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still about 15 f&; so one might have expected Boltz-
mann’s assumptions to be more nearly justified
than in many applications to plasmas and solids.
Our results suggest that, instead of seeking to
characterize the physical systems for which the
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Boltzmann transport equation is valid, it may be
more appropriate to seek, for a given physical
system, to characterize theinitial states for which
it is valid. The analysis given here, of course,

is very far from answering this question.
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The generator-coordinate method, well known in nuclear physics, is employed to derive the
Bogoliubov theory of superfluidity of abosonsystem. The treatment is fully number conserving.
Analogies to a normal Fermi system (especially to the random-phase approximation for that
system) are pointed out, and some further insight into the nature of superfluidity is gained.

Possible generalizations are mentioned.

I. INTRODUCTION

The generator-coordinate method™* is well known
as a powerful means of treating nuclear systems,
and is especially useful for describing collective
properties of nuclei. One of its virtues is a simul-
taneous treatment of both the ground state and the
low-lying states of the system. One of its applica-
tions was an alternative derivation, by Jancovici
and Schiff, ° of the random-phase approximation
(RPA) for a normal Fermi system. Extensions of
the Jancovici-Schiff treatment to a derivation of a
higher RPA® as well as to a pairing Fermi system’
have been suggested. There is nothing in the meth-
od which would limit its usefulness to the realm of
nuclear physics only. In fact, it may find applica-
tions in various other many-body systems. The
purpose of the present paper is to call attention to
the applicability of the method to a many-boson
system and, in particular, to show that a fully
number-conserving application of the method, in
a form closely analogous to the Jancovici-Schiff
derivation of the RPA, yields a number-conserving
version of the Bogoliubov theory of superfluidity.®=!!

The relation between the Bogoliubov transformation
in a boson system and the summation of the RPA
diagrams has been known for a long time. %! How-
ever, up to now it has been derived within the con-
text of a particle number nonconserving formalism,
which keeps only the average number of particles
fixed. It is interesting to note that the Jancovici-
Schiff derivation of the RPA for a Fermi system
does not yield the pairing effects. The BCS and
Bogoliubov-Valatin results in the theory of super-
conductivity are derived only at the expense of in-
troducing states which do not conserve the number
of particles. Usually, the Bogoliubov-Valatin
quasiparticles in the theory of superconductivity
are considered the analogs of the quasiparticles
representing the low-lying states of a superfluid
boson system. However, the present formalism
implies that the latter states are rather the analogs
of the RPA collective particle-hole modes of a
normal Fermi system. Although we will not carry
it out in the present publication, it is tempting to
include number nonconservation in the present
formalism, in the manner used in Ref. 7 for the
discussion of the so-called “pairing vibrations”
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of a Fermi system.

In the rest of this section, we review very briefly
the generator-coordinate method. In Sec. II we
shall see how a particular approximation scheme
yields, in a number-conserving formalism, the
Bogoliubov theory of superfluidity. Section III
discusses the results and indicates some possible
generalizations.

In the generator-coordinate method' one starts
with a known family of N-particle wave functions
| ®()), where o stands for a set of parameters
(generator coordinates) a,, @z, ... . An approxi-
mate eigenfunction of the system is then generated
by taking the linear combination

|0y = [f(a)]| @(a))da . (1.1)

The unknown weight function f («) is to be deter-
mined from the variational principle

slwlale)/wlv))=0.
This leads to an integral equation for f (@),

[[H(a,a")/I(a, ") ~ElI(a,a")f(a’)da’=0 .
(1.3)

(1.2)

where

H(a,a')=(2(a)|H| o)),
, (1.4)
I(a,a')=(2(a)| &a’)).

The lowest eigenvalue E of Eq. (1. 3) should give
an approximation to the ground-state energy and
higher eigenvalues will approximate the energies
of excited states. Of course, the usefulness and
tractability of the method depend to a large extent
on the choice of the set | ®(a)).

II. GENERATOR-COORDINATE METHOD AND
BOGOLIUBOV THEORY OF SUPERFLUIDITY

Consider a system of N spinless bosons enclosed
in a cubic box of volume §2 and described by the
Hamiltonian

> k? 1o Y oo+

H=2 '2‘774'29 2 Viaggagiagag . (2.1)
k kpq

(We assume periodic boundary conditions and take

Vi=V.g=V}.) The ground state of the noninteract-

ing system is | &;),
|6) = N1y 2 (@) |0) (2.2)

where |10) is the vacuum state. The most general
state which is not orthogonal to | ®,) may be written
(up to normalization) in the form

- T
exp(ﬂ V233 2z ai aq
k0

¥+ ,
+3@7 L Zi.saia;a02+--~>|¢o> :
4

k, p#0

In order to derive the Bogoliubov results in the
theory of superfluidity, we take the generator co-
ordinates to be the (simplest choice) complex ampli-
tudes z;, and take | ®(a)) to be the state

Ié(z))sexp(N'”zZB z;aga0> | ) . (2.3)
k#0

[Note that in Eq. (2.3) we chose the coefficient of
the sum in the exponent to be N™'/2 instead of @Y/,
This makes the expressions in the intermediate
stages of the calculation somewhat simpler and
does not affect any of the results.] As the trial
wave function for the generator-coordinate method
we take

vy =[f ()| 2(2))dz , (2.4)

where dz means d(Rez) d(Imz). Notice that the

zi here are the exact analogs of the complex par-
ticle-hole amplitudes z,; of the RPA.® The varia-
tional principle yields the following integral equa-
tion for £ (z)

f[H(z,z')/[(z,z')—E]I(z,z'),f(z')dz'=0 , (2.5)

where

H(z,z')=(2@)|H|®(")), I(z,2")=(()|&(z")) .
(2.6)

Assume now that even in the presence of the inter-
action the state | ®;) is not too bad an approxima-
tion to the real ground state (this assumption is of
course, related to the usual assumption of macro-
scopic occupancy of the k=0 mode at T< T, even in
the presence of interactions), and that most of the
contribution to the real ground state comes from
the neighborhood of 2 =0. This would mean that
the function 7 (z) of Eq. (2.4) should be peaked
around the point z=0.'® These assumptions are
essentially equivalent to assuming z, z' to be small,
and that we may expand both I (z,z") and H(z,2z")/
I(z,2") in Eq. (2.5) up to second order in z,z’,
neglecting higher-order terms.
A simple calculation yields that up to second

order in z,z’, I(z,z") may be written in the form

I(z,z')=exp<2 2 zé) , (2.7)

i#0

while, to the same order, H(z,z')/I(z,z") assumes
the form

(Z’ZI) ]'22 -1 > * ’
Hlz,z ) _ L —1)tye) 2X 5
TG.27) E0+%:0 5 +(N-1) Vi) 2 23

+3(N-1) Q"Z_: Ve GEzNrzt 2z), (2.8)
k#0
where
Eo={®|H| &) =321 Vo (N2=N)

Therefore, the integral equation (2.5) reads in our
approximation
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2
f[*2<12{_7—n+ v-1)0! V;) 2F 2t
P2

+3(N =190 Vi(ef 2Xi+zi2lp) - (E —Eo)]
k#0

Xexp(Z) z¥ zé)f(z')dz':O . (2.9
k#0

The integral equation (2. 9) is equivalent to an equa-

tion for coupled harmonic oscillators.® Define a
function G,
G(z™) = exp<2 zF zé)f(z')dz' . (2.10)
k#0
Obviously,
6G
E—Er:fz,fexp(_z zF zé)f(z')dz' . (2.11)
L k0

By means of this relation, the integral equation
(2.9) for f is transformed into the partial differen-
tial equation for G:

-

[Z?(;—;Jr - et V;) a0

K#0 bz ¥

~ [0 9
+3(N-1DQ1D Vg <z¥ Zg+—% ——*)
0

-(E -Eo)] G(z*)=0. (2.12)

Equation (2. 12) is the Schrodinger equation for
coupled harmonic oscillators in the Bargmann
representation. >!*%% To diagonalize it, define the
boson operator B,

Bl zuz 2 +vg0/62% . (2.13)

It is easy to see that Eq. (2.12) reads, in terms of
the new operators,

Z)w‘(BjBlﬁ%)—-l'(k—aNN—l)Q'IV‘>
R 2\2m k

—(E—Eo)] G=0, (2.14)

where the excitation energy w; is given by
wi=[(V= D)1 v; k2/m +K*/am?]2 (2.15)
and the coefficients u;, v; are given by
up=(1-X3)"2 ) 0p=X;(1 —-X%)'“Z , (2.16)
where
w-1tv;
2/29m + (N - 1) Vi+w;
From Egs. (2.14) and (2. 15), it is obvious that the
energy spectrum obtained is the same as that of
Bogoliubov. ®° We can also obtain the correspond-

ing wave functions.® The function G,(z) which cor-
responds to the ground state is the solution of

Xi=% (2.17)
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B;Go(z*) =0, (2.18)

and the excited states are reached by the application
of the operators B:kf to G,. Equation (2. 18) is easily
seen to yield (up to normalization)

Go(2™) =exp<- %%iX; zr Zf;) . (2.19)

Finally, once we know G(z*), we are able to find
f(2) and 19).5 One obtains

|4) =612 af ag)| &) (2. 20)

where G(N /2 ag a,) is the operator obtained through
the replacement in G(z*) of each z} by the operator
N~ a; a,. In particular, the ground state is given
in our approximation by

|z,b)=exp<— %N"é?oX; ag a_‘}af) |&,) . (2.21)

III. DISCUSSION

We have already pointed out the analogy between
the present formulation of superfluidity and the
RPA for a normal Fermi system. Let us elaborate
somewhat further on this analogy, especially in re-
lation to a pairing (superconductive) Fermi system.
Superconductivity in a fermion system is brought
about by the interaction of two particles (or two
holes)™ of equal and opposite momenta, leading to
the formation of Cooper pairs. On the other hand,
in the present formulation (at least) superfluidity
is seen to be caused by!” a “particle”-“hole” inter-
action. Here, “particles” have momentum k#0
and “holes” are created in the condensate (the
macroscopically occupied k=0 mode) by taking
particles out of it, in much the same manner that
holes are created in a Fermi system, with the
condensate playing here the role of a Fermi sea.
This “particle”-“hole” interaction is intimately
connected with number conservation, since without
number conservation there would not be “holes” in
the condensate.!® Furthermore, although the wave
function 1) in Eq. (2. 21) looks to be formally of
the “pairing” type, this form is necessitated by
momentum conservvation, and actually |9) is of the
form of the RPA ground state of a normal Fermi
system.

Let us note another amusing similarity to.a
Fermi system. Had we assumed the operator
N2 ag a, to be a boson creation operator, !° Eq.
(2.7) would have been exact. This is of course the
analog of the quasiboson approximation in a Fermi
system, and it raises the possibility of a boson ex-
pansion in a boson system, 20:2!

Finally, let us mention briefly some possible
generalizations of our treatment. These are re-
lated to generalizing | ®;) and the set | ®(z)) to in-
clude more correlations, for example in the form
suggested in Ref. 6 for deriving a higher RPA.
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Another possibility is to use the generator-coor-
dinate method to treat the interaction between vari-
ous collective modes as suggested in Refs. 22 and
6. Last but not least, the Feynman?® and Feynman-
Cohen?* approach to liquid helium is easily seen to
fall within the formalism of the generator-coordi-

nate method if one identifies the generator coordi-
nates with the coordinates of the atoms in the liquid.
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The Kubo-Zwanzig-Fano relaxation method is extended to the problem of a homogeneous
dilute system interacting with arbitrarily strong fields composed of several monochromatic

modes, neglecting breakdown and spatial correlations.

The Von Neumann equation for the

density matrix is solved for classical fields, using a procedure in which the harmonics num-
bers are treated as the classical analog (in Liouville space) of the quantum fields occupation-

number representation.

This solution is adapted to the case where memory effects during

the absorption or emission of a photon can be neglected. Two examples illustrate the method,
which is generally applicable in such problems as saturation, double resonance, and frequency
mixing involving the nonlinear response of independent molecules.

I. INTRODUCTION

The understanding of relaxation phenomena in

resonance spectra of gases and other dilute sys-
tems in the linear-response approximation has been
improved considerably by the introduction of oper-



