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Another possibility is to use the generator-coor-
dinate method to treat the interaction between vari-
ous collective modes as suggested in Refs. 22 and

6. Last but not least, the Feynman 3 and Feynman-
t ohen ' approach to liquid helium is easily seen to
fall within the formalism of the generator-coordi-

nate method if one identifies the generator coordi-
nates with the coordinates of the atoms in the liquid.
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The Kubo-Zwanzig-Fano relaxation method is extended to the problem of a homogeneous
dilute system interacting with arbitrarily strong fields composed of several monochromatic
modes, neglecting breakdown and spatial correlations. The Von Neumann equation for the
density matrix is solved for classical fields, using a procedure in which the harmonics num-
bers are treated as the classical analog {in Liouville space) of the quantum fields occupation-
number representation. This solution is adapted to the case where memory effects during
the absorption or emission of a photon can be neglected. Two examples illustrate the method,
which is generally applicable in such problems as saturation, double resonance, and frequency
mixing involving the nonlinear response of independent molecules.

I. INTRODUCTION

The understanding of relaxation phenomena in

resonance spectra of gases and other dilute sys-
tems in the linear-response approximation has beer.
improved considerably by the introduction of oper-
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ator techniques' and quantum-field-theoretic
methods. ' Little has been done, however, in using
these methods in the domain of nonlinear optics.
The method of Liouville operators developed by
Fano' has been applied by Lambropoulos' to the
problem of radiation damping combined with pres-
sure broadening. A formal introduction of Liou-
ville-operator methods to nonlinear optics, with
quantum fields, has been worked out by Agarwal.

Our aim here is to introduce methods of linear-
response theory to the nonlinear response of reso-
nant dilute media. The practical goal is to cc.inect
the formal approach to the phenomenological de-
scription of collision-broadening effects in non-
linear optics, such as is usually encountered in
works on saturation, " frequency mixing, and
double resonance. "'" With proper modifications
the methods described here may be extended to such
problems as the effect of pressure on the output
power of lasers. "'

Several major assumptions restrict the scope of
this work. We neglect multiphoton processes of
transfer of excitation from one molecule to another,
as in radiation trapping, and consider only non-
linear response by single molecules. For that
matter, we also restrict the discussion to temporal
correlations, avoiding spatial effects such as in
self-focusing. The molecules are treated as stable
entities, disregarding breakdown or ionization
phenomena. It is also assumed that the incident
radiation field is itself unaffected by the medium,
and that it can be treated as a classical field for
most practical purposes. For these reasons our
work deals mainly with gases undergoing interaction
with strong optical, infrared, or microwave radia-
tion, though with some modifications it can be ap-
plied to other dilute systems, such as dilute solu-
tions or impurities in a solid matrix. It can also
be used with appropriate reformulation in problems
involving paramagnetic resonance, magnetoelectric
phenomena, etc. The discussion in the form given
here is limited to a, single particle (the molecule)
undergoing relaxation while resonating with one,
or several, strong monochromatic fields.

The work opens with a general introduction to the
Liouville-operator technique and its application to
the nonlinear response of a gas in a classical field
composed of several monochromatic fields. For
the derivation of a Dyson-type equation, the har-
monics-number representation is introduced, in

analogy with the quantum field occupation-number
representation. The application of the occupation-
number methods to classical fields is permitted in

the Liouville-space formalism, where the equations
of motion for classical and for quantum systems
are similar. ' The gap between the formal theory
and the phenomenological treatment of resonance
lines is bridged by the introduction of a short-

memory approximation and the impact approxima-
tion of collision-broadening theory. ' Finally a
simple diagrammatic method is presented for cal-
culating nonlinear polarizations with arbitrarily
strong fields. This method is illustrated by two
examples: (1) the saturation of a resonance line
(the two-level problem) including inela. stic collisions
between the levels; and (2) the linear response to
a weak field in the presence of a strong monochro-
matic field, with both fields at near resonance with
a molecular transition. These diagrammatic meth-
ods can be extended to other problems involving
more than two levels and (or) several monochro-
matic fields.

II. NONLINEAR RESPONSE

Consider a dilute molecular sample with a dipole
moment p, introduced into an alternating classical
electric field E(t). In the absence of the field, the
sample is assumed to be in equilibrium, obeying the
Liouville equation

8
i—p, = Lp, =0,

where p, is the density matrix of the sample, and
L is the Liouville operator, or Liouvillian, defined
for quantum systems as

I.x=e '[If, x],
x being any dynamical variable of the system, and

H being the Hamiltonian. Thus L is an operator
in the Hilbert space spanned by the dynamical vari-
ables x, also known as the Liouville space. '

In the presence of the field, the density matrix
can be written in the form

p(t) = p, + fp(t) .
Using Eq. (1), the Von Neumann equation for p be-
comes

t „ap(t) L fp(t) = —M E—(t) [p, + &p(t)],

where

M x= @ '
[p.;, x] (i = x, y or z)

defines the Liouville-space analog of the dipole
moment. The field E is treated as a classical (e-
number) quantity. Equation (4) has been written us-
ing the electric dipole approximation for the inter-
action with the field.

Following the method of Kubo, "we transform Eq.
(4) into an integral equation,

np(t) = —j G(t t')M E(t')[p, + &p(t-')] &t', (6)

introducing a Green's function defined by the equa-
tion
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G(t) = 0 for t& 0 (8)

where 6(t) is the Di ac 6 function. The appropriate
Green's function, obeying the causal boundary con-
dition

e~, a,mplitude IEI', I, polarization, and phase. We
are generally allowed to do so if we confine our
sample to a resonance cavity with well-defined
modes. The Fourier transform of the field is

is E((u) =vQ» [E» 5((u —(u») + E» 5((u+ (u»)], (2o)

G(t) = -fe(t) e-"',
where 8(t) is the Heaviside step function. Let

E(t) = —M ~ E(t)[p, + 6p(t)] (»)
represent the right-hand side of Eq. (4), and

E(v)= f e'" F(t)dt (11)

where E„ is the c.c. of E~.
The polarization p(&u) is then a sum of 5 functions,

with contributions from various combinations of
harmonics of the fundamental frequencies; i. e. ,

n ~ v=g»n»&u» (n»= 0, el, . . . for ea,ch k), (21)

where

its Fourier transform. Then, by the convolution
theorem of Fourier transforms, we get

n=(n„. . . , n», . . . )

is a set of harmonics numbers, and

(22)

&p(~) = G(~)&(~), (12) & = (&t y ~ ~
& &» ~ ~ ~ (23)

where

G((u)=[(o+ic —I, ]
' (13)

is the set of fundamental frequencies of the field.
A set of algebraic equations can be obtained from

the integral equation for p(ur) by setting
is the Fourier transform of G(t). Here the limit
& - + 0 is implied.

Application of the convolution theorem to the in-
tegral equation (6) leads to

~p(~) = —G(~)[M E(~)p,

+(2m) ' J„M~ E((u')dp((u —(o') d(u'] . (l4)

This equation is usually solved by iteration, in-
serting

~p(~) = & p"'(~),
/=1

which is in fact a series expansion in powers of the
applied field. We thus obtain a series of recursion
relations

p""((u) = —(2m) 'G((u) J M E((o' )p"'((u —&u') d(u'

(~=1,2."), (16)

the first iteration being Kubo's solution for the
linear response,

p"'((u) = —G((u) M ~ E((u)p, . (1V)

The polarization of the sample at the angular fre-
quency ~ is then defined as

p(~) = I' 'tr [ p6p(~)l, (18)

III. MONOCHROMATIC FIELDS

Consider a superposition of several monochro-
matic fields

E(t) = Re+»E»e

each mode having a well-defined angular frequency

where V is the volume of the sample, and tr de-
notes the trace in the ordinary (Schrodinger) sense.

p((o') = 2mg;g( n ~ ~)6 ((o' —n ~ &u)

= 2'»Zg&'" (n ~ (u)5((u' -n ~ (o) . (24)

The iterative equations then become

Ro'(n ~ a)) = ——'G(n ~ v)QQ, M»E„E" "(n ~ (u + (u»),

(26)

where M~ is the projection of the vector M along the
polarization E~ of the 4th mode. The first iteration
ls

(+ ~») = »G(+ ~»)Itf»E»»pe ~ (26)

In the calculation of p (+) we are interested in
positive values of e, as the physically meaningful
values. However, negative values may appear at
intermediate steps in the iteration process, and
should not be overlooked.

IV. HARMONICS-NUMBER REPRESENTATION

A solution of the iterative equations in closed
form is possible by means of a Dyson-type equation,
analogous to the one obtained in quantum field
theory. For this purpose we need to introduce a
method analogous to the occupation-number repre-
sentation of quantum field theory. Such an attempt
would be meaningless for classical fields if the
ordinary Schrodinger equations of motion for the
sample were used. It is possible, however, in the
Liouville -space representation. The classical
analog of the occupation numbers in ' iouville space
are the harmonics numbers, which count not abso-
lute numbers of photons present in the field but only
numbers of photons taken from or added to the field
by absorption or emission.

Notice that E'„and E, in Eq. (25) are, respective-
ly, followed by a raising and lowering of the har-
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monies number n„by a unit. We can therefore de-
fine for the classical field a Liouville-space set of
vectors labeled by the harmonics numbers

(R=QJt(n ~ &u)
I
n)) . (29)

Similarly, 6 can be redefined as an operator di-
agonal in the n states; its diagonal elements are
functions of the frequency,

&(n'
I

G ln» = 6;,, G(n ~) . (so)

The iterative equations can now be written in this
extended notation as. the operator equations

(R ~'= GU(R'~ " (j=1, 2. . . ),
where

(31)

U= - —.'Z,+~„8;.
The linear-response approximation is thus

(a" '= CU(R"'

(32)

where

=p. I o)),

I 0)) here being the 'vacuum" vector (n = 0) in our
harmonics-number representation.

The series of iterative equations (31) can be
combined into a single equation,

n =— n&,

The double-bracket notation is used to distinguish
these vectors from the Dirac vectors in ordinary
(Schrodinger) space. We can define now the raising
and lowering operators 8~ (to be distinguished from
the numbers E„'),
u+ I8, I

n„... , n„, . . . ))=E,
I
n„... , n„+1, . .. )) .

(26)

Since we deal here with a t."lassica/ field, the two
operators comnzute with each other.

Our Liouville space is now redefined as the prod-
uct of the ordinary (quantum) Liouville space of
the sample and the harmonics-number (classical)
space of the radiation field. All our equations can
then be written in terms of this newly defined space,
thus transferring all our co dependence into the
occupation-number representation.

For example, we can define the vector @ in this
notation, which has R(n ~ ur) as its projection on

I n)), i.e. ,

Here 0 is the diagonal matrix of harmonics fre-
quencies

nln))=n ~ln)&, (ss)

and the Liouvillian I., in the extended, notation, does
not operate on the n space. We thus can write

ft(r co) = &(n
I

9 U
I O&) p,

—.(&nl [~ f. -U+-f~]'Ul o&&p, . (39)

The polarization at v' is given by

p(~') = 2'.,p(n ~ +)5((o' —n (u),

where

P(n ~ &u) = V ' tr( p (( ..
I
9U

I 0))p,),
or, in our operator notation,

(P = V tr( p, b U6l' '),
where

(4o)

(41)

6=) ~P(n ~ (u)
I n)),

the trace being taken over the sample alone. The
linear response is obviously obtained by omitting
the perturbation U from the denominator in (39).
For the nonlinear response one can expand g in a
power series of U,

BU= OU+ GUGU+ ~ ~ . (4s)

This expansion can be represented by diagrams,
with vertices signifying n states and lines signifying
U, in order to sum the series in particular prob-
lems.

Since we deal here explicitly with electric dipole
radiation, we can introduce at this stage an addi-
tional simplification resulting from parity consid-
erations. Electric dipoles have odd parity while
the equilibrium state p, of a gas sample has even
parity. We can therefore split the vector 8, in our
extended Liouville space into an even part and an
odd part, decouple the respective equations, and
consider only the odd part in the calculation of p(&o).
Let

(R = D~6t + (1 —D )(R, (44)

where D~ is the projection operator for the even
part of S. As U is odd in the sample coordinates,
let us define a new even perturbation opeiator

(45)
8, = BUS"',

where Q obeys the Dyson equation

8= G+CUg .
Its formal solution is

g = [G-' - U]-' = [n - Z, —U+ fe ]-' .

(36)

(3'7)

Then we can write separate Dyson equations of the
type

(46)

for the even and odd parts of 6I'. The polarization,
which depends only on the odd part of 8, may then
be written as



NON LIN EAR QP TICAL PQLAHIZ AT ION

O'= V 'tr[ p, (Q —L —W+ie) ' U(R'o'] . (47)

This form has the advantage of reducing by a factor
2 the number of steps in each diagram. Obviously,
this cannot be done with magnetic fields.

I p;»=Z. p&,.I
u3& (45)

be the expansion of the i component of the molecular
dipole moment in the subspace of Liouville space
corresponding to the absorbing system. Here p.

is a member of an orthonormal set of unit vectors.
For example,

I u.~)) =
I
ab')) (49)

is the unit vector corresponding to the operator
I a) (b I in the ordinary (Schr'odinger) space of
quantum mechanics; p, ,,~ is then the corresponding
matrix element of p,

Whenever we deal with an isolated spectral line
represented by a single term p, , g, neglecting
all other terms in the absorbing system's subspace,
we can define the pair of projection operators

I u. p. )&«u
(& u. I u. p. &)

(50)
I p, u ))((u, I

(( u, I p, u )&

V. PROJECTION-OPERATOR METHOD

In dilute systems, where we consider the absorp-
tion by single molecules, we can express the po-
larization as a sum of contributions of N individual
molecules. We therefore distinguish, following
Fano, between the "absorbing system" (the molec-
ular dipole) and the "thermal bath" (the rest of the
sample), and average out the bath degrees of free-
dom using Z wanzig projection operators.
Let

system's space, obtained by averaging over the
bath.

If we wish to consider several resonance lines
(a "band" ) in the Liouville subspace of the absorb-
ing system, we can extend the definition of the pro-
jection operators so that

D=Q D, D' =Q D' (54)

where the summation is carried over the band of
resonance lines.

An approximation of considerable practical im-
portance for dilute gases used by Fano is to as-
sume p, is separable into independent density ma-
trices for the absorbing system and for the thermal
bath,

pe= ps ps ~ (55)

where for ps we may choose Eq. (58). Under this
approximation we can also split the projection op-
erators,

Do= Ds0, D~, D= Ds D~, (55)

where D~ simply implies an averaging over the
bath with p~.

The linear-response polarization (which in non-
isotropic media is not necessarily parallel to the
applied field) due to a single-field mode k, written
in terms of the projection operators, has the ith
Cartesian component

,"P'(~,) = ks'-(N/V) (&& p& I
DG(~.)D

I p». &&

—« p, I
D'G(, )D'

I p, p.»)E; (5~)

Here p, „is the projection of the molecular dipole
p, along Es, and N/V is the number density of ab-
sorbing dipoles. In an isotropic dilute medium,
where (55) can be used and ps is isotropic, P" ' is
parallel to E„ i. e. ,

where ((u I' represents the Hermitian conjugate of
the operator g in Schrodinger space. The "scalar
product" in the denominator signifies a trace in
Schrodinger space, i. e. ,

« u- I us p.»=tr(u'- us p.) . (»)

where p, ~ has been used as one of three Cartesian
components of p, .

The introduction of projection operators allows
us to use the method of Zwanzig' and write

DG(&u)D = D(ur —L+ic) ' D

ln particular, using the representation (49) as a
basis, we can write

«u. o I , pu. »s=t (I rb)&d
I p, )5..

(52)

Here

= [ru —DLD —Z(&u) ] ",
where, with

C=l-D
as the projection operator complementing D,

Z(&u) = DLC(v —CLC+ic) ' CLD .

(59)

(60)

(5l)

Ps ——tr P, = Q ( II3PI8)
batS

(53)

is the trace of p, over the complete set in Schrod-
inger space, ( I 8)j, which covers the bath sub-
space; i. e. , it is a density matrix in the absorbing

The operator D has the property of projecting out
a part of the system's dipole subspace. Thus, DLD
is a matrix of dipole resonance frequencies of the
system. The remaining term Z(&u) in (59) is a
complex "mass operator, " also known as the
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"memory function" which has been studied exten-
sively in the linear-response theory. "'" Its
anti-Hermitian part is a matrix of relaxation rates
for the system, and its Hermitian part is a matrix
of pressure shifts.

In the nonlinear case we can extend this treat-
ment to the harmonics-number representation.
The projection operators commute with the raising
and lowering operators, since they operate on dif-
ferent degrees of freedom. Therefore we can write
by applying the projection-operator method to (40),
and in analogy with (57),

P, (n ~
&u) = ——,h '(IV/y)

&& PZ(((p, ;; n ~DQDS'„
i p, ,p, ; 0&&

(b)

FIG. l. Examples of intermediate photon Feynman
diagrams that are (a) allowed or (b) forbidden in the
short-memory approximation. Open lines —system
propagators, closed loops —bath propagators, wavy
lines —photon lines, and broken lines —collisional
interactions. The opposing arrows denote the lower and

upper states of an optical line, in accordance with the
notations of Refs. 3 and 4.

L'=L+ W. (64)

VI. SHORT-MEMORY APPROXIMATION

In Eq. (63) the mass operator is composed of
entangled collisional and radiational interactions,
owing to the substitution of the modified Liouvillian
L'. We now seek an approximation by which the
two chains of processes can be disentangled.

Consider the Dyson equation

DQD= DGD+DGS'gD . (65)

The disentanglement can be achieved if we replace
W by its projection onto the system subspace DWD,
l. e

DQD —DGD+DGDWDQD . (66)

The vectors on which D projects describe an ele-
mentary excitation of a single molecule where the
rest of the sample is in complete chaos (p,). The
modification introduced by (66) therefore means
that at the onset of each interaction with a photon,
the rest of the sample is supposed to be in thermal
equilibrium, with no memory of its past history,
except for the elementary excitation of the system.
In the language of Feynman diagrams ' (see ex-
amples in Fig. 1) this means that no interaction
between the system and the bath extends across
an intermediate photon line. Such a condition holds
only if the bath has a short memory of its interac-
tion with the system, so that there is only a neg-
ligible chance that it may be in nonequilibrium at
the time of interaction with the radiation. This
condition is compatible with the impact approxima-

-«u~ nID'~D'&fl p. i „O&&). (62)

Here again, using Zwanzig's method we can write

DQD= t &u —DL'D —DL'C(&u —CL'C+ie) "CL'D] ',
(63)

where we have replaced the L of the linear-response
approximation by

The second part of (67) involves the product CW,
or CU, which means that the interaction U occurs
while the sample is not in the state of elementary
excitation described by D. Neglect of CW as well
as of WC (which allows us to replace W by DWD),
leads us to the short-memory approximation (66).
In the resulting expression

D QD = [m DLD —DWD —Z-(&u)] (66)

the collisional and radiational effects in the denom-
inator are disentangled.

We have avoided so far the mention of space de-
generacy and the accompanying symmetry consid-
erations. These will be postponed to Sec. VII.
Here we shall state the two additional approxima-
tions needed in order to reach the practical level
we have set forth to obtain.

First is the impact approximation, already men-
tioned above. In this approximation the collisional
interactions are assumed to have very short cor-
relation times. (These finite correlation times
lead to a suppression of the tails of collision-
broadened lines. ) With this assumption Z(&o) is
made a constant matrix, independent of co; its
Hermitian part is the matrix of pressure shifts and
its anti-Hermitian part is the matrix of relaxation
and cross-relaxation rates of the set of modes in-
cluded in our projected subspace. '

The second approximation, which is also partic-

tlon, 14 18 commonly used with dilute systems, ln

which the duration of each perturbation of the bath
is short. Therefore, approximation (66) is valid
whenever the impact approximation is valid [al-
though the opposite is not necessarily true, as can
be seen from the right-hand side of example (a) in

»g 1].
By simple algebraic manipulation it can be shown

that

D gWG=DGD[1+IC(&u —CLC+ie) 'C]WB . (67)
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ularly suitable to dilute gases, is to assume that
the absorption spectrum is confined to sharp reso-
nance lines. In this approximation we neglect G(v)
whenever ~ is far (in terms of the linewidth) from
a resonance frequency of the absorbing system.

VII. SYMMETRY CONSIDERATIONS

In isotropic media, the electric dipole forms a
bR818 for R pRrticulR1 ll"x'educible representation
of the inversion-rotation group, under mhieh L, and
therefore G, are invariant. Let us denote a com-
ponent of each basis by the three numbers II, K, Q,
mhere II = +1 denotes the parity, 2K+1
(K= 0, I, 2. . .} denotes the multiplicity, and the
2%+1 values of Q= -K, .. . K denote the members
of the multiplet. Electric dipoles belong to the
irreducible representation H = —1, K= 1.

In the linear-xesponse approximation, the ex-
pression of the u 's in terms of the multiplets

8ufflc68 fol R 1 eduction of the Gx'een s
function by inversion-rotation symmetry. If G is
invariant under inversion and rotations in the com-
plete sample's space, then by decoupling the sys-
tem from the bath by (55) and averaging over the
isotropic thermal bath it is also invariant in the
system's subspace alone. Each multipole has its
omn reduced Green'8 function G"' '.

This is not true in the nonlinear case, mhen 8'
is considered. The product of tmo M'8 in 8' is not
invariant, and ean transfer the system from one
multipolar excitation to another, according to the
rules of vector coupling. If me mant to retain the
dlsentangleIQent Rchlev6d by the meRk coupling Rp-
proximation, me ought to modify it by introducing
R less rest1ictive fol m of px'oject10D opelRtox'8 ln
one of the tmo folloming methods.

One Inethod is to insert before and after the W
in (66) the bath projection operator D~ instead of
the complete D. In this may me only reta. in the
bath averaging of each G separately, and leave in-
tact the multipole-changing character of S'. Thus,

to all possible multipoles. Thus, instead of having
to deal with the single term' I ab'; IIKQ)), with
II = —1, K=+ 1, me shall have to consider all pos-
sible I aB1 (bszy) }) with various magnetic Quan-

tum numbers rn, and m~ in the levels of g and g,
respectively. In either may me must give up the
simplicity introduced by spherical symmetry in the
llneR1 -1esponse theory.

The related problem of space degeneracy in sat-
urated magnetic dipole spectra (i.e. , spin reso-
nance) has been solved in more detail by Freed. "

VIII. SATURATION OF TWO-LEVEL SYSTEM

Consider a pair of energy levels a, 5, mhere the
resonance frequency

&u, ~= (EN —E~)/h & 0 (vo)

(where to ~,~ is added the pressure shift 5) and
where

corresponds to an isolated transition allowed by.
electric dipole selection rules. Suppose the transi-
tions a- a and b- 5 are forbidden by the same
selection rules. Forgetting, for the time being,
space degeneracy, me have altogether four vectors
to the absorbing system's Liouville space. Tmo of
them I ab')) and I ba')) are dipole allowed, and the
other two I aa')} and I bb')) are dipole forbidden.
If a and 5 are also pax'ity eigenstates, then the first
two vectors must have odd parity and the second
tmo even. Therefore the G's between the %'8 in
the Dyson series all lie in the odd subspace, mhere-
as the 6'8 within the 8"8 are in the even subspace.
In the first case, mhere G is confined to the two-
dimensional space of I ab')) and I ba')), its bath
average can be written as'

(, G ) = [+I—C + iI, ] ',
where I is the unit matrix,

(69)

where the angular brackets denote a bath average.
Each G in the ensuing series is nom confined to a
multipole different from that of its neighbors, with
the first and last G in each term lying in the elec-
tric dipole subspace. In the intermediate G'8 we
have to sum over all values of K allowed by dipole
selection rules (II being fixed for each G as alter-
DRtlngly pos1t1ve Rnd negRtlv6 by th6 odd pRx'1ty of
M).

The alternative Inethod is to extend the definition
of the projection operator D to include all u 's de-
generate with the original u of dipole character,
belonging to the same pair a, b of energy levels but

y,& being the linemidth and g the cross-relaxation
rate for mixing a mith b. If the lines are sufficient-
ly sharp, so that@,„«cu„, me can consider' only
the first diagonal element in 4 and I » when
m=(d, &, and the second one when w= —m &, neg-
lecting the off-dia, gonal element g. The only ele-
ments me thus consider are

{(ab'
~
(G(~)}

~
ab'))=(ar —~„—6+fy„) '=-G„(u&),

(I4)

In the second ease, where G is confined to the
space ~ aa')), I bb')), we have
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FIG. 2. Typical diagram for the saturation of a res-
onance line by a monochromatic fieM. Circles repre-
sent Green's functions G(n~), the encircled numbers
being the harmonics numbers n. Connecting line repre-
sent an interaction U=- MME. The diagram is composed
of a succession of links, such as the one enclosed in the
rectangle Z.

(G) = (~1+ir,)-',
where

(75)

(76)

Here y, and y, are, respectively, the inverse life-
times of levels a and 5, and g is the rate of transi-
tions from a to b. In this case, unlike that of (73),
we have to consider all four elements whenever
~ = 0, since both y, and y» belong to the same (zero)
resonance frequency.

The sample is irradiated with a monochromatic
beam polarized, for example, in the z direction.
Vectors in the even-parity subspace are trans-

Z= »Q, M(G(0)) M(G(+&@))
I

E»
I

(79)

represents a link in the chain. Summing the geo-
metric progression (78), we have

8(~) = G.»(~) (I - Z) '

=[Gu '(~) -ZG.» '(~) ] '.
Consider now the effect of Z on M

I p, )),
(80)

formed by the operator M into vectors in the odd-
parity subspace. Thus, we have

hM
I
ab')) = p„( I

bb')) —
I
aa')) ),

IM
I
ba'»=- p.»(l »'»-

I
«'))» (77)

&M
I
«')) =-&M

I
»'»= p~ I

ba'&) p.—.» I.b'&& .
In the calculation of p(ur) we may retain, by our

assumption of sharp lines, only the n ~ ~ =+ (d terms
at the odd-parity stages, and n (d = 0 at the even-
parity stages. Therefore, terms in the Dyson
series can be represented by the diagram shown
in Fig. 2. As we calculate the polarization at the
fundamental frequency ~, all diagrams should end
on the left with n=+1. The Dyson series can then
be written as

~(~) =Z G.»(~)Z', (78)
)=0

where

ZM
I p, »=Z(p, - p.) I '(p. » I

ab'» —». I
ba »)

=-'h '
I
E» I'(»- p.) I p.» I'[G.»(~) —G.*»(~)]M(G(0)& ( I

»'&& -
I
«'&&). (81)

where (74) has been used for G(+ v). Using (75)
and (76) for G(0), we obtain

zMI p. )&=& 'I&, I'I p., I'(r.r -o') '

x ( y,~»y+» —o)[lmG, »(e)] M
I p, )), (82)

i.e. , Z is diagonal in M
I p, )) . Now, we have

lmG„(4&) = —r,» I
G~(~) I ~ (83)

n = (r.r» o') 'r.»(»r, +—»r» —a) . (s5)

This dimensionless coefficient modifies the result
of Karplus and Schwinger' (equivalent to ri = 1),

Therefore, using (81)-(83), the sum of the two
contributions to the polarization [see Eq. (62)] at
n v= (d is given by

~(»=[G. '(~)+« '
I p" I'I E. I'G.*(~)] '

(t& —ab —~ + &yap

(~ ~., 6)'+-y.»'+—qn 'I p.»
I'Iz-„I'

(84)
where

which is obtained under the assumption that

y~, =y, = y& and 0 = 0. In actual collision-broaden-
ing problems ya~ may be quite different from y, or
y», and in low-frequency (microwave) spectra, the
effect of o is not negligible.

The introduction of space degeneracy complicates
the problem. By choosing p, to be along the s axis,
and assuming we can average each G alone over
the isotropic bath, we restrict ourselves to Liou-
ville-space vectors with Q= 0 (i. e. , transitions
with 6m=0). Consider the transition j,=1-j,=0,
where j, and j, are, respectively, the angular mo-
menta of levels a and b. Here I ab')) and I ba'))
are confined to the dipole subspace, and

I
bb'))

to the monopole subspace (K= 0), but I aa')) is a
mixture of a monopole and a quadrupole (K= 0

and 2). Therefore Z and, hence, q consist of two

terms, e. g. ,
(o) (o) (& ) (& ) (86)

one for the monopole and the other for the quadru-

pole contribution of I aa')). The coefficients c"'
(5=0 or 2) are the squares of the projections of
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FIG. 3. Typical diagram for the linear response at
a resonance line to a monochromatic field E~ at the
presence of a saturating field E2. Circles represent
Green's functions G(n~~~+n2co2), the enclosed number
pairs being n~, n2. Connecting lines represent an inter-
action U=- 2 ME. The diagram is composed of various
combinations of a succession of X links, followed by a
Z link and then by a succession of 7 links. The various
types of links are shown by rectangles.

l aa')) on the corresponding multipole subspaces,
normalized so that their sum is unity. Each g"'
has its own y„y~, and 0. A similar result may
be obtained also for other j values if we neglect
the projections of I ab')) and I ba')) on multipole
subspaces other than the dipole.

In following any possible trajectory in the dia-
gram, going from right to left, we can therefore
vary na as many times as desired, restricted only

by (89) or (90). But n& can be changed from 0 to 1

only once along each trajectory. Three types of
links can therefore be found in these diagrams:

x= -,8-'c (o; o)[c.,(o;1)+c.,(o; —1)]
I

p..p. I,
I'= ~@ 'C (1; —1)[C,((1;0)+G(„(1;—2)]

I P,pgf'

G-(1' —1)[G0.(0 ' —1)+c.((1 ' 0)]
I ~.Z~ I

(»)
where

C =((aa'
f

(, C)
f
aa'»+ ((bb'

f & C)
I

bb'&)

—((aa'
I
(G)

I
bb'»-(&bb'

f
&G) f

aa'&) . (92)

Here X describes a two-photon step along the chain
of events before the single jump in n&, i' describes
such a step after the jump, and Zis a connecting link

between the two chains. In reaching the G„(1;0)
on the left we can either follow the chain of
X's or jump to the F chain via a Z step. There-
fore, the jth order diagram will give

(d g
—4)3 —

(dory ~ (8V)

In this case, assuming sharp resonance, we need
to consider only the following matrix elements:

C„(n,~, + n, (u, ) =- C„(n„n,),

IX. TWO-FIELD PROBLEM

Consider now the response of a dilute sample
to a weak monochromatic field E& in the presence
of a strong saturating field E~, where the corres-
ponding frequencies co& and v2 are near a reso-
nance frequency, i. e. ,

(98)

As in the case of saturation discussed in Sec. VIII,
here also the X, I; and Z are diagonal in M I p, )),
and can be replaced by scalar numbers.

Performing the summation over b in (98) we ob-
tain

Z ) 1 y0"'(~,)=G.,(1;0)X'(1+—Z-
A=O

= c„(1;o)[x'+ z(x —I )-'(x' —I')], (94)

G„,( —n~(() ~
—n2(() 2) —= G(),( —n, ; —n~),

with

n(=0al, a2, ... , nq
—-1 —nq,

and the matrix elements of

(G(n(d, —ne, ) ) —= G(n; —n)

(88)

(89)

and, summing over all orders,

8(~i) =& &"'(~i)
J=O

1 Z
1 —X X —I'

x- —— . 95

(n=o, al, +2. . . ), (9o)

in the 2&&2 subspace of I aa')) and I bb')) [for the
same reasons as in Eq. (75)]. Here all the dia-
grams should end up with G„((1),) on the left since
we are interested in the polarization at co, .

A typical diagram is shown in Fig. 3, where
each pair of numbers denotes the two harmonics
numbers ~j and n2. Here we have limited the anal-
ysis to responses linear in E„under the assump-
tion that E& is weak, but have retained all powers
of E, .

The ratio of g((d, ) to G„(1;0) is also the ratio of
the susceptibility of the sample at frequency w& in
the presence of the saturating field Ea to that in its
absence. This ratio

8 (u), ) (1+2 —I')
c.,(1; o) (1 -x)(1 —I')

depends on the difference between ~& and co&. As
co& approaches ~2, we have X= Y = Z, and the ratio
reduces to

f((d„. (d,)=(1 —X) '.



This is the square of the factor obtained in the case
of saturation as the correction to the linear-re-
sponse polarization. But when ~j ——(d&, we cannot
distinguish between the two fields, and the polariza-
tion should be equal to that of the Sec. VIII. We
therefore expect a "discontinuity" in the polariza-
tion as we let co& of the weak field pass through (d&

of the strong field. This discontinuity is formally
accounted for by certain 5 functions in 5p(&u) which
contribute only when su& = ~,. In reality, "mono-
chromatic" beams have a finite bandwidth, and
therefore this discontinuity will occur smoothly
over a finite range of the frequency difference.
This phenomenon results from the indistinguish-
ability of ~& from co2 photons when I cog —co2 I lies
within the bandwidth. It is thus reminiscent of the
Lamb dip, which is usually associated witi~ the in-
distinguishability of forward- and backward-moving
photons as seen by a molecule at rest.

X. CONCLUSIONS

linear response of a system of several levels to
several monochromatic beams, such as is encoun-
tered in the phenomena listed in the Introduction.
In dealing with complicated situations, although it
may become necessary to replace numerical coef-
ficients of the kind in (91) by matrices of small
dimensions, series summations of the type occuring
in (95) can still be performed.

Our analysis traces back the origin of the approx. -
imations (such as short memory) leading to the
ordinary phenomenological treatments of the colli-
sion effects, and can therefore serve as a basis
for extension to cases where these approximations
are not valid. Its major point, however, is the
recognition that diagrammatic methods for series
summation, introduced by a formalism of "second
quantization, " are also applicable to classical
fields.
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