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The theory of Brownian motion of a quantum oscillator is developed. The Brownian motion
is described by a model Hamiltonian which is taken to be the one describing the interaction be-
tween this oscillator and a reservoir. Use is made of the master equation recently derived by
the author, to obtain the equation of motion for the various reduced phase-space distribution
functions that are obtained by mapping the density operator onto c-number functions. The
equations of motion for the reduced phase-space distribution functions are found to be of the
Fokker-Planck type. On transforming the Fokker-Planck equation to real variables, it is
found to have the same form as the Fokker-Planck equation obtained by Wang and Uhlenbeck

to describe the Brownian motion of a classical oscillator.

The Fokker-Planck equation is

solved for the conditional probability (Green’s function) which is found to be in the form of a
two-dimensional Gaussian distribution. This solution is then used to obtain various time-de-
pendent quantum statistical properties of the oscillator. Next, the entropy for a quantum os-
cillator undergoing Brownian motion is calculated and we show that this system approaches
equilibrium as ¢— «, Finally we show that in the weak-coupling limit the Fokker-Planck
equation reduces to the one obtained by making the usual rotating-wave approximation.

I. INTRODUCTION

Brownian motion of a classical oscillator has
been studied in great detail by several workers.
Most notable are the contributions made by Kram-
ers,! by Uhlenbeck and Ornstein,? by Chandrasek-~
har,® and by Wang and Uhlenbeck.* The displacement
q(?) of the oscillator satisfies the equation of motion

dzq dq 2
pr i 2k 7t qg=F(t),

(1.1)
where 2k is the phenomenological damping coeffi-
cient and w is the natural frequency of the oscil-
lator. mF(¢) is a random force which is assumed
to be a 6-correlated Gaussian process with zero
mean, i.e.,

(F(t)) =0, (F(t,)F(t;))=2(D/m®6(t; ;) , (1.2)

where D is the diffusion coefficient and m is the
mass of the particle. Wang and Uhlenbeck replaced
Eq. (1.1) by the following two first-order differen-
tial equations:

q=p/m, p ==2xp-mw’q+f(0), (1.3)
where p is the momentum of the particle. These
are the Langevin equations which describe the
Brownian motion of a classical oscillator. More-
over Egs. (1.3) describe a two-dimensional Gaus-
sian-Markoff process.’ Wang and Uhlenbeck solved
the Fokker-Planck equation equivalent to (1. 3) for
the conditional probability of the process and they
also obtained the time dependence of the mean
values of g and p and of the covariance matrix.

In the present paper, the Brownian motion of a

4

quantum oscillator is studied.® The Brownian mo-
tion is described by a model Hamiltonian which is
assumed to be the one that characterizes the inter-
action between the oscillator and a reservoir at
temperature 7. Throughout this paper, we employ
the phase-space distribution functions obtained
from the density operator via certain rules of map-
ping.”® We use the master-equation approach,
which we discussed elsewhere,’ to derive an equa-
tion of motion for the veduced phase-space distri-
bution function characterizing the oscillator system
alone. The resulting equation for the reduced
phase-space distribution function is found to be of
the Fokker-Planck type. We find that when we
specialize to the case of normal, antinormal, and
Weyl rules of mapping,B the Langevin equations
corresponding to the Fokker-Planck equation
(which is the equation of motion for the reduced
phase-space distribution function) are of the form
(1. 3) found previously for the Brownian motion of

a classical oscillator. The Fokker-Planck equa-
tion that we derived is solved for the conditional
probability (Green’s function of the equation), which
is then used to calculate the time-dependent quantum
statistical properties of the oscillator executing
Brownian motion. We then calculate the entropy

of this system and show that it reaches equilibrium
as t—~., We also briefly consider the case when
the reservoir is at zero temperature and show that
if initially the state of the oscillator is a coherent
state,'? then it will remain in a coherent state for
later times. Finally we show that in the weak-
coupling limit (k <w) our Langevin equations (or
equivalently, the Fokker-Planck equation) reduce
to the ones obtained by making the usual rotating-
wave approximation.'
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II. FOKKER-PLANCK EQUATION AND LANGEVIN
EQUATIONS FOR BROWNIAN MOTION
OF A QUANTUM OSCILLATOR

We take the following as the model Hamiltonian
for the oscillator executing Brownian motion :

H=wda+;0;da;+23;{g;d} (a+d") +H.c.}.
(2.1)
Here ¢ and 4’ are the annihilation and the creation
operators for the oscillator (the system of interest),
a; and ag are the annihilation and the creation oper-
ators of the jth oscillator of the reservoir, % and
the g;’s are the coupling constants. The operators
a, d', a;, and d} satisfy the commutation relations

[a’ aT]=13 [aj) a;]zﬁjk ’ (2~2)

and all other commutators vanish.

The reduced density operator pg(¢) corresponding
to the oscillator system alone is obtained from the
total density operator pg, s (¢) by taking the trace
over the reservoir variables, i.e.,

ps #)=Trg[pg.s @)] . (2.3)

We assume that at time £=0, the reservoir is in
thermal equilibrium at temperature 7, i.e., its
density operator pg(0) is given by

pr 0)=exp(- B2, w;d}a;)/

Trlexp(- B2, w;dia;)], (2.4)

where B=1/KyT and Ky is the Boltzmann constant.
We also assume that at time £=0, the reservoir
and the oscillator system are statistically indepen-
dent, i.e.,

PRs+s (0)=pg (0) ps (0) - (2.5)

Let % (2, z*, t) be the reduced phase-space distri-
bution function, which is obtained from pg(¢) by
mapping it according to the normal rule of map-
ping. 8®8® The equation of motion for ¢%’ can be
found by using standard techniques.® In fact it has
been derived previously in Ref. 9. The master
equation for ®¥’, obtained from Eq. (5. 26) of Ref.
9 by letting g=1 and F P =%, is

a@(N) az @(N) 9
=S = g%®s 9 (N)
E <2[1 +n(wh] S taz @2S)

9 9
o (z* <I>”§”)) —x( 22 (z* @‘ﬁ’)e“‘"ﬁc.c.)

)
—k[1+{n(w))] (e”“’* %g— +c. c.) , (2.86)

where
(nlw) = -1, (2.7

In deriving Eq. (2.6) we took the infinite-volume
limit for the reservoir and made the Born approxi-
mation in conjunction with a short-memory approxi-

k=mh(w)lg ()3,

mation. The quantity « plays the role of the damp-
ing coefficient. &%’ in Eq. (2.86) is associated with
the density operator in the interaction picture. On
transforming to the Schrddinger picture, we obtain'®

8 /8 o
o7 88 =i (E (28'9) -5 (* 8P )>

+K<§z—[(z—z* )ti>“§"]+c.c.>‘

2
R[] (53 - 535) #9 - (2.8)

One may similarly derive the equation of motion
for the Sudarshan-Glauber distribution function'*
&4 and the Wigner distribution function'®16 &%,
We write these equations collectively as follows:

90ds . [0 9
= —_— e
—-Sat iw <Bz (z®5) Py (2* &g ))

+K(:—Z[z— z*)@s]+c.c.>

— Dk (n) ] (55 - %5 o5 (2.9)

Here the parameter ) takes values —3, 0, 5 for ‘4,
3", and &%, respectively.!? Equation (2.9)isan
equation of the Fokker-Planck type and its solution
makes it possible to calculate!® all the time-depen-
dent quantum statistical properties of the oscillator
which is undergoing Brownian motion.

We now make the transformation to the real

variables g and p defined by

2=V% [mw)/2q+ip/(mw)*?] ,
(2.10)

2=V [mw)’q-ip/mw)/?] .

Then the Fokker-Planck equation (2. 9) transforms
into the following equation:
9%s__ 8 (p

]

2
+2mwk [ A +5 +{n(w))] 38_;5 .

We will now for a while consider only the equation
of motion for 4’ . Substituting A= —% in Eq. (2.11),
we find that

(2.11)

034 8 (p W\ 0 w
= —— [ £ A Y 2 A
—S—at aq( <I>s>+ap [mw?q+2kp)® 4]

agé(A)
+2mwkn z—pg-s— N (212)

where
n=(n (W) =(E*-1)", (2.13)

The Fokker-Planck equation (2.12) is equivalent®
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to the Langevin equations given by
é =p/m’ ﬁ="' ZKp_mw2q+f(t) )

where f(¢) is a real Gaussian random process with
zero mean and the correlation function for f(¢) is
given by

F)f@))=2D6 (1) . (2.15)
Here D is the diffusion coefficient and is given by

(2.16)

(2. 14)

D=2mwk{n(w)) .

The Langevin equations (2.14) are of the same form
as the Wang-Uhlenbeck equations (1.3). Equations
(2.14)'® may be taken to be the quantum analog of
the Wang-Uhlenbeck equations.? We recall that in
the classical case g and p are the position and the
momentum variables, respectively, whereas in
our case g and p are the ¢ numbers onto which the
position and the momentum operators are mapped
by the normal rule of mapping. Moreover, in the
classical case the diffusion coefficient for the

random force f (¢) is given by
D=2kmKy T, (2.17)

which can be obtained from (2.16) by taking the
high-temperature limit.

Let K4 (g, p, t1qy, P9, 0) be the Green’s function
(conditional probability) associated with (2.12).
K is, by definition, the solution of (2.12)
subject to the initial condition

K(A) (‘I-; b, 0"10, Poo)zé(‘l "110)5(P"1’o) . (2.18)
It is shown in Appendix B that K% is given by
K (4,0, |40, 09, 0)=[(27% a]"/2
x exp{ - (1/24)[Blg - (g@®)) P+ a (- (p(®) )?

-2y (g=(q®))) o -(p® I}, (2.19)
where
(q@)) = [( Ccoswyt +—— sinw, t> 4o
Wy
sinwg ¢ ] et
+ _meo Dol e™ (2.20a)
(p@)) = I:( coswyt — £ sinw0t> Po
Wo
2 o3 ¢
- _”_@_Z%L%_ ‘10] et (2. 200)
I w? _ K
a= [1 —( s cos2wqt
. sin2w0t> e‘z"f’, (2.21a)
Wo

B=nmw[1—(=w—a -5

cos2wyt
Wo wﬁ 0
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— X sin2wgt >e'z"’], (2. 21b)
Wo

2
y=2an—§‘30-)‘—;’4li et (2. 21c)
0
and
wo=(? =A%, A=(aB-1?). (2.22)

It is seen from (2. 19) that the solution for the
Green’s function K is of the form of a two-dimen-
sional Gaussian distribution with nonzero mean. %
The coefficient w, is real for the underdamped case
(k<w) and pure imaginary for the overdamped case
(k' >w).

On transforming back to the complex variables
via Eq. (2.10), we obtain the following Langevin
equations:

(2.283a)
(2. 23p)

Z=—jwz-Kk(z-29+F (),

Z*=tiwz* k(2% -2)+F* (1),

where F(¢) is a complex Gaussian random process®

with zero mean and
(F () F @) =~2km5 (¢, ~2,) ,
(F* (ty) Fs))=2kn6 (£, ~1,) .

The corresponding solution for the Green’s function
K in terms of the complex variables z and z*
is

(2. 24a)
(2. 24p)

K(A) (Z’ z*’ ¢ ’ZO’ Z)(‘)‘: ()):("TZAO)"‘/2

xexp{ag [pn(e* — (2% (1))

e =z F-rlz-(z0) 2]}, (2. 25)
where
(z(@)y = (coswot-iﬂo sinwot> zge™t
+X sinpgt 2k e™ , (2. 26)
Wo

== kn sinwgt <cosw0t ) sinwot) et (2.27a)
(O (O

2% . 5 -an;
T=n|1- 1+w—ysm wot)e J, (2. 27b)
0
and
Bg=(?-4|pul?) . (2.28)

In these equations z; is, of course, related to g,
and p, in the same way as z to ¢ and p [cf. Eq.
(2.10)]. We will now calculate some of the statis-
tical properties under two conditions of initial ex-
citation.

A. Initial Coherent State Excitation

We first consider the case when the oscillator
was initially excited to a coherent state'® |z,),
i.e.,
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dM (z,2%,0)=6(z - z,) . (2. 29)

The phase-space distribution function at time ¢ is
then obviously identical with the Green’s function
K“) given by Eq. (2.25). We thus conclude that
the reduced phase-space distribution function is a
nonstationary complex Gaussian distribution with
nonzero mean. The time dependence of some of
the lower-order moments is readily found to be

(al)) =(z()) , (2. 30a)
([d"@®) - (a"®)) ][alt) = {a@®))]) =T, (2. 30b)
([alt) = (a@) Py =+20 , (2. 30¢)

([a" @) - (a" @) 2 [alt) - (a (t))])?
=27%+4|u]?. (2.30d)

The distribution function &’ may be used to cal-
culate all the normally ordered moments. The
multitime correlation functions may also be cal-
culated!®; for example, we have

( af(t1)a(t2)> = ff (ZTZZ)K(A) (25, 27, 1 |Zzy 23, ty)

XK % (z,, 23, tz'Zo’ Z:» 0)d®2,d2, , (t,> )
(2.31)
On substituting (2. 25) into (2. 31), we find that
([d @) - (d"(#)) 1[alt) = alt)) ])
= (= 2k2n/wl) sinwgt, sinwt,
X" K(t1+t2) +77(1 - e-ZKta) ek 9= t2)

x[cos wy(t; —t,) + Gw/w,) sinwelt; —£,)] . (2.32)

We now calculate the entropy S associated with
the quantum oscillator undergoing Brownian mo-
tion. We have shown in a recent paper? that the
entropy for a system, which is in a state charac-
terized by the Gaussian-Wigner distribution func-
tion of the form

&% (q,p)=[(2n)? (apBo - 7%)]-1/2 exp{- 3 (agBy = 73)!

X[Bola = (@) P+ ag(p - (p) )

-2%(q-(a)) (p = (p)]}, (2.33)
is given by
S=Kz|(@+1)In(c+1)—olno] , (2. 34)
where
oz(aoﬁo—'rﬁ)l/z—% . (2. 35)

We prove in Appendix C that the Wigner distribution
function for the problem under consideration is also
given by (2. 25) but with 7 replaced by (7+3). This
result may be used to show that the Wigner distri-
bution function is of the form (2. 83) with the param-
eters given by

ag=(a+1/2mw), By=(B+imw), Y=7, (2.36)

AGARWAL
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and hence the entropy is given by (2. 34) with
o={[nl - &)+ 5]
— (4k%/wB) sin®wot n(n +%) e P2 -4 | (2.37)

It is obvious from (2.37) that o~n={(n(w)) as t~=«
and the entropy S tends to

S=Kp{[(n(w)) +1]In[( n(w)) +1]

~(n(w)In (n(w))} ast-=. (2. 38)

The entropy given by the right-hand side of (2. 38)
will be recognized as the entropy for a quantum
oscillator in thermal equilibrium. This result
shows that the system approaches equilibrium as
t—., In fact we show in Appendix B that the
steady-state distribution functions given by

1 1212
P (z, 2%, 1)~ m exp (—m) as t—x .,

(2.39)

We will now briefly examine the zero-tempera-
ture case. For zero temperature (#(w)) =0 and
the Langevin equations (2. 23) reduce to

(2. 40a)
(2. 40b)

The solution to these equations is readily found to
be

Z=—-dwz—k(z - 2z*%),

Z¥ =+iwz* —k(z* -2) .

z(t) = [coswgt — (iw/w,) sinwyt] 2(0) e™*

+(k/wy) sinwtz*(0)e ™t . (2.41)

Since the initial distribution function is of the form
(2. 29) it is obvious from this solution that the
phase-space distribution function for later times
is given by

Y (z,2*,£)=6® (2 = (2(2))), (2. 42a)

where
(2(#)) = [coswyt — ((w/w,) sinwyt]zge™
+ (k/wp) sinwt 25e™.  (2.42b)

We therefore conclude that, for the case of zero
temperature, if the system is initially in a coherent
state |z, it will remain in the coherent state
whose amplitude is given by Eq. (2.42b). The
normally ordered moments will then be given by

{[a* @) [al)]D =2 *EN™ 2 ()" (2.43)
B. Initial Thermal Excitation

We next consider the case when the oscillator
was initially excited to a state characterized by
the phase-space distribution function

1 |z 12
(4) * —— -————
A S (Z)Z ,0)“”noeXp( nO )’
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o= (e*/¥8T0 = 1), (2. 44)

appropriate to thermal equilibrium at temperature
To. The distribution function for later times is
given by

29 (2, 2%, 1)
= [K'"P(z, 2%, | 2y, 28, 002 (20, 25, 0)d?2,. (2. 45)

On substituting (2. 25) and (2. 44) into (2.45), we
find, after a straightforward but long calculation,
that the reduced phase-space distribution function
at time ¢ is given by

U (2, 2%, 1) = [72(rE - 4] po| B)]V2
xexp[ = (% = 4| po| B (ro| 2| 2= poz*? - pgz?)],

(2.46)
where the parameters p, and 7, are given by

o= (M = M) (k/wy) sinwyt[coswyt — (iw /wg) sinw,t]e2xt,

(2.47a)
(2. 470)

The reduced distribution function is in the form of
a complex Gaussian distribution with zero mean.
In the limit as Ty~ T (or 1y, -7), we find that (2. 46)
reduces to (2.44). We conclude that if the oscilla-
tor executing Brownian motion was already in ther-
mal equilibrium with the medium (reservoir) then,
as one would expect, it will remain in equilibrium.
We conclude this section by giving the form of
the corresponding equation of motion for the re-
duced density operator pg(). It may be obtained
from Eq. (2.9), for A=- 3, by applying the map-
ping operator™8(®:8® Q4 tor the antinormal rule of
association and by making use of the following
identities®®:

To=N+ (g = M[L + (2k?/wd) sin®wt]e2*,

F) 1
QW (_az (z@‘g’)): -~ la', aps] (2.48a)
qu (2 (z*@“’)> =_i[a* peal] (2. 48Db)
az S T » Ms ’ M
2 .
(A)< P (é’) = _.—[a , [a’ ps]]’ (2. 480)
Qw<_fﬁ¢m) =l[a'r la', p.]] (2. 48d)
azz S T ’ s Pslly *

and their adjoints. We find that the reduced density
operator p,(¢) satisfies the master equation

ap .
#: -iw[a'a, p;] - k(a'ap, - 2apsa’
+ psaTa + azps —-apsa- anSaT+ Dsa*z )

- kln(w) 2[a', [a, p,]] + [, [a', p,]]+ [a, [a, p,]]).

(2.49)
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III. ROTATING-WAVE APPROXIMATION AND
BROWNIAN MOTION

In most of the problems in quantum optics and
in other fields, one conventionally makes the ro-
tating-wave approximation, ! which amounts to ig-
noring the rapidly oscillating terms. On making
the rotating-wave approximation our model
Hamiltonian (2. 1), describing the Brownian motion
of a quantum oscillator, reduces to

(3.1)

We can again obtain the master equation for the re-
duced distribution function ®4’, as we have already
done in [Ref. 9, Eq. (5.19)]. The equation of mo-
tion for ®'4’ is
(4 (4)
2®'s =K(2n Fe 5
ot 020z

H=wa'a+2w,ala,+2,(g,ala+H. c.).

d 4) a )
2 (2p —9_(z*4)).
+az(z s)+az*(z<1>s)

(8.2)
On transforming back to the Schrddinger picture
(see the discussion in Appendix A), we obtain the

equation
(4) iy (4)
0 (22 —Z*aq’*f)
at 0z 0z
%0 3y, 0 %
2 (zp I (z*p)y) .
+K(ZTIW+ az(z s )+az*(z s')

(3.3)

On introducing the real variables ¢ and p defined
by Eq. (2.10), we find that (3. 3) reduces to

®d 3

_9 _ a7, O 2\ (4)
=7 aq[(Kq p/m)® S 1+ ap[(icmmw 7)9¢]
1 %'y 2%

+K77(;n‘—5 3q° +mw =) (3.4)

This equation has the form of the Fokker-Planck
equation. The corresponding Langevin equations
are

j==kq+p/m+F(0), p==rp=mwiq+F,t).

Here F (f) and F,(t) are two independent real
Gaussian random processes with zero means and

(3.5)

F ) )= ZSD g, (3.62)
(Fy(t)) F,t)) = 2k n (W) mwd () = t5). (3.6b)

We find from Eq. (3.5) that the time derivative of
q is no longer equal to p/m whereas the relation
gd=p/m is expected to hold good in general, We
will now explain this anomaly.

In the weak-coupling limit (x < w), we can re-
place w, by w and ignore all the terms of order
ket or higher. We thenfind that Eqs. (2. 20)—(2. 22)
reduce to

(q(#)) = [coswt gy + (sinwt/mw)pyle™ , (3.7a)
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(p(t)) = (cos wt py = mw sinwtgy)e™ , (3.7b) where”¥2? that the phase-space distribution func-
a= (n/mw)(1 - e29), B=nmw(l-e2), (3.8) tion ¢ satisfies an equation of the form

P

and = —igg@-itgd, (A2)

v=0. (3. 9)

Therefore in the weak=~coupling limit, the solution
(2.19) for the Green’s function K4’ reduces to

K(A)(q; P, t| 9o, Po, 0) = [27”7(1 - e-akt)]-l

xexp{= (1/20)[qg = (gt = (1/28)[ p = (p(t))?]},
(3.10)

where {q(¢)) and { p(¢)) are now given by (3.7a) and
(3.70), respectively. It is easily verified that
(3.10) is the solution of the following Fokker-
Planck equation:

a<I>( ) 4) 2 (A)
” =-a—[(1<q -p/m)®g ]+—[(Kp+qu)¢> ]

az 4a)

1 2% ¢
+m7<mw 2 +mw ot ) (3.11)

subject to the initial condition

3¢ (g, p, 0) = 6(q = o) 5(p = py). (3.12)

The Fokker-Planck equation (3. 11) is the same as
(3.4), which was obtained by making the rotating-
wave approximation, This then leads us to conclude
that the Langevin equations (3. 5) obtained by making
the rotating-wave approximation are the weak-
coupling limits®?® (x << w) of the Langevin equations
(2. 14), and this explains the anomaly that we noted
above,

In the present paper, we considered only the
Brownian of a single quantum oscillator, The re-
sults are easily generalized to the case of N quan~
tum oscillators undergoing Brownian motion. In
a future publication, we hope to discuss the non-
Markoffian behavior of the quantum oscillator exe-
cuting Brownian motion,
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APPENDIX A: RELATION BETWEEN EQUATIONS OF

MOTION FOR PHASE-SPACE DISTRIBUTION FUNCTION
IN SCHRODINGER PI%’{EJTRIIJER%ND IN INTERACTION

In this appendix, we discuss the relation between
the equations of motion for the phase-space dis-
tribution function in the Schrédinger picture and in
the interaction picture. We write the Hamiltonian

of the system under consideration as
H=Hy+H,, (a1)

where H, and H; are the unperturbed and perturbed
Hamiltonians, respectively., We have shown else-

where £, and £, are the Liouville operators (dif-
ferential operators) corresponding to H, and H,,
respectively, We assume that £, is explicitly time
independent, Then the phase-space distribution
function &, in the interaction picture is defined by

(A3)

It is then obvious from (A2) and (A3) that &, satis~
fies the equation of motion

od
ot

®,=exp(iLyt)®.

==ig,()®,, (A4)

where £,(¢) is the interaction Liouville operator in
the interaction picture and is given by

£,(t) = exp(iLyt) £, exp(= i Lyt). (a5)
On inverting (A5), we also obtain
£, = exp(= iLot) £,(¢) exp(i Ly?)
= £t + (= it) [ L5, £,0)]
+ [(=it)? /2118, [y, £1@B)]]+ -2+ . (A6)

Equations (A2)=(A6) are the desired relations.

For the problem considered in this paper, the
unperturbed Hamiltonian for the oscillator system
is
A7)

It can be easily shown’ that for the normal rule of
mapping, the unperturbed Liouville operator is
given by

9 d
= * o g —
Lo w( xR az)

The equation of motion (2.6) is for the distribution
function in the interaction picture and therefore
- iL,(f) is given by

H,= wa'a.

(a8)

d 0
-i& ()= K(2+Z az+z P

o i d
- z*eZiwt S _Ze-tht —
0% 0z

2
; 0
_eZiwt e-z“.ot ).

dzoz* oz*

(A9)
For £, given by (A8), one may easily prove the
following relations:

+ k[(n(w)+ 1)](

exp(cz£°t)< )exp(z&,t) exp(-zwt)—, (A10a)

exp(- z£0t)( ) exp(iLyt) = exp(zwt) (A10b)
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exp(= i £t)(2) exp(i Lyt) = z exp(iwi) (A10c)

exn(=iLyf) (z*) exp(i Lyt) = z* exp(=iwt) . (A10d)
On making use of these relations, we find that
- i &y = exp(= i Lot) [~ i £,(t)] exp(iLyt)
- e FY D (ke )0
-K[2+(z z*) az+(z z) P

-[1+<n(w)>1(i-=—a—)z].

0z oz*

Finally on substituting (A11) and (A8) into (A2) we
obtain the desired equation of motion (2, 8) for the
distribution function in the interaction picture.

(A11)

APPENDIX B: DERIVATION OF SOLUTION (2.19) FOR
LINEARIZED FOKKER-PLANCK EQUATION (2.12)

We first consider the following linearized Fokker-
Planck equation:

9 2
I; gp (B1)

9
3 __:Z’, o (ﬁufo)Jr‘Ej Dis row, ?
where B;; and D,; are independent of the random
variables x. The solution to (B1), subject to the
initial condition

P({xi};0)=H¢ 6(x; — x9) (B2)
is
P({x; },t|{x%}, 0)= [(2m)"| deto()| ]-*/2
xexp{- 3 [X-b@O)X° "o ()X - b(¥)X°]}, (B3)

where X is the column matrix
Xy

XN

and the superscript T denotes the transpose of the
matrix. The parameters b(f) and o(f) are given
by

b(f)= et ,

(B4)

o () = 0() = b(t)o(=)d" (#) , (B5)
and o(«) is the solution of

Bo(w)+ 0(x0)fT =~ 2D . (B6)

For the Fokker-Planck equation (2.12), we have
o m 0 0
B: ’ D:
-mw® -2k

. (B7)
0 2mwkn

The matrix ¢** may be found by using the method
of calculating the function of a matrix by the formula
1
Bt _ - _ R)-1 &t
e i f (z=p)le*dz . (B8)

It is shown by a straightforward calculation that
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'coswol+ = sinwgt Sincol
Wo mwy -kt
b(t)= mw? sinw,t K e,
- T—L CosWyf — . sinwyt
° (B9)
where .
wy= (W = k)2, (B10)
On using (B6) and (B7) it is easily found that
_n(1t o0
0() = mw< 0 m2w2> (B11)

On substituting (B9) and (B11) into (B5), we find
that the matrix elements of o(¢) are given by
W 2

(Y
o,l(t)—mw [1 <w§ ;gcosz%t

.2 sin2w0t> e'z“‘] (B12)
Wo
W g2
050 (f) = Mmw [1 - (w% 2 cos2wgt
-X sinZwot) o2 t] (B13)
Wy
012(t) = 05, (£) = (2N w/WE)sinwyt e 24t (B14)

The desired solution to the Fokker-Planck equation
(2. 12) is obtained by substituting (B12)—-(B14) and
(B9) into (B3). One obviously has the relations

@=0y, B=0y, Y=0y,, (B15)
(q(®)) = by (B)go+ by2 (g (B16)
(@) = bay (D)go+ baz )Py - (B17)

On substituting the values of the matrix elements
b;,(#) into (B16) and (B17), we find that (g(¢)) and
(p(t)) are given by Egs. (2.20a) and (2. 20b), respec-
tively.

It is also obvious that the steady-state solution
is given by

1 1 1
$4) —_ . — 2
s (4; D, 1) 21 exP[ 21 <qu2+ p) ]

(B18)

or equivalently, in terms of the variables z and z%*,
one has

(I)(‘;) (Z’ Z*’ t) - (1/777’) e'ltlz/n as f -0,

as t -,

(B19)

APPENDIX C: TIME DEPENDENCE OF WIGNER
DISTRIBUTION FUNCTION FOR INITIAL COHERENT
STATE EXCITATION

The Wigner distribution function <I>(”§), for the os-
cillator undergoing Brownian motion for an initial
coherent state excitation can be obtained by solving
(2.9), for A=0, under the initial condition

2
q,(g) (z , z*, 0)= (2/,”) e-ZI:-zol , (Cl)
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which is the Wigner distributionfunction associated
with the density operator p,(0)=12z,) (zol . We will,
however, use an alternative method based on the
connecting relations®® between the distribution
functions corresponding to two different rules of
association. The Wigner distribution function &%
is related to 4’ by

® WL exp 1 3
s 29z 9z* s
We have already obtained the distribution function
#{* which is given by (2.25), i.e.,

(c2)

1
¢(§)=_Z——mn(7 YL exp{- (1% -4| p|??

X[ = pw*(z = (2 ()P = ul2* = (2* () P
+7| 2z =<2()|?1},

which can also be rewritten as?*

1 *a? L ox?
@(A)=-—z—f ex (._ 2, P ko™
§ TT P l al * T * T

(c3)
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On combining (C2) and (C4), we obtain

AGARWAL 4
1 2 2
<I>(s"')=;z7fexp I:—’a|2<1+2i1_>+“*7a+%
* _ -
Lz CUCHENE: (;r(t))]a*] o, (C5)
On changing the variable of integration to
B=(1+1/27)"2a, (C5) reduces to
1 *xn2 *2
<I>(“s”=;g-_r—ofexp (— l B]2+~p'—1_-oﬁ-—+%-
[zx =(z*(#) 18 [z~ (Z(t)>]B*) 2
- V7o * V1o a8,
To=T+3%. (ce)

This integral is easily evaluated® and we find that
1
(W) _ 2 2\=1
= — (12—
¥ = rmo ey i- -4 u]?)

X[ = p*(z = @) = nlz* = (2*(1)))?
+70\ z —(z(t))]z]}.

This result shows that the Wigner distribution
function % is the same as ®'4’ [given by (2. 25)]
but with 7 replaced by 7+ 3.

(€
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Equations (2.14) are modified to

G=p/m, p==26p—mwlgtf(t) +fou(t).

OThis result also holds good in presence of an external
fieldbut with {g(#)) and {p(#) replaced by

(q@) + [ AT foqi(t = T) (sinw,T/mwy) X7,
(W) +J§ AT fage (¢ = T)[cOSWYT = (/w0 ¢) sinwyr e,

respectively.
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EIN()] = Cexpls [ I DT @) +AOF*B)1at})
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The well-known variational (maximum-entropy) property of the Maxwellian velocity distri-
bution is used to shed some light on the range of validity of the Boltzmann transport equation.
It permits a characterization of the initial states for which the Boltzmann H theorem is vio-
lated. In particular, it is shownthat: (a) Any monatomic system for which the equilibrium po-
tential energy exceeds the minimum possible value possesses a continuum of initial states
for which the approach to equilibrium takes place through an increase, rather than a decrease,
in Boltzmann’s H. (b) I the initial distribution of particles is spatially homogeneous and
Maxwellian, the approach to equilibrium will take place through an increase (decrease) in
the Boltzmann H, according as the initial potential energy is less (greater) than the equilib-

rium value.

(c) A necessary condition for the H-theorem-violating phenomenon is that the

approach to equilibrium takes place through a conversion of kinetic energy into potential en-
ergy; a sufficient condition requires also that the initial velocity distribution be sufficiently

close to Maxwellian. (d) These H-theorem-violating conditions are readily attained experi-
mentally; for example, the free expansion of oxygen gas at 160°K and 45-atm pressure pro-
duces an experimentally realizable violation of the Boltzmann H theorem.

I. INTRODUCTION

Ever since the famous Umkehveinwand and
Wiedevrkehveinwand of Zermelo and Loschmidt, it
has been clear that the Boltzmann H theorem, and
therefore the Boltzmann transport equation, can-
not be of universal validity, even for a dilute gas.
Any system possesses certain initial states for
which the H theorem is violated. In one sense,
these H-theorem-violating states can be character-

ized at once, as those in which the particle positions

and velocities are so correlated that Stosszahlan-
satz fails to hold. However, this is very abstract,
and gives no hint as to how, or whether, such
states could be produced experimentally.

It is often supposed that these H-theorem-vio-
lating states are in some way exceptional, so that
they may be disregarded in practice. While this
conclusion is undoubtedly correct in many cases,
we show below that when the system has an ap-

preciable potential energy, there is a class of
initial conditions for which interparticle forces
automatically produce and maintain H-theorem-
violating states, with the result that # remains
positive, on the average, throughout the approach
to equilibrium. These conditions are, moreover,
in no way exceptional; they can be (and undoubtedly
have been) produced experimentally.

The existence of this H-theorem-violating phe-
nomenon was pointed out briefly at the end of the
writer’s Brandeis lectures® on statistical mechanics;
however, the class of states for which it occurs
was described incompletely, in terms of the
average force acting on a particle. We obtain be-
low a simpler description, in terms of the kinetic
and potential energy of the system.

II. DERIVATIONS

Consider a monatomic fluid consisting of N par-

ticles of mass m, confined to a box of volume V,



