ 1
multiplets directly (cf. Appendix), the relevant
spacing is not that between 0 =+ 1 and a = —1, but
rather the much larger spacing between o. = + 1 and
a = 0. Furthermore, the o = a 1 feature in the H/p
curves occurs for a given pressure at fields lower
by a factor of order N than the o =0 feature (- 50
Oe for p =10 Torr). It is therefore not expected
that large anomalous effects at low fields can be
associated with the cr = + 1 multiplets.

The explanation of the observed anomalies starts
from the observation that the normal linear Zee-
mann level splitting is very small for o = 0 because
the spin 5 is nearly perpendicular to S. The spin
becomes increasingly perpendicular with increasing
quantum number N, and the magnetic moment for
the multiplet tends to zero as 1/N. The Larmor
frequency is therefore of order y,«/N~, as com-
pared to + y, hH/N for the v = + 1 multiplets, a dif-
ference manifested by the occurrence of the a =0
feature at relatively high H/P. Because the nor-
mal linear Zeemann splitting is so small, it follows
that even a small quadratic term can have a dra-
matic effect. This is why the Paschen-Back anom-
alies occur at such low fields.

When the quadratic term is included, the energy-
level splittings are given by (see Appendix)

y,aH (y,«)' m'
@Nofft ~N, O N2

m+ 1 N2 1 + ~2 r- (18)
where X is the spectroscopic spin-spin splitting
parameter which gives the approximate zero-field
separation between the v = 0 multiplet and the
o=+ 1 multiplets. For large N this formula may
be written

E„,(8) = E„,— ' cos8+ ' sin~8, (1V)y,«(y, «)'

P, ((d)

0 2((d„-(d2) 2(d „2{(dt+(d2) 2{(dL-(d2)

{a) low field

I

0 2(d

(b) higher field

2((dL+(d2)

I lG. &. The frequency density p() and frequency weight
factors p~(cu) for p=1, 2. Case (a): ~2= g&~ (for which
all frequencies are positive); case (b): ~2=3. 33~& (for
which some frequencies are negative). The scales in

(a) and (b) are not the same. The shaded area in p(cu)

shows those positive and negative frequencies whose con-
tributions to the transverse coefficients would exactly
cancel in the absence of the weight factors ) pg(cos6) [

where IN i = (N2)'~3. If 8 is.regarded as a continu-
ous variable, then the b,m =1 spectrum is given by

(u„,(8) =
l
N

l

' [dE„,(8)/d cos8]

= (dg —c02.cos8 ~ (18)

where re~ = ~~(N, H) is the normal v = 0 multiplet
Larmor frequency, while A&2= &u, (N, H) is the qua-
dratic term

cos8 -1
~(~N, O)

=
N, o

(20)

distributed equally about ~~ between ~~ —~2 and

~L, + co~. Figure 1 illustrates this.
The frequencies associated with orientations

8 & —,g eventually become negative with increasing
field, and tend to cancel the contribution to the
transverse effects of equal positive frequencies.
This sign change is the origin of the disappearance
of the o = 0 peak at higher pressures. The change
of sign of a Am = 1 frequency corresponds to the
crossing of two adjacent m levels. Such crossings
occur as the low-field Zeemann pattern of energy
levels changes to the quite different Stark pattern
of the quadradic term. A level crossing at —5000
Oe can be seen in a graph given by Tinkham and
Strandberg' for N= 3. As the quadradic term is
of order 1/N, whereas &uz, is of order 1/N~, the
level crossings, and the anomalous effects, set in

(19)

Accordingly, the single Larmor frequency is
broadened into a band of frequencies of uniform den-
sity
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at progressively lower fields with increasing N.
One of the consequences is that the anomalies should
be more important at higher than at lower tempera-
tures. For orientations 8 &-,'g, the sign change in
frequency occurs at a field H satisfying —(y, SH) cos8
=X/2N-(1. 0/N) cm ~, that is for

Hcos&-10000/NOe . (21)

+2 I I 2 (cosa (+N, 0)) I

' (22)

Then, from Eq. (14), the contribution of a typical
multiplet can be written

(&n'. )~,Jun = &N, o f„,'„,' p. (~)f '(~~~, ,) &~.

(23)

Figure 1 illustrates these frequency weight factors
for p =1 and p, = 2. The fact that the weight factor
p, is bimodal, and that the maximum for the nega-

p', (+)

2(4)L+ h) s )

p, ((i))

As the highest multiplets contributing significantly
to the viscosity at room temperature are those with

N-30, the anomalies can set in at a few hundred
oersted.

The mere disappearance of the transverse 0 =0
peaks can be predicted without any formal theory
of the transport coefficients, simply because the
Stark pattern corresponds to a Hamiltonian
R = (y,/X) (H . S) which has even o„symmetry,
whereas g„ is odd under o„. Since the phenomeno-
logical coefficients are necessarily totally symme-
tric under the symmetry group of the Hamiltonian,

g, has to vanish.
The detailed effects depend on the selections of

frequencies made by the weight factors I P~ (cos8) I2.

To see the qualitative picture, it is convenient to
rewrite these as functions of frequency, rather than
of the orientation of Z. Define the frequency weight
factors as

p. (~~, 0) =
I p2 (co«(~~, 0)) I' Id cos8(co„,)/eh@„

tive frequencies is not in general cancelled by the
maximum of the positive frequencies, accounts for
the fact that —q, has an H/P curve which is positive
at low H/P and negative at high II/P. The detailed
anomalous behavior of all four field-dependent co-
efficients can best be understood from the following
weight factors for the magnitudes of the frequencies:

(24)

In these terms, expression (23) can be rewritten

as an integral over positive frequencies only. Fig-
ure 2 shows the four weight functions for a field
such that ~3= 3.33~1..

IV. VISCOSITY

It is argued elsewhere' that for diatomic mole-
cules the relaxation time y~, for reorientation
should be proportional to P. With this assumption,
the relaxation time for the polarizations appropri-
ate to the viscosity (as distinct from that for the

thermal conductivity) may be written

r„.= ~,J'/p, (26)

where J=N+o, and where vo is multiplet and pres-
sure independent. For numerical calculations, any

small multiplet dependence of the normalized cou-

pling terms p„, [Eq. (7)] will be neglected. Then
the intensity factors are given by

s„,= (2J+1)J I, (27)

where I is a multiplet and pressure-independent
constant. Apart from the over-all intensity factor
I, the theory contains only the single unknown pa-
rameter 7~. This has been chosen empirically as
2wv0=0. 30(10 8) Torr sec at room temperature, to
fit the position of the o =0 peak in the experimental3

H/p curves for q2 at low pressure. The remaining
parameters are spectroscopic (B/kT = ~«„—y, h.
= 2. 803 MHz/Oe, X = 1.984 cm ' = 5. 948&& 104 MHz).
Thus &u~/2w = (2. 8 && 106/N~)H sec ', while vg2v
= (2. 6418 && 10~/I NI )H sec ', for H in oersted. The
integrals in Eq. (14) can be evaluated analytically,
but numerical integration is convenient.

Transverse Viscosity Coefficients

&l&i-&2l 2((dL+ U) 2)

FIG. 2. Frequency weight factors p~{&) for the four
field-dependent viscosity coefficients p~, for the case
cu2

——3.33~I. of Fig. 1{b).

Figures 3(a) and 3(b) show the H/fi curves for the

0 = 0 contribution to the transverse viscosity coef-
ficients, q, and g,, calculated from Eq. (14) together
with Eqs. (18), (26), and (2'7) for the various con-
stant pressures of Hulsman's measurements, as
well as for p=0. The curves for p=0. 1 Torr differ
negligibly from those for p = 0. The p = 0 envelope
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FIG. 3. (a) Calculated 0 = 0 contribution to -g~. Pres-
sures from the right: 0. 0, 4. 1, 6. 0, 10.9, 31.6, 61.3,
and 772 Torr. (b) Calculated 0 = 0 contribution to —g2.
Same pressures as in (a).

is a pure Lorentz curve because of the exact com-
pensation between the N dependence of (d„p and
v„p.' It is seen that q, cuts off at lower pressures
than does q,, and that it changes sign at high H/p.
This behavior can be understood from the frequency
weight factors p, (&u) and p~(~) in Fig. 2. The com-
parison is complicated by the fact that Fig. 2 refers
to a fixed field value, whereas in Fig. 3, as in the
experimental results, e,".ch curve is essentially a
plot against H since p is constant. Clearly, how-
ever, the lower frequencies contribute at higher
H/p. In particular the negative part of the —g,
curve occurring at high H/p corresponds to the
negative low-frequency part of p, (~) due to the band
of negative frequencies in p, . The negative peak
in —g, is associated with those orientations of J
having 8 approximately 45, whereas the positive
peak is associated with the corresponding orienta-
tions in the lower hemisphere, namely, 8-135 .
For co~ & 2' coL, the directions of the precession of
J are opposite for the two cases, and two peaks

(positive and negative) are resolved because the
magnitudes of the two precession frequencies differ
by 2'~aw . The fact that the positive and negative
peaks have different heights in Fig. 3 is due to the
fact that the independent variable is H, rather than
p. In a plot against 1/P, at constant H, they would
have comparable heights for not too small field
strengths.

The complete H/p curves for the transverse co-
efficients can be obtained by adding the o = + 1 con-
tributions, given by Eq. (11), to the o = 0 contribu-
tions shown in Fig. 3. No new parameters are re-
quired, but it is important, in evaluating expression
(11), not to neglect quantities of order N ' relative
to 1 since the a =+1 and 0 = —1 contributions are
of opposite sign and cancel in first order. The ori-
gin of the net cr = + 1 contribution is that this cancel-
lation is not exact since the degeneracy (2J'+ 1), the
magnitude of the Larmor frequency, and (very im-
portantly) the relaxation times z„,~J, all differ
between o =+ I (J=N+ I). A more detailed qualita-
tive discussion is given in Ref. 5. The calculated
0 = + 1 contribution is almost exactly the same for
q, and qz apart from the displacement on the H/p
axis, whereas experimentally the feature in q, is
slightly smaller, perhaps reflecting an over-all
difference in scale.

The complete calculated H/p curves for the trans-
verse coefficients, including the theoretical o =+ 1
contributions, are shown in Figs. 4(a) and 4(b).
The experimental results of Hulsman et al. 3 are
shown for comparison on the same scale. The
minima in q, at high H/p are somewhat larger ex-
perimentally than theoretically. Otherwise, the
agreement is quite detailed. The spacing between
the curves for sucessive pressures, and the rela-
tive heights, which are not at all the same for the
two coefficients, are almost exactly reproduced in
both cases. Such detailed agreement depends sensi-
tively on the exact N dependence of the intensity
factors u~ „ i.e. , on the exact weighting of the N
average, and it supports the assumptions y„ inde-
pendent of fN, o) and v„,~ J of Eqs. (26) and (27).
It is emphasized that the theory contains no empiri-
cal parameters to scale the anomalous effects nor,
in fact, any scaling at all of the shapes of the
curves. The parameter Tp merely scales the over-
all H/p position, and is determined once and for
all by the low-pressure limit.

Even Viscosity Coefficients

Figures 5(a) and 5(b) show the calculated H/p
curves at several pressures for the a =0 part of
the field effect on the corresponding even viscosity
coefficients g,

' and g~. The most interesting anom-
alous effects occur at pressures of the order of 4
Torr. Here the H/P curves for both g,

' and q~ lie
at higher H/p than those for zero pressure, and
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calculations, but unnecessary for the qualitative
picture, which remains that of a progressively more
rapid approach to saturation with increasing pres-
sure. This higher-pressure behavior has now been
recognized experimentally (see Fig. 20 in Hermans
et al. ). At still higher pressures (a few atmo-
spheres) the true Paschen-Back region of field
strengths is reached before saturation, and the
saturation values of ) 4q', /q I must then decrease. ~

V. DISCUSSION

For the thermal conductivity, the quantitative
calculations would differ somewhat because of the
completely elastic contribution to the collision in-
tegrals involving the relevant correlated polariza-
tions, W I Nom)(Nom I or WY (J). The completely
elastic contribution to y ' is J independent, and
tends to decrease the J dependence of the intensi-
ties and hence to decrease the anomalous effects
to which the high N shells contribute most. How-
ever, the smaller value of y implies larger field
values for a given pressure, and this tends, on the
contrary, to increase the anomalous effects. The
qualitative discussion, however, is similar to that
for the viscosity. The thermal-conductivity coef-
ficient X„depends on —', [po+2p,'f'(u&v)], whereas &,

and X„depend on —,'[p', f'(ev)+2pzf'(2+7)] and

3[p,f (or~)+2p2f (2&u~)], respectively. Experi-
mentally, the anomalies for the even effects at
room temperature appear comparable to those for
g', and q~, those for X, being, as they should, more
pronounced than those for X, (Hermans, ' Fig. 18).
For the transverse coefficient, the H/p curve of
Qorelik et al. ' for p = 5 Torr at t-90 'C appears to
show some cutting off on the right-hand side. At

77 'K, however —the temperature of Hermans's mea-
surement' —the anomalous effects should be small.

The striking agreement of our calculated trans-
verse viscosity coefficients with the measurements
of Hulsman et al. supports uncoupled theory gen-
erally, and also the particular assumptions that
-y~, is multiplet independent and that 7„, is propor-
tional to J3 for the viscosity polarization. These
are Axioms VI and VII in Ref. 5. With a constant
z the calculated anomalous effects are too small

at the same pressures. The assumption 7~,~ J
agrees not only with the anomalous pressure effects
discussed here, but also with the narrowness of the
transverse 0 = 0 peaks in the low-field limit, and
with the intensity of the low-field 0 = + 1 feature. '

The difference between the forms of the 0/p
curves for q, and q~ has been shown to reflect the
different selections from the frequency spectrum,
determined by the weight factors I

Y'2" (8, Q)12 and
I
F~' (8, $) I

'. The experimental results therefore
give a rather direct illustration of the dependence
of the internal-state contributions to the viscosity
on the Y (J) polarizations.

The effects discussed here require the linear and
quadratic splittings to be comparable in magnitude.
In principle, the same effects could be seen in the
transport coefficients of diamagnetic diatomic polar
molecules, in the presence of colinear electric,
and magnetic fields. The field strengths would have
to be such that the second-order Stark effect is
comparable to the linear rotational Zeemann effect.
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APPENDIX

It is sufficient to consider oxygen as conforming
rigorously to Hund's case (b) and also, in calcu-
lating the 0 =0 energies to second-order in the field,
to neglect the splitting between the o = +1 multiplets.
For large N, the splitting between the o = + 1 multi-
plets tends to 2'» = —0. 016 N cm ', where c„is
the spin-rotation interaction constant (whose spec-
troscopic notation is y), which is small for the rele-
vant N values compared to the larger X=2-cm '
separation between 0 =0 and the mean of the o = + 1
energies, which is due to the spin-spin interaction
primarily. " Actually only terms of the order of
(Nc„/X)~ are neglected. The matrix of the Zeemann
interaction X~ = —y,H ~ S between the cr=+1, 0 lev-
els of given m = m~ and N is

(~/N+1)

&NS~~~X, ~NSo'm&=-y, m 0 —(m/N)

Hs, o

(Al)

H, , H, [ /N(X+1)] j 0

where

H& 0= ((N/2N+ 1) (1 —(m/N+ 1) )] ~3,
H, 0

= [(N+ 1/2N+ 1) (1 —(m/N) )]'~

and second-order perturbation theory then gives
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Eq. (16). This matrix may also be written, approx- through interaction with the distan«=O levels.
imately, formula corresponding to Eg. (1V) is therefore

more complicated, namely,

cosa

—ySSII 0
I 2-'" sine

0 2 sine

I '~'Sing cos9/INt J

Z, „(8)= Z+ [ y,@H/2
~ X~]cose - [(y,eH)'/2X] sm'8

+ ([f (X) —(~,nH) cose]'

where cose =m/(N )', which gives Eci. (1V) di-
rectly.

The o™=1 and 0 = —1 multiplets are not mixed di-
rectly by the field [cf. (Al) and (A2)], since the
ector nte aetio H Scan ot s~atesdiffer g

by AJ= 2. They are mixed only in second order

Here 8= —,'(H[o]+H'o', ) is the mean zero-field posi-
tion, whereas 5(N) = 2(HP,' —H+, ',) gives the sepa-
ration between o = 1 and o = —1 at zero field. - For
g(N), the Schlapp'~ formula should be sufficient.
For N= 5, the o = +1 multiplets are very nearly
degenerate (cf. Tinkham and Strandberg'2).
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The general form of the density operator forunpolarized radiation is obtained. It is shown

thRt lf two orthogonRlly polRrized components of unpolarized l Rdiation Rre statisticRDy ln

dependent, the radiation is necessarily chaotic. It is also shown that the procedure current-

ly being used for studying interactions of unpolarized radiation is not correct, Rnd that
Stokes's parameters do not correctly specify the unpolarized state of radiation.

I. INTRODUCTION

The concept of polarization of radiation is an old

one. It was realized long ago that the natural light
is not polarized. A natural (or unpolarized) beam
of light is traditionally defined» as one whose any

two orthogonal plane-polarized components have

statistically independent pha, ses. A consequence
of this definition (also borne out experimentally for
natural light) is~'~ that (i) any plane-polarized com-
ponent has the same intensity and that (ii) this in-
tensity is unaltered on introducing an arbitrary


