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The momentum distributions of electron pairs in superconductors and of helium atoms in
liquid 4He are defined by summing the pair or atomic state occupation probability over all
internal states of the pair or 4He atom corresponding to a given value of total translational
momentum. By use of the closure relation for internal wave functions, the momentum dis-
tribution of electron pairs is expressed in terms of the two-electron density matrix p2(gfgp g fg2)
of the 2n-electron system. Similarly, for 4He atoms, the momentum distribution is expressed
in terms of the single-atom density matrix p3(x&x2R, z&z2 R') of the n-atom system, where
g&, g2, and R are the coordinates of two electrons and an 0,' particle. The equivalence of this
definition of the momentum distribution with two other plausible definitions is demonstrated.
It is shown that exchange and the exclusion principle produce a strong spreading of the momen-
tum distribution both for a superconductor and for liquid He, completely suppressing Bose-
Einstein condensation in the strong sense of macroscopic occupation of the zero-momentum
state. However, a much weaker singularity at zero momentum, characteristic of the off-
diagonal long-range order (ODLRO) of p2 for a superconductor and of p3 for liquid He, does
occur. By comparison with the hypothetical case of pairs of bosons, it is shown that the ex-
clusion principle (not merely exchange) plays an essential role in broadening the momentum
distribution in superconductors and liquid 4He.

I. INTRODUCTION

The superconducting state is characterized' by
"off-diagonal long-range order" (ODLRO) of the
two-electron density matrix p2(xl x2, x lx 2) in the
sense that

p,(x,x„xlx', ) — x(xlx2)x*(x ',x,') ~ 0,
inf inite seyaration

where g(xlx2) is the effective wave function of a
single pair (the part of X representing the motion
of the center of mass of the pair is the order pa-
rameter). Here each x; stands for (r1, o1) with r1
the position and o& the spin variable (= 0 or 0 ) of
an electron. The limit implied in (1) is one in
which the pair of variables (r,r2) is taken infinitely
far away from the pair (r 1 r 2), holding ol = ol = &

2 0'2 4 and keeping the distances ~ r~ —r2l
and Irq —r2j seithin each pair finite. In the case
that the system contains 2z electrons and is in a
pure quantum state with normalized wave function
g(x, ~ ~ ~ x2„), the two-particle density matrix, nor-
malized to unit trace, is defined by

I I
1 2(xlx„x,x,)

f 0(xl' ' ' x2

pj's

(x lx 2x3 ' x2g)dx3' ' ' dx2g
2lc /

displacement of a single electron pair from (xlx2)
to (xlx 2), and the case (l) of ODLRO means that
the state g exhibits infinite-range phase memory
with respect to displacement of such a pair. In the
case of statistical mechanics, (2) generalizes to

p2(x,x„xlx,')

Z$ + 1 f tl 1(xl' ' ' x2 g)( $ (x lx 2x3' ' ' x2g)dx2 ~
dx2 „

where the g, are the orthonormal states of the sta-
tistical ensemble and the I, are their statistical
weights (for thermal equilibrium u, = Z e 2 1 and

g, are the energy eigenstates). The physical sig-
nificance of p2 and pDLRp remains the same as in
the ca,se of a pure state.

In the analogous case of liquid 4He considered to
be made up of real He atoms each containing an c1

particle and two electrons, the X transition and
superfluidity are presumably characterized~ ~ by
PDLRP of p3 in the sense that

p2(xlx2R, x lx2R')

=X(x,x, R)y, '(x,'x', R') ~ 0,
inf inite Separat ion

where f dx means g, f d'x. Thus p, nieasures the
overlap of two wave functions differing only through

where p2 is the single- He-atom density matrix de-
fined in a pure state by

p3(xlx2 Rot lx 2 R ) 3 4(xl' ' ' x2n RR2' ' ' Rn)
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1 I
&&( (x&x,x, x,„R R, R„)

=n fy„*(xgx2)pq(xgx2, xqx 2)y (xgx q)dxgdxadxq dx 2

in analogy with the standard formula

nq=n(pq, p~pq)=nf p&(x)p~(x, x )pz(x )dxdx (7)

for any normalized orbital y„(x}, pq being the sin-
gle-particle density matrix. Since there are 2n
electrons in the system, one expects that the num-
ber of pairs will be n, i.e. , one expects that the
sum rule

Q nfM n

will hold if (y, ] is any complete orthonormal set
of pair states. This sum rule is easily verified
from the completeness relation

= —,
' [6(x, -x|)6(x,-x,') —5(x, -xa)5(xp-x', )]

and the normalization condition

Trp2= f pa(xqxz, xqxz)dxqdx2=1 . (IO)

Similarly, for a system of n He atoms one can
define the mean occupation number of any single-
atom state y (x,x2R) (R refers to the nucleus, and

xq and x, to the electrons) asa'

n„-=n(p„, p,q, )

=-nfl*(xqx2R)p, (xqx2R, xqxzR')y (xfxzR')

&&dxidx2d Rdxfdx2d R ' (11)

and the same sum rule (8), which now expresses
the fact that there are n He atoms in the system,
applies.

The maximum kinematically attainable pair oc-
cupation number n for a system of n electrons is
limited by the inequality'

&& dx, ~ dx~ „d'R ~ ~ ~ d'R „(5)
and for a statisti "al ensemble by the corresponding
analog of (3).

Let y (x&x2) be any normalized state of a single
electron pair, e.g. , a Cooper pair state of the type
important in the theory of superconductivity. Then
the mean occupation number of this pair state can
be-defined by '

n„-=n(y, p, y. )

which follows from a rigorous upper bound '7'8 on
the largest eigenvalue of the two-electron density
matrix. The fact that the bound (12) is so much
smaller than the value of order n that would char-
acterize Bose-Einstein condensation (macroscopic
occupation) is a direct result of the Pauli exclusion
principle, as can be seen from the derivations' '
and from the fact that an exchanged product

Q 0(x3 x2)'fp 0(x/x4) has a nonzero projection onto unex-
changed products p„(x&x2)p z(x, x4) for practically
all values of n and P, not merely n=P=O. Similar-
ly, for n He atoms the atomic occupation numbers
are limited by essentially9 the same inequality. '
In fact, for a normal fermion system all the n are
much smaller (of order n '), and for a normal (non-
superfluid) system of He atoms all n are of order
n . On the other hand, for a superconductor with
ODLRO (1), the occupation number of the single
Cooper pair state po proportional to X is of order
unity (it approaches —, in the limit of zero range of

qo), and for liquid He with ODLRO (4), the occupa-
tion number of the single-atom state yoproportional
to X is of order n . Because of the distinction be-
tween such behavior and true Bose-Einstein con-
densation, we have called such behavior, charac-
terized by (1) or (4), "Fermi condensation. " It
seems that in a superconductor, in which many
electron pairs move freely through the system but

suffer strong exchange effects, the effects of elec-
tron exchange would be qualitatively different from
those of boson exchange even for tightly bound

Cooper pairs. Similarly, in real superfluid liquid
He the effects of electron exchange are qualitatively

different from boson-exchange effects in an ideal-
ized model of structureless bosons. There are,
however, close analogies' between Fermi and Bose
condensation, since both are characterized by
ODLRO; for the structureless boson models, super-
fluidity and Bose-Einstein condensation are charac-
terized by ODLRO of the single-boson density ma-
trix pt(R, R').

For the case of a uniform system with periodic
boundary conditions, ' the set n of quantum numbers
labeling the state p of an electron pair of a He

atom can be decomposed into a translational wave
vector k (related to the total linear momentum p
of the state y by p=kk) and a set v of internal
quantum numbers labeling the state of excitation of
the wave function in the c.m. frame. It is therefore
natural to define a momentum distribution function
f-„of electron pairs or He atoms by summing over
all states of internal excitation for a fixed value of
momentum:

(13}

n, (n/(2n- I)- —,
' as n- ~ (12)

Here n„" „ is the occupation number n [Eq. (6) or
(11)]for the case that the set n of quantum numbers
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is decomposed as n= (k, v). One might expect the .

momentum distribution function ff, to bear. some re-
lationship to the boson momentum distribution func-
tion in an (extremely) idealized model in which

Cooper pairs are treated as structureless bosons
or the commonly used boson models of liquid He.
It follows from the sum rule (8) that f„- satisfies the
sum rule

ff f=n

as does the boson momentum distribution function
in a system of n bosons. It is natural to ask the

question, "Are the restrictions of the exclusion
principle implicit in (12) still present in f"„, or
might fg exhibit macroscopic occupation (e.g. fp
of order n) as in the case of Bose-Einstein conden-
sation? " The remainder of this paper is devoted
to answering this question. We shall find that the
effects of the exclusion principle are still apparent
in f; both for the case of a superconductor and for
liquid He. We shall show that in both of these
cases f„"is of order unity [independent of n and the
volume 0 in the thermodynamic limit (n/0)- finite
nonzero constant] for all values of k including k= 0,
and that ODI RO (1) or (4) manifests itself in ff only
through a finite (independent of n and 0 in the ther-
modynamic limit) discontinuity at k=0 in the case
of a superconductor, and a negligible (-n ) discon-
tinuity in the case of liquid 'He.

In Sec. II an explicit formula for f-„ in terms of

pa or p, is derived. In order to allay fears that the
definition (13) of f„"might not be the one which is
appropriate on physical grounds, in Sec III we in-
troduce two other plausible definitions of f-„, one
in terms of a suitable average of p2 or p3 so as to
produce an analog of the p& of a boson system, and

the other in terms of the conventiona, l binary or
ternary momentum distribution function. Both of
these definitions are shown to be equivalent to (13).
The properties of f"„for generalized BCS states,
which, as shown by Yang, ' lead to ODI RO (1) and

play an important role in the proof of (12), are in-
vestigated in Sec. IV, and the properties of f"„for
analogous states of a system of He atoms are de-
termined in Sec. V. The physical significance of
the results is discussed in Sec. VI. The hypotheti-
cal case of boson pairs is discussed in an Appendix
in order to differentiate between the effects of ex-
change in general and of the exclusion principle in

particular.
II. EXPLICITFORIvIULA FOR fy

where cl = (k, v), R is the c.m. coordinate

R=-,(r, +r,), (i8)

x& = (r, , o, ) with o; the spin variable (= & or 0), g
is the volume of the system, and the u„are transla-
tionally invariant in the sense that

R„(xlxg) = R„(rlol r2o2) = V„( r12, olog) (i7)

or equivalently

litt( rl + at ol t rg+ a og) litt(rl t ol t rgt og) (18)

Here we have r»= r& —r„ the relative position of
the two electrons. The orthonormality and com-
pleteness relations for the v„are

J V (r12 olog)V '( 12 olo2)d r12
egg 2

Ztt vtt( rlgt olog)vtt ( r 1gt o lo 2)

(is)

? [5(rig rig)5 1 15 g 2
5( 12+rig)5 1 25 g ]

t

as is easily verified by substitution of (17) into (9)
and the orthonormality relation for the fIf), and use
of appropriate 6-function identities.

It follows from (13) and (6) that

I If-„=nLf q „- „(x,xg)pg(x, x„x,x'2)

Xq'I .(X lx2) dxl dxgdx 1dx 2 .

(2o)

Inserting (15) and (17) and performing the closure
sum on v with the aid of (19), one reduces this to

The summation over internal quantum numbers
v in (13) can easily be effected by introducing a
decomposition of the y into internal wave functions
u„and wave functions describing the motion of the
center of mass. Consider first the case of elec-
trons, with pair wave functions y~(xlxg). These
cp can be decomposed as follows:

W

p (x,x,) = 0 '"e u„(xlxg),

fg=gp Z Jpg(rlo» rgogt rlolt 1 gag)e, ""'"1"2-'1'2" 6(rig —r', 2)d rldrgd rid'rg
fy1~2

2 P ~ J P(rlol rgogi 1ol 1+ 2 rl og)e d rl d rgd rl
gyU2

where p= 211/0, the number density of electrons
(not pairs).

The case of a system of n 'He atoms is sif11llar.
The analog of (15) is
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W

q (X1X2R) = tI e'"'"n m u, (X1X2R), (22) and their closure relation xs

where

m R+m, (rl+r, )
Pl 0t + 21%~

(23)

Lu„(r, ol, r2o2; 0) u*„(r1o 1,. r '2o'„0)

and m and m, are the masses of the a particle and
the electron. The translational invariance of the
u„, analogous to (18), implies that

u„(rl ol r2o2 R) =u„(rl —R ol ' r2 R, V2 0)

=-2'[5(rl -r ',)5„,; 5(r2 —r '2)5,~,

—5(r, —r 2')6.„;5(r2-r1)6...;] .

The analog of (21) is then found to be

(26)

I

fk= p Z f p2(rlol, r2cr2, R; rl —R+R', o'1, r2-R+R', o2, R') e ' ''" " 'd rid r2d Rd R ',
(yify2

(26)

where p=nlQ, the number density of He atoms.

III. EQUIVALENT DEFINITIONS OF fk

In the case of ODLRO (1), p2 remains nonzero
when r& and r2 are displaced by an arbitrarily large
distance a from their original positions r& and r2.
This suggests defining an average single-particle
density matrix p, (which by translational invari-
ance depends only on the displacement a) as fol-
lows

f p2 ( rlol, r2o2,' rl + a, ol, r2+ a, o'2)
fyj. ~a

x d'r, d'r2, (27)

with p = 2n/fI, the number density of electrons for
the system of 2n electrons. If we then define a
pair momentum distribution function f k by

fk f p, (a=—)e'"'d'a, (28)

f p2(rl 1 r2 2'rl+a 1 r2+a o2)
tyyQ

x e'"'d'r, d'r, d'a, (29)

which is easily seen to be equivalent to (21) upon
making the substitution r,'= a+ r, . Thus the defini
tions (13) and (27), (28) are equivalent.

Similarly, for a system of n 'He atoms one can
define p, by

then the relationship between f k and p, is the sa.me
as that between the single-particle momentum dis-
tribution function n„- and the single-particle density
matrix p, for a system of structureless bosons. "
Using the completeness relation for the exponential
and the normalization condition (10), one sees that
this f k satisfies the sum rule (14), as required by
the physical interpretation. Combination of (27)
and (28) gives

x d gy d Qp (30)

and f„-by (28). Then we have

fk p ~ f p2(r1 1 2 2 r +ao r2+a o2 R+a)
e,e2

x e'"'d x, d rzd Rd'a, (31)

which reduces to (26) upon defining a new variable
of integration R by a=8'- R. Thus the definitions
(13) and (28), (30) are equivalent.

Still another definition of the pair momentum dis-
tribution function in a system of electrons or the
atomic momentum distribution function of liquid
He can be given in terms cf suitable averages of

the binary or ternary momentum distribution func-
tions. Let d2(k, k2) be the binary momentum dis-
tribution function of a system of 2n electrons, de-
fined in the usual way as

d, (k,k,)= Z Z ~p(k... "k,„;„)~', (32)
'~2n &3" "an

where p is the 2n-electron momentum wave func-
tion

9 (k, , ~ . ~ k..;.) =II- f c(,;~ ~ ~ ... ,.)
e 1 ~1 ~ ~ ~ e 2n 2n d rl ~ ~ ~ d r2„(33)

and g is the 2n-electron Schrodinger function. Sum-
mation of (32) over all values of k, and k2 whose
sum is k gives the probability of finding an electron
pair with total momentum Sk, and multiplication
by n gives the mean number of such pairs (there
are 2n electrons in the system). Thus we define
the mean number fk of electron pairs with momen-
tum Sk as

I

p, (a) —= p Z f p2(rp'1, r2o2, R; rl+ a, ol, r2+ a, o2, R+ a)
tyy typ
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ff=n—Q d2(klk2)=ng d2(k —%2, k2) . (34)
R, R2 &2

(),.~2=~&

x e-'""~-'i' d'r d'~ d'r'
1 2 i ~

which agrees with (21). Thus the three definitions
(13), (28), and (34) are all equival ent.

'

Similarly, for a system of n He atoms the prob-
ability of finding two electrons with momenta k, and

%2 and an n particle with momentum K is

lq (kl'1 .k2.o2. KK2 K.)
sl ~ a2o k3 ~ ~ ~ Ir2„R2

where p is the 2n-electron n-& momentum wave
function. The mean number of 4He atoms with total
momentum Sk is then

kik2R

& &j+&2+~=&&

d3 (klk2K) = n Q d3 (k,k2, k —k, —k2)
kg k2

(37)

A derivation paralleling that of (35) then leads to
(26), showing that the three definitions (13), (28), ~

and (37) are all equivalent.

IV. PAIR MOMENTUM DISTRIBUTION OF GENERALIZED
BCS STATES

It has been shown by Yang' that ODLRO (1) and
hence superconductivity in a system of electrons
is exhibited most strongly by states of the general
form

ge c, (x, ~ x,„)= &A2„[ g(xlx2)g(xox, ) g(x2„1x2„)j,
(38)

where 6 is a normalization constant, A2„ is the
antisymmetrizer with respect to the electron vari-
ables x, ~ x2„, and g is an antisymmetric and nor-
malized two-electron state or "geminal. " Such
a state is called an "antisymmetrized geminal
power" by Coleman ' „we shall call it a "general-
ized BCS' state. " In the limit of zero range of
g, or zero electron density for fixed finite range
of g, the mean occupation number no of the max-
imally occupied electron pair state halo(xlx2) (which
turns out to begin that limit) approaches the largest
possible value —,

' consistent with the kinematical
constraint (12) imposed by the exclusion principle. "
It is therefore of interest to determine the pair
momentum distribution function f3 of generalized

Then by (32), (33), completeness of the exponential,
and (2) one finds

P ~ ~ — ~I ~ ~ ~if P2(rl 1 r2o2'rlolir2 —rl+rl 2)

BCS states (38).
We assume that g is translationally invariant

and a spin singlet, i.e. , that

g(x, x2) = (20) '/2g( r12) (5, , 5, , —5, , 5, ,)

= f lg(r12)l'd'r12

= (2s) ' f lg. l'd'k=1. (40)

Then p2 will be of the form"
~i I ~l Iy

P2 L rg ~(, r2 &2,
' r ) &|,r202 )

12 1 2)y (r12 1')+Pl( 1 1 1 1)P1( 2 2 2 2)

Pl( 1 1 r2 2)P1(r2 2 rl 1) (41)

where'e

X(r», olo2) = (2n)-'(&...&.2. —&...&.2.)(21/)-'

S/2
x

1+ qlgpl'
(42)

p, (rl&„r2&2) = (2n) '(5...&,, + &., ,~,.)(2w) '

q g g &TP: f)2d3P
1+qlg&l'

and the parameter q is determined by the condition
that the density of electrons, 2n/&, has some spec-
ified value p:

2(211)~ "
2 d'k= p .

~l 2

1+ q lg"„l
(43)

Upon substitution of (42) and (41) into (21), one can
carry out the spin summations and volume integra-
tions trivially, with the result'

Cf2= no&ko+f 2

n = p-'(2m)-3 q ~" d'k
l2

(1+ qlg„i2)

2-1/2Q-3/2(6 6 6 6 ) Q g s13 r12

(39)

where g(r, 2) is an even function of r,2 ——r, —r2 [the
original BCS states'7 are of this form with spher-
ically symmetric g( r») j. The normalization condi-
tion on g then reads, after doing the trivial spin
summation,

f I
~(xlx2)

I
2«1 dx2 = fl ' f l

g(r») I'd'rl d'r.
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, ( ),f( qlq;;. I'

)(
qlq;I' )q,„,

(44)

g"„=const —= c, k ( ko

k&k() .

Then the normalization condition (43) on q is

(48)

f = 2 p '"(») 'l r(0) (45)

As a check on the derivation, we verify the sum
rule (14). Making use of the convolution theorem,
one has

(k(')/3a')[qc'/(1+ qc')] = p . (49)

Recalling that 3m p= k~ where hk~ is the Fermi
momentum, one finds

where
«)2

1+ qlg„«i
(45)

qc'= x/(1 —x),
where

(k), /ko) =x, 0& x& 1 .

(50)

(51)
Then by (43), we have

(47)

verifying (14) to order n. The term no is only of
order unity, hence negligible, 0 as is the contribu-
tion of the term of order n ' which was dropped
from f„-. The fact that no is negligible in the sum
rule (14) does not, of course, mean that all effects
of the ODLRO are negligible. In fact, this ODLRO
leads directly to the Meissner effect and supercon-
ductivity of the system.

Let us now examine the qualitative behavior of

(44). We note first that the pair momentum Chs

txibution function ff is of order unity (independent
of n and 0) for all values of k including k = 0. At
k= 0 there is a finite discontinuity of magnitude no,
in contrast with the case of true Bose-Einstein
condensation, for which the discontinuity would be
proportional to n. In spite of the fact that this dis-
continuity is only of order unity, it is a direct re-
flection of the ODI.RO (1) and hence the supercon-
ductivity of the system, since it arises precisely
from the separable term yy* in (41). In fact, no

is just the occupation number ' of the normalized
pair state yo proportional to g. For k&0 there is a
weak tail. extending up to high momenta, described
by the function f„-' which, being a convolution, has
range -2ko where ko is the range of g„".

In order to make this behavior more explicit it
is helpful to consider a simple special case:

The limit x-0 corresponds to tight binding (zero
range of the Cooper-pair relative wave function),
whereas x-1 corresponds to the ideal Fermi gas.
The integral (44) for f f' is then readily evaluated,
being proportional to the overlap volume of two
spheres of radius ko with separation k. One finds
thus

f),= —,'(1 —x)5)-, ()+x[1——,'(k/k())+~'~(k/k()) ], k &2ko

=0, k & 2ko.

(52)
An equivalent way of writing (52) is

fg
= —,

' (1+x) 5g, + x [1 ——', (k/ko) + —,'6 (k/k())'] (1 —5;0),

k &2ko

=0, k '2ko (53)

This function is plotted in Fig. 1 for the cases
x= —,

' (intermediate between very weak and tight
binding of the Cooper pair) and x= 1 (ideal Fermi
gas). As a partial check on (52), one can easily
perform the integration, verifying the sum rule (14)
to order n.

The qualitative behavior of f", for the case of any

spherically symmetric g; of finite range ko [hence
any spherically symmetric g(r)a) of finite range

k, '] will be similar to the special case (52). In the

f.00- I.OO

=3
o~5 W~o 4

0.S'0 0.5'0

FIG. 1. Pair momentum distribu-
tion for a superconducting state with

g =2 and for an ideal Fermi gas (~=1).

O.85

0.5 I.O k/k~
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qlgf, l
= k,"(1—k„), (54)

where

kf = l[1 —o.-/(o~+ ~o)'"],
o'o = ko1/sinh[1/N(0) V],

(55)

N(0) is the density of states at the Fermi surface,
V is the strength of the pairing interaction, and

&» is the single-electron energy relative to the
Fermi surface. Then (44) becomes

ff = no5ro+f1

n, =p-'(2v) ' f k-„(1-k„-)d'k,

ff', =2p 1(2v) f kf, f.kf d k'.

(56)

Since I~ «&~, where &~ is the energy of an elec-
tron at the Fermi surface, Ag is unity inside the
Fermi sea, zero outside, and drops rapidly from
unity to zero in an energy interval of order 8+
about the Fermi surface. Thus f„' differs very
little from the pair momentum distribution of an
ideal Fermi gas, so that by (52), with x= 1 and ko
=k~,

fg
= 1 ——,(k/k1, ) + ~1o (k/k1, ), k & 2k1,

limit of very tight binding of g(r, o), i.e. , ko»k1„
fo approaches —,

' and ff becomes very small for
k&0, but its range ko becomes very large, since
Fourier components of very high momenta are nec-
essary to make a tightly bound Cooper pair. As ko

drops toward k~, the discontinuity no in ff at the
origin decreases, vanishing at ko= k~, in which
limit the effects of the exclusion principle [antisym-
metrization in (38)] become so large that the ODLRO

(1) and superconductivity are completely suppressed.
,

The fact that ff vanishes for k & 2k1, for the ideal
Fermi gas is to be expected, since the maximum
momentum of a pair of electrons within the Fermi
sea is 25k~, when their momenta nearly coincide
just under the Fermi surface.

The behavior of f"„for a real superconductor is
somewhat more complicated, since there is then a
quiescent Fermi sea which does not participate in
the superconductivity, with all superconducting ef-
fects coming from the electrons in a narrow shell
of energy width 5 about the Fermi surface, within
which g„- varies rapidly. For the case of the varia-
tional state of the original BCS theory'7 one has

no= p 'N(0)
h td

&g

4(o + fo)

= -', p-'N(0)oo tan-'(ao1/eo) . (58)

Substituting BCS's' Eq. (2. 40) for eo, one findso4

tan '(sinh[1/N(0) V] ]

V. ATOMIC MOMENTUM DISTRIBUTION FUNCTION OF
LIQUID 48e

The atomic momentum distribution function fp of
liquid He is similar, although more complicated.
We shall evaluate it here in an approximation in
which the liquid-'He ground state is approximated
by the following analog of (38):

go(x, xR, R)

= ~~,„[f,(x,x,R,)f,(x,x,R,)" f,(x,„,x,„R„)],
(61)

where 8 is a normalization constant, A2„ is the
antisymmetrizer with respect to the electron vari-
ables x, ~ ~ xo„, and fo is an orbital approximation
to the ground state of a single He atom:

f,(x,x,R) =(») '"~(lr, -RI)~(lr, -Rl)

x (5,,8,oc
—6,1i5,o~) . (62)

The density matrix p3 of this state is of the form

po(x1xP4 x1xoR )

In the strong- and weak-coupling limits one has

n, --,'p 'N(0)kid as N(0) V- ~

no= 'vP N(0)f—fo1e ' "'o' N(0)V«1

In the weak-coupling limit N(0) V-O, the discon-
tinuity no in f„at k =0 vanishes exponentially, but
it is nonzero for all positive values of N(0) V. In
the strong-coupling limit N(0) V- ~, no is still very
small, of the order of the ratio of the volume of
the narrow energy shell h~ to the total volume of
the Fermi sea. This is entirely consistent with the
fact" that superconductivity arises from correla-
tions in the positions of this small fraction of the
total number of electrons.

=0, k&2k~ . (57)

On the other hand, there will be a small disconti-
nity nod„-0 not present in the ideal Fermi gas, and
the contribution to the integral (56) for no comes
entirely from an energy interval of order Nco about
the Fermi surface. Making the usual approximations
of the BCS theory, '7'" one has

+Po(x1xoR, x1xoR ), (63)

where the term yg* leads to ODLRO (4), whereas

p3 approaches zero as the single-atom variables
(r,roR) are displaced to new positions (r,'roR') in-
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finitely far away from (r,r~R). Corresponding to
this decomposition of p3 there is a decomposition
of the atomic momentum distribution function f~
[Eq. (26)] analogous to (44):

the Bose and Fermi commutation and anticommu-
tation relations, one first rewrites the expectation
value in (66) in the form

&4IA'AA lto&
f„.=n 6a„. 0+f

r l2 3 3no=nfmro +~ I year» r2y (T 1a)2l d r1d r2,
~P2

~)ff = p ~ p1/1'1a» r2a'1, R; 1'1 —R+ R, a'1, ra
1 2

(64)

=
& g, I

g'(r 1a1)g(r,a,)p'(r,'a,')g(r, o,)g'(R')g (R) I $0)

ra)6, 3 &Io I 0 &&la1)g(raaa)y'(R'4'(R) I go &

(68)

—R+R, o'2& R ) e ' ' 'd r1d rad Rd R' .
The expression (64) for na approaches the upper

limit &n
' as the density of the system approaches

zero25 ~

no- 2n as pao- 0 .-1 3 (66)

p3(r, a1, r2o 2, R; r,'o,', raoa, R ) = [2n(2n —1)n ]

&&to I
4'(r1a')0'(r a')0'(R )4(R)4(r2a )4(r1a1) I 4o &

(66)

Here I(a& is the normalized state vector corre-
sponding to (61) and (62), and the P and gt opera-
tors are the usual quantized-field annihilation and
creation operators for electrons and a particles.
In order to extract those terms ' in p3 which have
non-negligible contributions to ff, it is convenient
to make use of the operator identity

I &o& &40 I
+ 6' (6V)

where 0',„ is the projection operator onto the sub-
space of n-atom states orthogonal to i)0&. Using

Here ao is the Bohr radius and p = n/Q. Further-
more, no decreases as pao increases. Hence the
term no6;a in ff is negligible in the thermodynamic
limit, i.e. , the ODLRO and superfluidity' of the
system are not directly reflected in the atomic mo-
mentum distribution f„- aside from the infinitesimal
term of order n '.

Next consider the term f-„' in Eq. (64). In order
to evaluate it we need an expression for p3, the
nonseparable term in the full two-atom density
matrix"

Then, making use of the definitions

p, (ra, r'a') = (2n) '& y, l
y'(r'o')tj (ro) I q, &,

p, (R, R') ="&q, l
C'(R')C(R)

I C.&,

and inserting factors of (6V) judiciously inside the

top matrix element in (68), one finds

) ) ) )
ps(r1a» r2a2i Ri rla» r2aap R )

= [2n/2n 1)]p1(r1a» r1a1)

x p,(,a„r,'o,') p, (R, R') + ~ ~ ~, (VO)

where the terms "
~ ~" arise from the term in (68)

with the prefactor 6(r, —r1) and from matrix ele-
ments containing the factor 6,„. These terms can
be shown to make contributions to f„.' which are only
of orders n ' and smaller, and hence negligible. 29

One notes immediately that the normalization con-
dition

Trps-=Z ps(r, a» rao's R; r,o» raaa~ R)
0'y(I2

x d r, d3r2d'R=1 (Vl)

is satisfied apart from negligible terms of order
n ', as a result of the corresponding normalization
conditions on the single-electron and single-nucleus
density matrices (69).

Noting that the terms exhibited in (VO) consist
precisely of those terms in p3 which contribute to
f-„' in the thermodynamic limit (n- ~ for constant
p), one finds by (64), in this limit,

f1=p Z p, (r„o„r,—R+R', o, ) p, (r~, aran
—R+R', ap) p, (R, R') e '"' ' 'd r, d'r, d'Rd'R'

= nQ E P, (R, a„O, a, ) P, (R, a~; 0, a, )p, (R, 0)e-" "dsR
fyyc

=4nQ pROOcr p~ROe' ' dR. 72

The second and third inequalities follow from the
facts that p1(r, o; r', a) is spin independent and de-
pends on position only through the displacement

r —r', and similarly that p1(R, R' ) depends only on
R —R'. Noting that the Fourier transforms of
p, (R, 0) and p, (r, a; 0, a) are, respectively, the n
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I {k)=nf p, (R, 0)e "'"d'R,

n, (k)=4m f p, (r, a;0, o)e' 'd &

one can write (V2) as a convolution:

(V8)

particle and single-electron momentum distribution
functions n (k) and n, (k):

instead results from interatomic electron ex-
change. ' In fact, it is easy to show33 that for a
single He atom (n = 1) in its ground state fo(xqxoR),
the atomic momentum distribution function is just
ff = 4~. More generally, for an unsymmetrized
product

fo(x~xaRi) "fo(xo.-ixo.R.)

+ 3(pao) [xxf+ Qxf (2W) ao fzf ftzftd k ] ) (V5)

where sf and Zf are defined by

fn'(R)e '"'"d'R =x„-aoo,

fw(R)e '" "d'R'=z„-aoo
('76)

and oo (R) is the overlap integral between atomic
wave functions:

tv(R)= fuo (r)uo(~r+R~ )d r . (VV

Similar ly, sq{k) can be shown 'to be( ln ihe same
approximation,

Ne(k)=2paozf+ o(pao)'zf (x —y —zf+4), (V8)

fnr'(R) doR =xaoo, fce4(R) d'R =yaoo,

fu)'(R) e '"*Rd'R = f„-a'o .
Upon substituting (V5) and (V8) into ('74) one finds

f „-= (2v) pao fxf ~.zq,.„- zg„ud q'd q"+0{(paoo)o),
(80)

where q'=k'ao, q"=k"ao; it should be noted that
xf, and s& have range of order ao' in k space, hence
range of order unity in q space. Tbe function (80)
ls of oldel of magnitude pQO and range co for
pao «1. The normalization condition can be verified
directly from (V2) and the fact that p, (0, o'; 0, a)
= —,'0 ', whereas p, (0, 0) =0 ' as a result of transla-
tional invariance and the fact that p& is normalized
to unity.

Although (64), (65), and (80) have been derived
for the special case of the approximate liquid-4He
ground state (61), one expects the situation to be
similar for the true ground state, i.e. , one expects
that fg will be a smooth function of order of mag-
nitude pao and range ' -3ao', with no trace (except
for the term so5„-o or order n ') of the singular be-
havior eharacteristie of Bose-Einstein condensa-
tion. This spreading of the atomic mc~mentum
distribution is not a result of the internal motion
of the electrons and nuclei within the atoms, but

f =-,'p '(2v) ' fn, (k- k')n, (k'- k")n, (k")d'k'd'k".

(V4)

To the lowest two orders in pu30 one has30

3(k) = paoxl

p3 is the same as for the case n =1, and hence
(26) gives by the same argument

f~ =n 5fo (exclusion principle neglected).

However, the simple product (81) is incompatible
with the exclusion principle, which can be satisfied
by antisymmetrization as in (61). The profound
difference between Eq. (82) and Eqs. (64), (65),
and (80) for a macroscopic system (s-10oo) is
thus seen to arise directly from the effects of elec-
tron exchange. It seems that the usual approxima-
tion of simulating such electron exchange effects
by a phenomenological hard- core interatomic po-
tential breaks down in the case of those many-
atom wave functions in which exchange plays a
major role, as is the case for (61) and presumably
also for the true low-lying states of liquid 4He.

DISCUSSION

It has been shown that for a system of electrons,
the momentum distribution function f„- of electron
pairs is very different from what it would be if
the electron pairs could validly be treated as bo-
sons. The electron exchange effects act in such'
a way as to prevent fo from acquiring a macroscopic
(order n) value characteristic of true Bose-Ein-
stein condensation. In a supereonducting state
with ODLRO of po, f~ does have singular behavior
at k= 0, but the singularity consists of only a
finite (independent of n) discontinuity, and exchange
and the exclusion principle also manifest them-
selves in a spreading of f„.for k 40 by an amount
not less than 2k&, where k& is the Fermi wave vec-
tor of an ideal electron gas of the same density.

Similarly, for Liquid He it has been shown that
electron exchange effects prevent Bose-Einstein
condensation of He atoms in momentum space, in
tbe sense that f„- has no macroscopic singular term
at k= 0. These exchange effects also cause a
spreading in f; for k e0 by an amount of order Sao",
where ao is the Bohr radius (=the radius of the

He atom).
In order to answer the question of to what extent

these effects arise merely from exchange and to
what extent they arise more specifically from the
exclusion principle (antisymmetry rather than
symmetry under exchange) it is desirable to com-
pare these results with a fictitious model of pairs
of bosons rather than pairs of electrons. This is
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done in the Appendix. It is found that in that case
exchange still has profound effects on fo, but that;
in contradistinction to the case of electron pairs,
the boson pair occupation numbers increase to
very large values (being limited only by the in-
equality f„-& n) in the neighborhood of k = 0 as the

range of the pair wave function becomes infinite.
It therefore follows that the large degree of broad-
ening of fo in systems of electrons and in liquid
He is a direct result of the exclusion principle

acting in many-body states with strong spatial
overlap.

Our results on the qualitative behavior of f~ for
liquid He have important implications for the in-
terpretation of experiments on scattering of high-
energy neutrons by liquid 'He. As shall be shown

elsewhere, the atomic impulse approximation (in

which the whole atom, rather than merely its nu-

cleus, recoils freely) leads to the prediction of

strong peaking of the scattering cross section anal-

ogous to that occurring in boson models. However,

the magnitude of the peak has no simple relation
to the atomic momentum distribution function fg,
so that such peaking cannot be taken as evidence
for Bose-Einstein condensation in real liquid He,

Nevertheless, it is related to the ODLRO of p3

responsible for the superfluidity of the system.

ACKNOWLEDGMENT

I am indebted to Peter E. Parks for a discussion'
which motivated this work.

APPENDIX: MOMENTUM DISTRIBUTION OF PAIRS OF
BOSON S

00(r1 ro ) 32 (Z(r12)Z(r34) ' ' 'g(ro -1,2 )], (Al)

where r;;= r& —r; and S2„ is the symmetrizer with

respect to the boson positions r& ~ ~ r». The
quantized-field representation for (AI) is

iso(2. ) &
= [2"/(2. ) ']'/'~Ao

l0 &, (A2)

where 40 is the boson pair creation operator

A, =2" fdr, d'r, g(r~o)g (r~)g (r, ) . (A3)

As in the case of (38), the properties of the state
(A2) are most easily derived asymptotically for
n ~ by realizing that (A2) is the 2n-boson pro-
jection of the state

l (o &
= U

l
0 ), V = exp(c (/lo~- ~o)] (A4)

where c is a nonzero real c number. In fact, the

pair occupation numbers of the state (A2) are

One way of distinguishing the effects of exchange
from those of the exclusion principle (autisymmetry
under electron exchange) is to study the boson pair
occupation numbers of a Bose analog of the BCS
states studied in Sec. IV. Thus we consider a
system of 2n identical spinless bosons in a many-
body state analogous to (38):

asymptotically equal to those of (A4) provided that
e is chosen so that

&q, lXlq, &= &olI/-'xI/lo&=2n,

where N is the boson number operator

N= fd rg (r)p(r) .

(A5)

(AB)

V= exp[2 "'cP;gg(g,'g'; g „-g„-)] (AB)

The unitary transformation effected by (AB) is a
Bogoliubov transf ormation

~ 'si~= (sf+ V'gs'g)/(I —
q g)"', (A

with"

go= tanh(2'/ cg„-) .
In terms of y„-, the constraint (A5) is

2 2Z i y„-/(I —y-„) = 2n .

(A10)

(A11)

The two-particle density matrix of the state
(A4) is, with (AB)-(A10),

~P ~f
Po(rsro riro)

=(2n(»-I)] '&toit'(rl)4'(ro)((ro)4(ri) llo&

X(rlo) X*(r12)+[2+/(2n 1)](p1(r1 r1) 1p( orr2)

+ pi(r» ro) pi(ro r()l (A12)

in analogy with (41), where

X(rio) = (»(2n —1)] "'fl '&. [V';/(I —~;)]8'"'"'
(A13)

and p& is the single-particle density matrix

pi(» r') = (2&) '
&t)'o

I 4 (r') ((r) l (o&

= (2n) ' 0 'Q f [y-„/(I —y )] c'""" (A14)

It is not difficult to show that the formula (21) for
the electron pair momentum distribution also holds
for the momentum distribution of boson pairs,
provided that the spin arguments and spin summa-
tions are omitted. Then in analogy with (44) one

has, dropping negligible terms of order n ',

ff =&o 6t o+f;,

(A15)

In order to make the behavior of f„- more explicit

Introducing the Fourier transform go of g(r») and
the plane-wave boson annihilation and creation
operators ~„- and a~ through

e&f r~o
(AV)

q(r) g-1/op e i&is

one can write (A4) as"
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x=6m p/ko . (A18)

It is clear from (A7) and (A10) that the magnitude
of x is a measure of the range of the relative pair
wave function@(rta), i. e. , x 0 as the range of
g(rta) goes to zero and x- ~ as the range of g(r, a)
becomes infinite. In contrast with the electron
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ditions, the single-particle densities are constant except
within a microscopic distance (the "healing length" ) of
the walls. Such a more realistic case could be discussed
in analogy with the case of periodic boundary conditions,
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This work was motivated by Peter E. Parks's asking
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At this point we are assuming that the state g has
momentum zero; if it has momentum I'q, the disconti-
nuity off"„is at k=q.

~3Substitution of (24) into (25) gives a closure relation
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~4The reason for this choice of normalization is that
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function will then be found to be the same as for the case
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to (48):

y„-= const-=go, k &k,
(A16)

=0, k &ko.
Then it is not difficult to shiv that

1no= a (1+x)6'„.
o

f~= ax[1 —-' (k/ko)+h (k/ko)'], k-' 2ko

k &2ko (A17)

in analogy with (52), where the parameter x, which
enters via (All), is defined as

case (52), for which f; is everywhere & 1/2, the
boson pair momentum distribution function (A17)
becomes very large at very low momenta (& k, ) as
x- ~ (ko- 0). Thus the effects of exchange are
less extreme in the boson case, the limitation f„-
& & in the electron case being a result of the exclu-
sion principle. Nevertheless, the exchange effects
in the boson case are sufficient to prevent true Bose
condensation of boson pairs (f-„of order n) so long
as the range of g is finite (more precisely, volume
independent). Macroscopic values of f~ only occur
if g(r, s) is a continuum state (e. g. , g= const, in
which case ff, =n6@) in which case not only p, but
also p, has ODLBO, ' and Bose condensation is ex-
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the expression for fp.
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we only took the electrons within the energy shell 5'
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to (43). Here we take all the electrons into account;
then (43) is satisfied by observing that hp is unity for
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5See Sec. 6 of Ref. 4.
See Eq. (41) of Bef. 4, inwhichp3is called D3.
The approximate expressions in Appendix 8 of Ref.

4 are not sufficiently accurate for this purpose; in fact,
they do not contain the terms which are important in
verifying the normalization condition Trp3 ——l.

The prefactors in (69) arise from the normalization
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~~The separable term gg* in p3, which leads to ODLHO
{4) and superfluidity of the system. (Bef. 5), is contained
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p& but differing from the terms exhibited by electron ex-
change. However, these terms make no contribution to
f& in the limit n

See Eqs. (28) and (29) of Bef. 4.
3~The range - 3ao arises from the convolution struc-

ture of (74) and the fact that n~ and ne have range -ao .
3~In the true ground state there is further spreading
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der Waals interaction).
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In this case (5) reduces to p3(xqx2R, x~xq R') =fp(xgx2R)
&&f t' (xix& 8'), and the desired result follows immediately
from (26) upon noting that fp is translationally invariant
and normalized.

34In fact it is easy to show, in analogy with the deriva-
tion of (82), that if one replaces (38) by an uns~nmetrized
product g(x~x2)g(x3x4) g(x2n-g x2n) then (21) implies

fg=n~p& if g is any normalized and translationally invar-
iant two-electron state. However, this result is incom-
patible with the exclusion principle.

35We assume, without essential loss of generality, that
gl, is real and an even function of k.

368ee, e. g. , M. Girardea~'. and R. Arnowitt, Phys.
Rev. 113, 755 (1959).
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The transport coefficients of 3Z molecular oxygen in magnetic fields show large deviations
from an H/p law, even at moderate pressures and fields. This complex behavior is explained
by the effect of a quadratic Zeeman splitting of the 0=0 multiplets, superimposed on the nor-
mal linear splitting. Because the normal linear splitting is very small for 0 = 0, the anomalous
effects occur at fields far below the true Paschen-Back region. Collisionally uncoupled model
calculations give the transverse viscosity coefficients in quite detailed agreement with experi-
ment. The distinct behavior of the single- and double-frequency viscosity coefficients reflects
distinct selections from the internal-state frequency spectrum, determined by weight factors
( F ~(6, &f&) ( in the orientation of J. The anomalous behavior of the even coefficients is pre-
dicted to be quite complex. In particular the H/p curves of g& at about 4 Torr should show
three steps, instead of the usual two, and the behavior of g» should be similar.

I. INTRODUCTION

The effect of a magnetic field on the thermal con-
ductivity and viscosity of dilute gases is commonly a
function of the ratio H/p of the field strength to the
pressure. According to the picture of Gorter, ' the
explanation of this H/P dependence is that the ef-
fects are functions of the product ~~ of a preces-
sion frequency, proportional to the field, and a
relaxation time, of the order of the time between
collisions and proportional to I/p. Kikoin et af. ,

a

however, found very large deviations from H/p be-
havior for one of the transverse viscosity coeffi-
cients of 'Z oxygen. Recent very precise measure-
ments of Hulsman et al. not only confirm Kikoin's
result, but show that the other transverse coeffi-
cient is also anomalous, and furthermore that the
behavior of the two coefficients is quite distinct.
In both H/p plots the shoulder . which occurs at
lower H/p behaves normally at constant pressures
up to one atmosphere. This feature is associated '5

with molecules in states belonging to multiplets
having total angular momentum J=N+1, where X
is the [Hund's case (b)] rotational quantum number.
Alternatively, these multiplets may be labeled by
o = + 1, where a =J—N is the spin projection on J in
the classical (large N) limit. The peak occurring

at higher H/p however, and which is associated
with multiplets having o = 0 (J=N), disappe'ars with
increasing pressure. Significant cutting off on the
high-field side of this peak occurs at pressures of
only a few Torr, and one of the viscosity coeffi-
cients, but not the other, changes sign.

Deviations from H/p behavior can likewise be
seen in the even thermal-conductivity and viscosity
coefficients measured by Kikoin et a/. , Korving
et al. , and Hermans et al. at room temperature,
and indeed —though for higher pressures —in the
early measurements of Senftleben and Pieznera (see
IIermans~ for a comparison). The very pronounced
scatter of the points near saturation is shown clear-
ly in Korving'ss H/p plots on "probability" paper.

It is the object of this paper to give an explanation
of this behavior. The quantitative theory is given
for the viscosity only, but the qualitative picture
applies, with minor modifications, to the thermal
conductivity also.

II. VISCOSITY THEORY FOR SMALL DEVIATIONS FROM
LOS(-FIELD STATES

Deviations from H/p behavior in the paramagnetic
Senftleben effects usually reflect the mixing by the
field of states belonging to different zero-field
multiplets (the Paschen-Back effect), and in par-


