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The theory of scattered light waves with exponential temporal and spatial gain is investigated
in the linearized approximation for a number of different cases of material excitation. Regions
of weakly coupled gain (the rate-equation approximation) and strongly coupled gain are found.
A group velocity for the scattered wave is introduced to facilitate the analysis. Gain is found
for the case where the material excitations lose their uncoupled character.

I. INTRODUCTION

Since the first observation of stimulated light
scattering in 1962, ' an extensive experimental lit-
erature has developed concerning stimulated Raman
scattering, electrostrictive and absorptive Brillouin
and entropy (Rayleigh-peak) scattering, and Ray-
leigh-wing scattering. Part of this experimental
work has been concerned with verification of the
theoretical foundations. We wish to extend and am-
plify the theory of the growth of the scattered waves,
and we hope these results suggest ways in which
effective experimental verification may be obtained
of some of the relatively untested theoretical con-
clusions.

I.et us at the outset list the specific aspects of the
theoretical treatment to which we shall address
ourselves:

(a) the regimes of temporal and spatial growth of
the scattered waves and the connection between these
regimes, including the role of boundary conditions;

(h) the range of validity of the "rate-equation ap-
proximation" for the material motion, and charac-
terization of the growth in the weak-coupling limit
(rate-equation approximation, where the damping
mechanism for the material motion balances the
driving term due to the electromagnetic waves) and
the strong-coupling limit (where the growth due to
the driving term greatly exceeds the decay due to
damping);

(c) the utility of the concept of a group velocity
for the mixed material and scattered electromagnet-
1c modes;

(d) the situation in which the input field is so in-
tense that the material modes lose their uncoupled
character.

A brief review of past theoretical treatments will
give some perspective to this work. Most treat-
ments of stimulated scattering (including the pres-
ent work) linearize, in the scattered field and ma. —

terial coordinates, the system of coupled waves.
This amounts to assuming the strong field is essen-

tially unaffected by the growth of the scattered
waves, a possibility which is realizable under cer-
tain experimental conditions. To further simplify
the problem, the laser field is often taken to be a
monochromatic plane wave, in which case the laser
field amplitude is a fixed parameter in the linearized
equations, hence the often used description of stim-
ulated scattering as "a parametric process. " The
search for and characterization of exponentially
growing solutions to the equations for the coupled
linearized waves is described as "an instability
analysis ~

Exponential growth in stimulated scattering was
pointed out by Bloembergen. Garmire, Pandarese,
and Townes' also considered exponential as well as
linear gain and discussed the molecular model for
stimulated scattering. The theory, further refined, 6

included the treatment of the Stokes-anti-Stokes in-
teraction away from exact phase matching. Kroll'
showed that in spatial growth one could include the
effect of spatial nonlocality (the finite velocity of the
material excitation) in the response of the material
system, the locality assumption being similar to the
rate-equation approximation in the time domain.
The assumption of locality has been found to be an
excellent approximation in spatial growth except for
sound waves (Brillouin scattering), where incident
field intensities could be achieved which gave rise
to instabilities of the nonconvective type. The theory
was also extended into the region where the growth
depended on the time duration of the laser pulse. In
this part of the treatment the assumption was made
that the light velocity was effectively infinite, which
leads to what will be defined as a strong-coupling
space-time growth and the absence of a region of
simple temporal growth.

Pure temporal growth was treated by Chiao and
Pine in connection with the production of stimulated
scattering in resonators. Their analyses gave both
the strong- and weak-coupling limits. Brueckner
and Jorna theoretically proposed absorptive light
scattering and found results similar to those of
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Chiao and Pine in the strongly coupled limit, but in
the absence of a resonator. They also introduced
the gxoup velocity conceyt for the scattered waves
and obtained results analogous to those of KroQ for
strongly coupled mixed space-time growth.

The problem of purely spatial growth for absorp-
tively coupled scattering was analyzed by Herman
and Gray. They attempted to include the effect of
laser linewidth. But as has been pointed out ear-
H.er, the lack of monochromaticity in the laser
does not necessarily decrease gain except through
the connection between the lack of monochromaticity
and temporal spiking behavior or laser pulse dura-
tion and the effect of color dispersion in causing a
phase mismatch from one end of the spectral range
to the other. Furthex more, in the yarticular case
of RD uncertainty-bmited laser pulse in which the
linewidth is the reciprocal of the pulse duration and
where the laser linewidth is greater than the line-
width of the material excitation, Herman and Gray
would predict that the gain in an amplifier cell is
proportional to the first power of the cell length
times the pulse duration. This is in disagreement
with earlier results ' ' as well as the present work.

Further analysis has been given fox certain cases
of transient stimulated scattering for a square input
pulse. ' '~ The connection between the various re-
sults described above has not been clearly developed,
and it is one of the aims of the present work to
carry out n»s development.

There are some obvious drawbacks to the lineax-
ized constant laser parameter treatment. To study
the time-dependent problem we assume that the la-
ser field is represented as a square pulse times an
oscillating field. As indicated above, this makes
the lasex field a parameter in the coupled equations
of the weak material and scattexed electromagnetic
waves. Nevertheless, the laser field is not mono-
chromatic, but has its spectral intensity distributed
like (sine)2/x~ about the central frequency. How-

ever, experimentally the laser pulse amplitudes are
varying in a more or less smooth fashion, and the

par Rmeter coupling the weak-wave equations is time
dependent. Therefore the weak-wave growth has to
adjust itself to this parameter variation. To take
this 1nto account complicates the problem greatly;
the equations must be txeated by integral equation
techniques ' axld DumeI'ic Rl lntegx'Rtlon. IIl the
stx'ongly coupled regime it is unlikely that smooth
lasex amplitude vaxiations affect many of the fea-
tures of the results, the scattered waves responding
to the RverRge f161d for R time equal to the pulse
length. In the weakly coupled regime this is appar-
ently not the case, paxticularly when the pulse gets
to be shorter than the relaxation time.

Another drawback is the inappropri. ateness of this
t6chnlque to the sltuRt1OQ ofteQ encountered expexl-
mentally, where the laser field is markedly Rtten-

FIG. 1. PI'opRgKt10ll vect01 dlRgI'Rm foI" light
ScRtte I'IDg

uated by the scattering pxocess. The most I'eason-
able situation in which to test the linearized theory
is an amplifier experiment with very weakly scat-
tered wave inputs, so that even if there is laxge
gain, there is little attenuation of the laser. Treat-
ments have been given" of the coupled-wave prob-
lem. including 1Rsel Rmpl1tude variatlon as well
as its attenuation by stimulated scattering, which
have been limited to the situation in which the rate-
equation approximation is valid.

II. KINEMATICS

For scattering angles (angles between the propaga-
tion directions of the incident and scattered light)
larger than a few degrees we need consider only the
scattering process shown in Fig. l. Here, ko, &uo

are the wave vector and frequency of the strong in-
put wave; similarly, we have k„&& for the scat-
tered electromagnetic wave, and Q, 0 for the mate-
11R1 excltatloD. The fx'equency- Rnd momentum-
matching conditions are

When 860 is positive we have anti-Stokes scattering,
and when HGQ is negative we have Stokes scattering.

We note that when ReQ is positive, the material
wave travels in the direction indicated by the arrow
in Fig. 1, while when Be~ is negative, the material
wave travels in the opposite direction. Thus in
backscattering (k, opposite to ko) the material wave
excited 1n R ti-Stokes scatter1ng trave~s 1n a direc-
tion opposite to ko, while for Stokes scattering the
material wave travels in the ko direction.

It is often useful to write the scattered frequency
RQd wRve vectox' Rs



TE MPORAL AND S PATIAL GAIN ~ ~ ~ 765

k& and p» satisfy the uncoupled (and undamped) elec-
~0

tromagnetic dispersion relations, and k1 —kp and

p&,
' —p&p satisfy the uncoupled (and undamped) mate-

rial dispersion relations. Since we have q «k1, the
scattering angle is approximately given by

~0
g- 0' 1 0'ki

kk kkp (2. 6)

(a)2 = COP
—0 ~

(2. 3)

It is useful to discuss the effect of a planar input
boundary for the scattered waves. We suppose that
the boundary conditions determine the direction of

Imq to be normal to the boundary. We can satisfy
the phase variations at the boundary by properly
choosing the component of k1 normal to Imq. Thus,
without loss of generality, we can take ReqlIImq.
We indicate the angle P between q and k~ as

p, = cosP = 1m' k, /I lmq
I &, , (2. 'f)

where, for all reasonable experimental applications,

Q is zero or very small.
For small values of the scattering angle 8 we

must consider the kinematics represented in Fig.
2, which shows the Stokes-anti-Stokes interaction.
As the figure is drawn, k1, &1 is the upshifted scat-
tered wave and k2, &2 is the downshifted scattered
wave which satisfies the frequency and momentum
conditions

ko, ciao
k oq Qlo

F&G. 2. Propagation vector diagram for light scat-
tering, including the Stokes —anti-Stokes interaction.

602 = 2MQ —R1,0

k,'= p&,'[&(p&p)]"'/c .
(2. 10)

(2. 11)

III. ELECTROMAGNETIC PART OF DISPERSION RELATION

We seek solutions of the propagation equations
for the coupled system of electromagnetic waves
and material excitations. We begin with the trans-
verse Marvell wave equation containing a nonlinear
polarization P" cubic in the electric field:

] 82D g& g2 PNL
-vx(gxE) —~, = —», (3.])

C ~t2 C2 8 t2

where E is the electric field and D the linear elec-
tric displacement vector. We restrict ourselves
to situations where P, and the scattered and inci-
dent fields are parallel. This is, of course, always
the case when the material excitations are hydrody-
namic in nature (i.e. , pressure and density change
in liquids and gases), and the laser light is polar-
ized perpendicular to the plane of the scattering.
The electric field is written as

kp ——kp —Q . (2. 9) F & (g i(RQ r-o)pt ) + g e0 k1 r-+1t)

This small-angle interaction has important conse-
quences for the gain in this region. We must treat
the scattered waves referred to in the figure as part
of a single coupled-wave problem. We also intro-
duce the uncoupled frequency and wave vector magni-
tude for the second scattered wave:

+S,e""p' "p"+c.c.), (3.2)

$0 being the amplitude of the strong field and 81 and

$2 the amplitude of the weak fields. Assuming ) Spl
» ( 8, i, l Sp l, we may linearize (3.1) in the weak
fields to obtain the dispersion relation

[(kp+ Q)'c' - (~p+ &)P~(~p+ (1) -4~(~p+ &)'x'P&(kp+ Q, ~p+ (1)
I hpl

' j

x[(kp-Q)'c'-(~p-(1)'s(~p-~)-4~(~p-(1)'~"&*(kp-Q, ~p-a)lhpl ~

= (4p)'(p&p+ 0)'((op —0)'x'"(kp+Q, (op+A)y" &*(kp —Q, p&p
—0)

l Spl
' . (3. 3)

The third-order nonlinear susceptibility X
' is de-

fined by
6'' k + +0

2 N p r p (3&(y ~Q ~ ~g)lg lp8(k+Q p& +0)
(s.4)

where 6'„'„(kp+Q p&p+0) is the Fourier component
of the nonlinear polarization arising from the Q, 0
component of the material motion proportional to
$(kp+ Q p&p +0). For the material excitations con-
sidered here we may make the reasonable approxi-
mation that

&t"&(k,+Q, ~, +n)=xtP&*(k, -Q, ~, -a) . (s. 5)

For simplicity, and since X' ' usually depends only

weakly on ~0 and kp, we write

&(Q, Q)=2»&t' '(k + Q, p& + 0)/e(p& +0), (3.6)

noting that the material excitations in isotropic ma-
terials depend on the magnitude of Q, not its chrec-
tion. The coupling function K(Q, 0) includes the
dispersion relation for the material system and will
be derived in Sec. V for various material excita-
tions and couplings. In most situations treated in
the literature 0 in K(Q, 0) is taken to be real. For
the transient or temporal growth case, this approach
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is no longer valid, as we shall see subsequently.
Assuming v and q are small compared to optical

frequencies and propagation constants, we may ap-
proximate (3.3) by

wq ———),X(q, O)~~ )l, ~')
Vy

k'k'~
x ' ' sin'- ~k- ' ' ~+—'-k' 'z(q n)ls l' = ' ' ' If'(q &)lh l' (3.7)

where q, v, and p, have been introduced using (2. 3),
(2. 4), and (2.7); in addition, the electromagnetic
group velocity v; is given by

pq- v/ vo- k&o(q ~)lhol =0. (3.13)

(3.10) for Brillouin, Rayleigh-wing, and absorptive
Rayleigh as

c&1/2(&0)
* ~(~()+-:~((&~/»()

and 4k is given by

& k = [4k ok( -4koo+ (koo)o —(kgo)o] /2koo .

(3.8)

(3.9)

Note that when we replace v~ by vp and k& by k»
(3.10) becomes identical with (3.13).

IV. MATERIAL MOTION AND COUPLING TO SCATTERED
ELECTROMAGNETIC WAVE

we may approximate (3. 'i) by

pq —v/v& —kilf'(q, 0)
l 8ol = 0; (3. 1o)

in other words the Stokes —anti-Stokes coupling is
unimportant.

For Brillouin, entropy, and Rayleigh-wing scat-
tering, ~&, cu2, and +p are so nearly equal that we
may take

&(») =&(~o) =&(~o) .
This implies 4k=0 and allows one to set k&=k2=kp
and ~& = co2= cop elsewhere in the expression. Equa-
tion (3.7) then takes the form

vq — -&a&(t) &)l()ol )vp

4kp sin —— +——kpK Q, 0 Sp
. o8 (2ko-ko) (l v

p vp

=k', z'(q, n)l s,l'. (3.11)

For the angles where the Stokes-anti-Stokes inter-
action is significant, I» 8, and we may further ap-
proximate the dispersion relation as

[q -v/vo-koK(q, 0) l8ol']

x[ko6 -q+v/vo-koK(q, 0)l Sol ]
=k', x'(q, n)

l gaol'. (3.12)

We assume, in order to make the interaction dis-
tance a maximum in this small-angle case, that q
lies along k, and that p. = 1.

Finally, for large angles, we may approximate

4k is positive or zero in all experimental situations
studied to date.

For large angles such that

4kpkp . 2g
„'()

' sino —', ti» b k+koo () K(q, 0)
l Sol

o
)

2 2

In this section we discuss various material mo-
tions which can be excited in light scattering in liq-
uids, together with their coupling to the electro-
magnetic field. We will discuss electrostrictively
and absorptively induced Brillouin and entropy (Ray-
leigh-peak) scattering, Rayleigh-wing scattering,
and Raman scattering.

A, Electrostrictively and Absorptively Induced Brillouin and
Entropy (Rayleigh-Peak) Scattering.

We begin with the standard equations of linearized
hydrodynamics. The linearized equation for the in-
crease in entropy density is written as

8Sy
'et

E2

!It (BT ), 8t (Sv)

nE
+pc + KV

4~r
(4. 1)

9 g 9 2 v 2 PPP vs 2S Ve,et2 p et 1 y

= —Pp
—V— (4. 2)

& (4. 1) p, is the induced density charge (to first
order in E ), po the zeroth-order density, 8, the in-
duced temperature change, ~ the thermal conduc-
tivity, C„(Co) the specific heat at constant volume
(pressure), y= C~ /C„, P the volume expansion coef-
ficient, and n is the absorption constant per unit
length. The first term on the right-hand side (rhs)
represents the energy absorbed from the light wave
per unit volume, while the second term is the heat
flow into a volume element due to thermal conduc-
tivity. We also use the sound propagation equation
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Here v, is the velocity of sound, which is related to
the other coefficients by p&

—8 (4.3)

v, =(y —1)C, /P,
and g is the viscosity. The first term on the rhs of
(4. 2) is the gradient of the electrostrictive force.
The dielectric constant change to first order in E2

is given in terms of p& and 8& by

which in turn gives rise to the nonlinear polarization
2

(4.4)
4m 3

Fourier transforming (4.1)-(4.4), and using (3.4)
and (3.6), we find

16v&, D(Q, 0) K(Q, 0)= — ' '
o, n, c+—poT — —2(vQ —ipoC„Q}p, — Q

8p r P ~ 8p r

aE v lo n ZQ T
8~ ZQC. y-1 8~

q2 ~p+2
4 5

where
P

D(Q, 0) = " pov~ Q~ —(a'Q~ —ipoC 0)

RQR gQR~
'Y Pp

(4.6)

If only a fraction f of the absorbed energy becomes
thermalized (rather than reradiated) and if a re]aza-
tion time r is required for the absorbed flux to be
transferred to thermal kinetic energy, then a factor
f (/I+i') should multiply n.

B. Rayleigh-Wing Scattering

%e consider next the alignment of axially sym-
metric anisotropic ally polariz able molecules. The
fractional alignment s = (cos e ——,') (where 6 is the
angle between the axis of symmetry and the electric
field) obeys the equation

ds 4 ~a@2 qp+2 2

dt 45 k~T 3 (4.7)

where 7 is one-third the Debye relaxation time, 4a
is the difference in polarizability between the axis
of symmetry and the directions normal to it, k~ is
Boltzmann's constant, and each —,'(to+ 2) is a local-
field correction factor. The change in dielectric
constant due to alignment is given by

6a =4'[3(&0+2)]2has, (4.6)

where N is the number of molecules per unit volume
Fourier transforming (4.4), (4.7), and (4. 8) and
using (3.4) and (3.6), we find

8Q &p+ 2 6y+ 2

8Xp 3 3
(4. 11)

Fourier transforming (4. 10) and (4. 11) and once
again using (3.4) and (3.6), we find

Q~+ 2il'0 —(oV

V. GENERAL APPROACH TO INSTABILITIES

In this section we give a general treatment of the
problem of temporal as well as spatial instabilities
in stimulated light scattering. ' This is done in
order to understand the transient region of growth
of the scattered waves and the transition from this
region to the steady state, where the growth is
purely spatial.

The study of these instabilities begins with Eq.
(3.7}, often referred to as the dispersion relation.
It determines q as a function of v. Both q and v are
taken to be complex and we write

q=q'+iq ",
V= V +ZV ~

(6.1)

(6.2)

d'x 2rdx „2x 1 8aE2 ~o+2 E +2

(4. 10)

where I" is the damping constant, v„ is the vibra-
tional frequency, m is the mass, and &a/Bxo is the
variation in the polarizability with respect to the
vibrational coordinate at the equilibrium position xp.
The nonlinear polarization induced by the vibration
is given by

C. Stimulated Raman Scattering

In stimulated Raman scattering, we may write the
equation of motion for the vibrational coordinate x
as

For discussing steady-state problems one as-
sumes v "=0. Spatial growth of instabilities occurs
for those values of v ' for which q "(v ') is negative,
and one typically seeks a maximum growth by maxi-
mizing iq "(v') I as a function of v '. The steady-
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state gain yields an appropriate measure of instabil-
ity only when the effective interaction time is suffi-
ciently long to permit the disturbance of highest
spatial gain to propagate from one end of the stim-
ulated scattering region to the other. For shorter
interaction times we proceed as follows.

Equation (3.7) can be thought of as determining

q ', q" as functions of v ', v ". For reasons which
will become clear later, the additional condition

Bq

Bp
(5.3)

is imposed. This condition together with Eq. (3.7)
determines q', q", and v'' as functions of v'. Al-
ternatively, it is often convenient to introduce a
group velocity

(5.4)

and to regard all four variables q', q", v', and v"
as functions of v, . Equation (5.4) then implies

dp

dVg

dq"
Vg

(5.5)

The response (scattered electromagnetic field or
material excitation) at a distance z and time interval
t after an initial disturbance localized in space and
time can be expressed in the following simplified
manner:

ei(qg-vt)
S(e, e) fdv de

q, v
(5.5)

S)(q, v) vanishes when q, v satisfy the dispersion
relation (3.7) for the coupled scattered electromag-
netic and material systems. We have factored out
the rapid variations proportional to vp and kp and

the variation in the plane perpendicular to q, as-
suming it is determined only by boundary conditions.
Integration over q gives an expression of the form

$I(e e) fdeee""""'j=B(e) (5.7)
cv

where B(v) is generally a function of v slowly vary-
ing compared to the variations in v of the exponent
for some asymptotic region of the z, t plane.

It is convenient to study the asymptotic behavior
of 6t(g, t) along a line in the z, t plane, denoted for
the moment by t = ns. The asymptotic behavior
along this ray is then determined by the saddle-point
condition

—[q(v) —nv]z = 0 ..d (5.5)

In other words, along the line t = nz, the dominant

asymptotic contribution to the amplitude of the scat-
tered field comes from modes in a region of q, v

space near the mode defined by (5.8) and the dis-
persion relation (3.7). Hence, the scattered inten-

sity is related to the growth constant of this mode.
This condition, together with the Cauchy-Riemann
relations, yields

tl 8
tr=

ev Bv

~q ~q
, =0. (5.9)

We conclude, therefore, that the gain G for the in-
tensity of the scattered light along the line z =v~t in
the z, t plane is given by

lnG = 2(v "t -q"z), (5. 10)

v ot~

vp —vgcose
(5.11)

There are several possible asymptotic regions in
which it is interesting to examine the saddle-point
exponent. These regions are shown schematically
in Fig. 3. One limit occurs when the pulse is long
compared with the time it takes a disturbance to
propagate over the dimensions of the system. In

this limit t, &l, v, ', in which case we write t = zv, ',
and for maximum gain, let z be its maximum value

l, . Therefore, we obtain

lnG = 2(v "vd —q")l, . (5. 12)

This result reflects the fact that in this limit t is
restricted to the time it takes a disturbance to prop-
agate from one end of the nonlinear medium to the
other. This is the so-called steady-state region.

Further maximization is obtained by requiring
the factor (v "v -q ') to be an extremum. Differ-
entiating with respect to vd, we have, using (5.5),

II

(v"v, ' -q")= ——, , (5. 13)

so that the point v" = 0 is an extremum. Differen-
tiating once more, we find

where v" and q" are functions of v, determined by
Eqs. (3.7), (5. 3), and (5.4). The dominant insta-
bility is found by maximizing Eq. (5.10) as a func-
tion of v~, subject to the constraint that values of z
and t be chosen consistent with the requirements
that growth take place within the stimulated scat-
tering region while the laser pulse is present. The
instability is convective when v is finite, in other
words, for a fixed spatial point the dominant dis-
turbance can decay with time. The constraints are
thus characterized by z &l„where l, is the cell
length and t ~ t„where t, is the effective interaction
time. The effective interaction time t, is different
from the pulse duration t~ because of the finite rate
of propagation of the laser pulse through the medi-
um. Thus, for example, a disturbance initiated by
the head of the laser pulse and propagating in the
same direction will be driven until overtaken by the
tail of the pulse (or until it leaves the medium).
We have, therefore,



4 TE MPQRAL AND S PATIAL GAIN ~ . ~ 769

again using (5. 5). Thus we have a maximum when

dv /dv ~„~~ -y ~ g &0g Vpg

In the short-time region, since t, &I, jv~ r, where
v& r = v&(vp q = v cosH) we may define a maximum
time

Vp —Vg Tcos~T- C
VpVg T

(s. 21)

= Goin

Group Velocity

Space- Time Plone

FIG. 3. Time domains in stimulated light scattering
for temporal, spatial, and mixed temporal and spatial
growth. The case of strong coupling is shown, so that
tT and tL are well separated.

d2 1d"
, (v"v,'-q") = ——, . (5. 14)

v" =0 Vg Vg v" =0

We then have that the condition dv" jdv~i „„0&0 has
a maximum in gain at v" = 0. Note that in the steady
state we require that t, &E, vg L, where

below which the short-time results are correct.
We now consider the intermediate region, in which

tT ~p tL Note that ET tL implies that

Vg T Vg V

Now consider (v"v~' -q")I, subject to the constraint

v, -&f, /t, &v, ~ . (s. 22)

Equation (5. 13) and the positive sign of v" imply
(v" v~ -q' ) I, is maximum at the limits of the con-
straint, namely, when

Vg, T Vg~L

Furthermore, we expect the group velocity to vary
smoothly between these two limits as t~ varies in the
intermediate -time region:

vg g=vg(v =0) (s. 1s)

Therefore, we can define a steady-state time t~+ (I,cos H)/v,
(s. 23)

Vp —Vg, LCOS~
L

VpVg L
(5. 16)

and that its value decreases monotonically as t~ de-
creases. Similar considerations show that the ex-
pression (v" -q" v~) t, subject to the constraint

lnG = 2(v" —v, q ")t, . (s. 17)

This we call the short-time or extreme-transient
region. Further maximization is obtained by. re-
quiring (v" —q "v~)t, tobe amaximum. Differentiat-
ing this factor with respect to vg, we obtain

which t~ must exceed in order to be in the steady-
state region.

Another limit occurs when the length of active
medium in the z direction is large compared to the
distance a disturbance propagates during the laser
pulse, in other words l, &vgt, . In this case we write
&=v, t in the saddle-point exponent, and for maxi-
mum gain let t = t„so that

v, & I, /t, &v, r (s. 24)

is also maximized when (5. 23) holds. The result
for the gain in the intermediate region is

lnG= 2[v "(v =I, /t, ) t, —q "(v =I, /t, )l, ] . (s. as)

When a system has a nonconvective instability
(sometimes called an absolute instability), a critical
power level exists at which vg L vanishes; then, ac-
cording to (5.16), t~ is infinite. There then exists
no steady state either at or above this critical power
level. The formulas for the intermediate region
then hold for all values of t &tT. An example will
be provided by electrostrictive Brillouin scattering.

(v cosH —q vo) t~
(V —q Vg) t~=

dvg Vp Vg COS~
(s. 16) VI. GROWTH IN REGION OF NEGLIGIBLE STOKES AND

ANTI-STOKES COUPLING

using (5. 5). Thus, we find

vpq" = v" cose (s. 19)

for an extremum, and (5. 17) can be written

l G=2&"S, . (s. 17')

Differentiating (5. 18) once more, we have

d 1
d 2 (~"-q"v,)t. = ——

d t, (5.20)
dVg V Q v Qosg Vg Vg0

Away from the region where the Stokes and the
anti-Stokes are simultaneously phase matched we
may neglect the coupling between these two waves
via the material excitation. The extent of the re-
gion over which they are coupled depends on the
size of the nonlinearity. However, in reasonable
situations, its angular extent is at most one or two

degrees.
A. Electrostrictive Brillouin and Entropy Fluctuation Effects

We obtain from (3. 13) and (4. 5), assuming a and
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(Be/8 T), can be neglected and that p. = 1 and the disper-
sion relation

+ 4Vp(v —v()/v b)(1+ v /V()V b)]

X (1 + V(M/Vpv(, b) v (6. 12)
v AQP(((QP - ip() C„Q) (6.1) where

where

' p, l8, l' ~, +2 '
(6.2)

Qo= Iki-kol=2kosin-, '8
and assume that Qo» lq t

1. &xillouin Region

In this region we have

I
f~l= vbQo» +Qo/po Cb )

(6.3)

so that the dispersion relation (6.1) becomes ap-
proximately

lt' v Cb k ol"

v() vq(i +v +it
where we have taken 0= v 'Qp+ v,

v,'=v, Q()/2k(),

(6.4)

(6.5)

and introduced the dimensionless coupling constant

and D(Q, 0) is given by (4. 6). In order to simplify
further discussion we introduce

v,'„=v„(l —cos8) =4v„sin'-,'8

v,„=I'/Cbk(),

v~ = 2v() —(vo —
2vq )cos8 )

v()
——vo+ v, (2 cos8 —1) .

Noting that vo» v, , (6. 12) reduces to

(6. 13)

(6. 14)

(6. 15)

(6. 16)

vp I
v~ 2[1+ (2 — 8)p / ~] 11+2(2—cos8)vp/vcb

+ [1+4(1 —cos8) vo/v, 'b]'i'], (6. 17)

which is independent of v, . There are two inter-
esting limits:

(i) weak coupling, when vo«v, b,

Vg Vp(l Vp/Vob);

(ii) strong coupling, when vp» v&b,

(6. 18)

v, ) (v„(v —cc«v)'/v 1'") (c vc)(2- cos8) 2 —cos8

Using (5. 17), (6.7), and (6. 8), and using vo» v, , we
have for the gain exponent

p()Q() l 8O l
Cb (6.6) 1DG 2r 1 ~ 2 g'0 1 te. 6. 20

where 1 is the damping constant

Q ( «'(v —)))r= ' q+
2p() ( Cb

(6.7)

We have, in the weak-coupling limit,

2Cbuovot,
1 —cos8+ vocos8/v„ (6. 21)

1 1 Cb kpI'(vb /v~+ 1)
v, vp (v,'q+v+iI')'

Solving (6:4) and (6.8) for v and q, we obtain

(6.8)

Taking the derivative with respect to v' of the
dispersion relation and using the saddle-point condi-
tion (5.9) as well as the definition of v~ given by
(5.4), we obtain

and, in the strong-coupling limit,

lnG = [(1.- cos8) CbI'voko]'~ t,

vokoi" Cb
(6. 22)

For the time t~ we have, in the weak-coupling
limit,

1-cos8 1
(6. 28)

VO+Vs

(6.9)

(6.10)

&= [C,k,I'v, (v,'+v, )/(v, —v,)]"' . (6. 11)

a. Short times tb & tr. Using (5. 19), we can
solve for the group velocity at the point of maximum
gain for the growing root

vq = p l[(vp —vb+ 2v()(vp/vbb) + (vp —vb+ 2V()(v()/v()b)

while, in the strong-coupling limit,

tr = 2(l —cos8)E,/vo. (6. 24)

It should be noted that the approximation ~Q t

=v,Qo implies v«V, Qo. On the other hand, signif-
icant gain occurs only when vt, & 1. Hence the
useful range of the above formulas is confined to
t, »1/v, Qo. For very short pulses, which violate
this restriction, it is necessary to return to (6. 1)
and make approximations appropriate to this re-
gion (see Sec. VIC).
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b. Intermediate-time region tl, & t/, + t& . In
this region

where

v 2C, ko 2C,ko

v, (y —1) 1 —ivy
(6.35)

6. 25

C, = (y —1)A/2v, ,

~= r-'= p, c, /~Q,',
(6.36)

(6. 37)

where

k()I'C, v()(v,'+ l,/t, )
'/

t,= t +(l, cos8)/v

If we have vo» l,/t, »v, , then

lno = 4 (C,kpl, re)'/P —2rtp,

(6. 26)

(6. 2V)

(6. 28)

1 1 i2C ko7

v, v, (1 - i)/r)'

Solving (6.38) for v gives

v= -i/r+(1 —i) &,
where

(6.38)

(6. s9)

noting that A is given by (6.2).
Again taking the derivative of (6.35) with respect

to v'using (5.4) and (5. 3), we have

which is a strong-coupling result.
c. I-ong-time region t& & t~. In this region the

gain is given by

(6. 29)

C,ko
r()/m —)/vo))

Inserting (6. 39) into (6. 35}, we have

2C ko i . 2 1
q = ' ' — + (1 -i) II ———

(v —1) vo& vo v

(6.40)

(6.41)

4kolcCb~'=(I -4..c,k, /r)-, » (6. 31)

where

v, =-', ((v„—4 v,') + 2 t'(v„-4v,') v,' (I+v„ /vp) j"')
&& (1+v„/v, )

' . (6. 30)

An alternative form for the gain is
ce Ce 7'ko ~

We have as before strong- and weak-coupling
limits:

(6. 43)

a. Short-time regime t~ & t~. The group veloc-
ity in this regime is given using (5.19) and (6. 17),
replacing vb, by v,'„where

v,', = v„(1 —cos8) =4v„sin4 p8, (6.42)

so that when v,b»4v,' we have

lnG = 2Cbkolc

vg = vp v(,.p /(vp+ vip),

1 —cose 1

(6. 32)

(6.33)

(6. 34)

(i) weak coupling:

Vce Vo~ Vg
-

VO

lnG = 2Cekovo t&

1 —cos8+ vpcos8/v
(6.44)

which is identical with t~ for the weak-coupling case
given by (6. 23).

As v„approaches v,', v, approaches zero, and
consequently tl, becomes infinite. As noted before,
this implies the existence of a nonconvective insta-
bility. There is no steady state, and for v,b

( 4v,'

the formulas for the intermediate-time region apply
for all t &t&. Nonconvective instabilities in stim-
ulated Brillouin scattering were discussed in Ref.
7. The possibility of their occurrence was, in Ref.
7, restricted to larger than right angle scattering,
but in the present treatment there is no such re-
striction. The difference lies in the fact that Imq
was taken parallel to ko in Ref. 7, but parallel to
k& in the present treatment.

2. Entropy or Rayleigh-I'eak Region

In this region we have I Q I
= ((Q()/poC„«v, Qp, so

that the dispersion relation becomes, with v = 0,

with a frequency shift

)/ = —1/'r (6.45)

1/2

b G 2 ekovo ~p

1 —cos8

with a frequency shift

2C.kovo~ "' -l G

1 —cosa 2t~

(6.46)

(6.47)

where tr is given by (6.24).
b. Intermediate-time regime t~ & t~ & t~. Here

the gain is given by

InG=Rt, ( B2—v ')(1—'
Vote

(6.48)

where tr is given by (6. 23) with v, b replaced by v„,'
(ii) strong coupling:

vp() ( vp& v& vp/(2 cos8}
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where &' is now

, pkt,
(v, t, -l, )v q

If we have vp~&l /t then

Inc = 4(c,k, t, t, /r)"' 2 t,—/~ .

(6.49)

(6. 5o)

c. Long-time regime t~ ~ tI, . Here we have

lnG= 2Ceko~c ~

g
=

p pg /(Vp+Vp~)

(6. 51)

(6. 52)

also tz, is given by (6.24) with v„replaced by v„,
and the frequency shift is

v, = I'/Cki,

v,'„=v,„gp/2k),

HeQ= 00+Pv' .

(6. 54)

(6. 55)

(6. 56)

Note that for all cases except Raman scattering it
is a good approximation to replace k& and v& by ko

and vo, respectively.

relation leads to solutions of similar character for
all these cases. We therefore simply write the re-
sults in general form for the three time regions
with the constants for the various processes given
in Table I.

To simplify the results we introduce the quantities

v'= —I/r . (6. 52) Short-Time Regime t~ - tT

The results in this subsection are valid provided
the nonlinearity does not cause complex frequency
and propagation constant changes larger than the
separation between the Brillouin and entropy modes.
We will discuss the breakdown of this condition in
Sec. VIC.

B. General Results

2Ckgvg tplnG=-
1 —vg cos6 (1 —vg /vz)/vp

(6. 57)

(6. 56)

For short times we have the following results in

the weak-coupling limit v, » vo .

We may treat absorptive Brillouin, absorptive
entropy, Raman, and Rayleigh-wing scattering in
a manner similar to the electrostrictive Brillouin
and entropy scattering treatment in Sec.VIA. It is
sufficient to note that for small nonlinearities the
dispersion relation for all these processes can be
written in the approximate form

v M
q ——+ =H,

vexq+ v+&I

with all parameters independent of q and v. This

(1 — / .),
v = Cvpkp —Ivp/v~ ~

In the strong-coupling limit vo» v, we have

1/ 8vgCkgI'

1 —(v&cos &)/vp

vycos ~ l~T-
vo v

(6. 59)

(6. so)

(6.62)

TABLE I. Constants for various physical processes to be used in conjunction with the general equations in Sec. VI B.

Constant
Process

Vex Qp

Electrostrictive
8rillouin

Electrostrictive
entropy

Qppp S~ '
64ms~pI BP T

y(j' —1)pp Be
64xv &0 Bp T

~(y —l)g+
2pp Cp

20

ppCp

—vsgp

Absorptive
Brillouv

Absorptive
entropy

QcP
32xCpgpI'

Q. cP
327r C~0I"

Q() ~(y —j.)
2pp Cp

vQ)

p pCp

vs +v Qp

Haman mN

4m'„e1I'

Hayleigh
wing

2~N(ae) '
45kgT&0

1 3

~Debye
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vg =
2 (v)cose)/vo

(6.63) gation constants to be weakly perturbed by the non-
linearity is

1/2

1 —(v,cos 8)/vo

2. Inte~ediate-T&ne Regime t~ & t&& tl,

For intermediate times we have the following
results provided l, /t, »v,'„:

Qo»ko cg, Roc, , (o. v9)

where, as before, b denotes Brillouin waves and e
denotes entropy waves. For electrostriction we
note that C,ko» C,ko, and we may rewrite the con-
dition (6.V9) for typical liquids as

Iz, «2&&10 sin2-,' e MW/cm2,
in@ —2I t

where

(6. 65) where II, is the laser intensity. For absorption
(6. V9) becomes

1/2

V1te ~e

t, = t~+ (f,cosa)/vo,

vg l c /te

(o.66)

(o. ov)

(s. os)

(e. 69)

When vo» l, /t, and t~» tr, these results reduce to

oI~ «2 x 10' sin'-, 8 MW/cm'. (e. 81)

To violate these conditions we must use powers
somewhat in excess of those which are currently
available for times as long as the steady-state times
in the hydrodynamic scattering processes.

For temporal growth we have a similar condition
for the validity of the results in Secs. VIA and
VIB:

1 G= 4(cn,t,rt, )"'—2rt, ,

v' = (chal/, r/t~)"

(e. vo)

(6.v1)

(s. 82)

which, in the electrostrictive case, can be rewritten
as

Lorg-T~me Reglaze t~ & t~.
I~ «103sin —,'8 MW/cm (e. as)

When v, & 4v,'„we have

4Ck1l,
(1 —4v.'„Cu,/r)"'+1
-', f(v, —4v,',) + [v, (v, —4v,',)]" I

1 +v~/vg

p'=1/r;

when v, »4v„we have

G = 2Ck1l„

4 = vs 4/(vi + vc) ~

v'= 1/I',

(s.v2)

(6. va)

(e. v4)

(e. vo)

(e.vv)

(o. va)

while for the absorptive case we have

oIr, «2&& 10' sin'-', 8 MW/cm'. (6. 84)

These last conditions can be easily violated with
Q-switched lasers. We will therefore examine the
temporal growth when the conditions given by
(6.83) and (6.84) are strongly violated. Under
these conditions the Brillouin and entropy modes
are no longer distinct.

1. F/ectxos txic tive' Case

For electrostrictive scattering we readily obtain
from (6. 1), neglecting damping and the propagation
vector in the material propagator,

The extension of the tabulated formulas to in-
clude electrostrictive and absorptive effects simul-
taneously is straightforward, but has not been
carried out here.

C. Extreme Nonlinear Growth

p
q ——+ 2=0,

vo

co+2 po I So I Qoko
ep eg&o

(e. as)

As pointed out earlier, we assumed in Secs.
VIA and VI 8 that the material motions were not
strongly perturbed by the nonlinearity from their
natural frequencies. The breakdown of this con-
dition is most important in the case of the hydro-
dynamic modes (Brillouin and entropy waves) and
is of lesser" significance in Raman scattering. For
spatial growth in the case of the hydrodynamic
modes the condition for the natural material propa-

(6.8v)

which has three roots:

v= [cos(-,'mn)+ i is(—n', mn)]II,

where n runs 3. -3 and

(6. 88)

Taking the derivative with respect to v' and using
(4. 3) and (4. 4), we obtain
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2ZH=
(Vv, —i/, ) )

From (6.85) we have for q

(6.89)

(6.90)

v = [cos(-', n)) +-,'~) +i sin(-', nm+ 8~) ]L,
where n runs 1-4 and

From (6. 100) we have for q

(6. 103)

(6. 104)

v =vo/(3 —2cos8)

We have for the gain

(6.91)

a. Short tim-e regime t~ &tr. Using (5. 19) we
solve for the group velocity and find v(4 )) (6.1O5)

r

a. Short time -regime tr &t~. From (5. 19) and
(6. 105) we obtain

1nG = 2(sin-, mn)
1. —cos6I

and for tz

tr = 3l, (1 —cos8)/v, .

1/3

(6. 92)

(6.93)

v~ = vo/(4 —3cos8),

in which case L becomes

(6. 106)

(6.107)

The maximum in gain occurs when n=1 and is 1nG = 2[ co(s-,'n v+'v) +i sin(-,'nv+ —,'p)]L (6. 108)

(6.94)
and the time tT becomes

tz =4l, (1 —cos8)/vo . (6. 1O9)

and corresponds to a frequency shift

Zv
2 & 1-cos8 (6.95)

b. Intermediate-time regime t& &t~. From
(6. 88) and (6.90) and setting v~ = l, /t„we have

where

lnG =3sin t, ——', 6.96

The maximum gain occurs when n=1 and is given
by

Il 4

h G = (2+ra)"'
1 —cos8 (6.11O)

Thus the gain goes as the square root of the elec-
tric field.

b. Intermediate- time regime t~ ~ t~. In this
time region, using {6.103) and (6. 105), and r e-
placing v~ by l, /t„we have for the gain

t, = t, + (l,cos8)/v, .

If t~ »l, /vo, the gain reduces to

In G = 3(sin 3 mn) (2 Fi t2)v 3

which has a maximum value of

InG = —,'W(2F l, t')"'
when n =1.

(6.97)

(6.98)

(6.99)

1nG = —, sin(-, nm+-. g) t, ,l 1, 1—
e / ~

— //vo vo

where as usual

tq = tp + (cos8)l~/vo ~

When l, /t, «vo,

1nG = —,' sin(-,' nm + 8 v) (3& t,'l, )"

(6. 111)

(6. 112)

(6.113)
2. Absoxptiv e Scattering

In the case of absorptive scattering we obtain
from (3.13) and (4. 5)

v
q= —+—3=0,

vo

where

(6. 1oo)

(6. 102)

which gives the following roots for v:

~= hol &ol' — ' ' ' ' (6.101)
ep ~ 4pC~&o 3

Differentiating with respect to v' we have

which gives a maximum gain of

1nG= 3(2+& 2)' (3Jt~l, )

where n= 1.

(6.114)

VII. CONSIDERATION OF EXPERIMENTS AND

CONCLUSIONS

Some of the features of the analysis presented
here are well known and understood experimentally,
other aspects are not. A number of authors have
observed apparent steady-state or long-time regime
gain, for example, Walder and Tang, ' Hagenlocker
et al. , Mai.er, and Denariez and Bret. 2 Some
authors have found situations in which the steady-
state theory does not apply. We discuss some of
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lnG = 4(Cko/, I't&)~~2 —21'f& .

They then reexpress this as

lnG„(lnG+ 21't~)
lnG 16lnG I' tp

(7. 1)

(V. 2)

where G„ is to steady-state gain given by (6. 75),
namely,

ln ss= 2c~olc ~ (7. 3)

Equation ('7. 2) gives the appropriate linear depen-
dence on I' ' when —,

' lnG I' '» tp as shown in their
Fig. 5. It does not, however, give the steady-
state result [the left-hand side of (V. 2) becomes
unity in the steady state], contrary to the assertion
of these authors. Furthermore, the linear depen-
dence on I' ' when —,'lnG I' » tp is alsoaconsequence
of the short-time strongly coupled regime (6. 61).
In addition, if following Herman and Gray' and
Denariez and Bret we write the gain as

I" lnG„
7

assuming an uncertainty limited laser pulse, or
equivalently

(7. 4)

-" —1+(It )
'lnG

lnG (7. 5)

we then note that the solid curve in Fig. 5 of Hagen-

these results below.
Brewer ' has measured gain as a function of cell

length and observed transient or time-dependent
gain effects. However, there is little agreement
between the experimental results and the theoretical
analysis which is applied. This analysis is limited
to the strongly coupled long- and intermediate-time
regimes and does not include the short-time regime
or the possibility of weak coupling. Since no input
scattered power is sent into the cell, these results
also include the effects of growth from spontaneous
noise. Saturation of gain due to depletion of the
laser by the backward-traveling scattered light
may also play a role in these results.

Pine, using an off-axis resonator, was able to
observe growth which had temporal character and
found results which were apparently consistent
with the strong-coupling regime.

Hagenlocker et al. made careful, quantita-
tive studies of gain in an amplifier in both the long-
time (or steady-state) and in the time-dependent
regimes. In their experiment they hold the gain
fixed throughout by varying the laser intensity,
compute the steady-state gain from this intensity,
and plot the ratio as a function of I '. These re-
sults are purported to confirm the theory; how-
ever, the methodof data analysis tends to throw
some doubt on this. Following Kroll, these authors
write the gain in the strongly coupled intermediate-
time regime as [see (6. 70)]

locker and Minck is described reasonably well by
(V. 5) given the proper choice of t~ . There is some
question about the correct value tp in this experi-
ment.

Denariez and Bret have also obtained results
concerning the dependence of gain on the damping
I', which again shows (see their Fig. 4) a deviation
from steady state for small I". The present theory
in the strongly coupled limit would predict the ob-
served onset of deviation from the steady state if
lnG is about 25 and the pulse is of the order of a
few times 10 sec long. However, the expression
for the gain used by these authors [which is effec-
tively (V. 5)] would also give a similar result assum-
ing a tp of the order of 10 sec. A further extension
of this approach has been made by Bret and Weber,
in evaluating experimental data on stimulated scat-
tering with picosecond pulses.

Pohl et al. observed in stimulated Brillouin
scattering a dependence of gain on the ratio of the
rise time of the signal to be amplified to the damp-
ing time I" '. The gains observed are small and
cannot be interpreted in terms of the present theory.

A number of authors have observed stimulated
entropy (Rayleigh-peak) scattering with short laser
pulses. Transient effects could play a role in these
observations because of the long relaxation time
of the entropy waves.

Shapiro et al. and others 26* observed stimu-
lated Raman scattering in the picosecond regime
where transient gain reduces stimulated Brillouin
scattering. Maier and co-workers analyzed their
experimental results on backward Haman scattering
in terms of a model involving the temporal and spatial
interaction of the laser pulse with a backward-
traveling stimulated Raman pulse. Their analysis
was limited to the rate-equation approximation.
The effects of pulse shape on transient gain and
the generation, in the transient gain regime, of
Raman-Stokes pulses shorter than the laser pulse
have been studied in liquids by Carman et al.
The results can be compared to transient gain
theo~@, having many of the features presented here,
but modified to include a variety of input pulse
shapes in addition to the square pulse. ' Observa-
tions' have also been made in gases with pico-
second pulses of transient rotational and vibrational
scattering. The influence of gain on the linewidth
of stimulated Raman scattered light has been ob-
served recently by Akhmanov et al. Transient
effects have been incorporated into their theoretical
analyses of these results.
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