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The contribution of order-parameter fluctuations to the static and dynamic properties of a
weakly interacting Bose gas near the Bose-Einstein condensation temperature T, is investi-
gated via a novel approach. Self-consistent approximations for the propagator of order-
parameter fluctuations G are generated in successive temperature ranges closer and closer

to T,.

Mean-field theory corresponds to assuming that the correlation of fluctuations G, is

given by Gz(“ =GG. This first approximation is valid in the range 7 <7=(T - T,)/T,<1, where
at 7=7; the neglected terms are comparable to those included. In this paper we consider the
second approximation GZ(Z) =GGVGG, which involves the first-order interaction between the

fluctuations.
proximation are established.

calculation are applicable to liquid helium in the presently accessible temperature range.

Two independent criteria for the range of validity 7o <7 <74 of the second ap-
It is conjectured that the qualitative results of the present model

The

predicted temperature dependences of the specific heat, superfluid density, and fourth sound
are in agreement with the scaling hypothesis and available experiments in helium. The con-

densate density is predicted to vanish linearly with 7.
der-parameter fluctuations to the thermal conductivity diverges as T

It is shown that the contribution of or-
-1/3 above T, and it is

suggested that the absence of logarithmic factors is due to the inconsistent treatment of en-

tropy fluctuations.

I. INTRODUCTION

We consider in this paper a calculation of the
critical behavior of a weakly interacting Bose gas
near the superfluid transition. A study of this sim-
ple model should be helpful in understanding the
nature of the A transition in helium, even though
liquid helium is a strongly interacting system.

In the absence of a microscopic theory that is
valid in the immediate vicinity of the superfluid
transition, we analyze the behavior of the weakly
interacting Bose gas close to, but not in, the im-
mediate vicinity of the transition. Mean-field theory
is a notable example of a theory that in general is
valid near the transition but not in its immediate
vicinity. The temperature range in which mean-
field theory is valid is referred to as the classical
range; the temperature range inside the classical
range is known as the critical range. In the present
approach we consider the critical range to be divided
into critical subranges and investigate the first crit-
ical subrange neighboring the classical range. It
is expected that it might be easier to construct a
consistent theory in the first critical subrange than
in the immediate vicinity of the transition.

We introduce a simple physical picture of the
superfluid transition that will help motivate the more
mathematical discussion to follow. Let us consider
temperatures T above the Bose-Einstein condensa-
tion temperature 7,, and define the dimensionless
quantity 7=(7 -7,)/T.. The order parameter ap-
propriate to the superfluid transition is the Bose

4

field operator (7, ¢), and hence order-parameter
fluctuations are described by the fluctuation propa-
gator G, the one-particle Green’s function.! Simi-
larly the correlation of fluctuations in the system

is described by G,, the two-particle Green’s func-
tion. A determination of G yields the thermodynamic
properties of the system; G, and higher-order cor-
relation functions are related to the dynamical prop-
erties of the system.

Mean-field theory assumes that the fluctuations
are small, and corresponds in the present context
to the assumption that the fluctuations propagate
independently, 2i.e., G, =GG (in symbolic nota-
tion). This first approximation will be valid as long
as the terms neglected are small compared to those
included. The classical range is then given by
T.<7<1, where at 7= 7, the neglected diagrams are
comparable to those included. Wenow seeka second
approximation that will be valid in the critical range
7<7;. Let us assume that there exists a tempera-
ture range where the fluctuations begin to interact,
but the interaction is not divergent. We are then
led to the second approximation

G,'? =GGVGG, (1.1)

which represents the first-order interaction between

the fluctuations. As T approaches T, still closer,

it will be necessary to include higher-order inter-

actions among the fluctuations, and the second ap-

proximation will also break down for some 7=17,.
The second approximation, valid in the first

critical subrange T,<7< T, is formally similar in
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certain respects to the work of Patashinskii and
Pokrovskii® (PP) in the immediate vicinity of the

A transition in helium. Although the work of PP
accounts for the observed specific-heat behavior,

it suffers from a number of internal inconsistencies
and misinterpretations®® which are avoided in the
second approximation.

Our approach is to generate self-consistent ap-
proximations for the fluctuation propagator in suc-
cessive temperature ranges closer and closer to
T.. The critical range, where it is necessary to
include the interaction of the fluctuations, is then
divided into several critical subranges.® It is im-
portant to note that although 7 has been assumed to
be small, the present approach is not an expansion
about 7=0.

In Sec. II the mathematical formulation of the
second approximation is introduced and extended
to temperatures below T,. The nonmathematically
inclined reader can skip to Sec. III, where the spec-
trum of the order-parameter fluctuations is cal-
culated self-consistently within the second approxi-
mation. The equilibrium properties of the system
are also calculated in Sec. III, and it is found that
the specific heat at constant pressure diverges
logarithmically and that the superfluid density
vanishes as 72/*below T,. In Sec. IV the contri-
bution of the order-parameter fluctuations to the
thermal conductivity” above T, and to the macro-
scopic modes of the system is found. Two inde-
pendent criteria for the range of validity 7,<7<7,
of the second approximation are established in Sec.
V. It is shown that the diagrams neglected in the
second approximation become important for 7=7,,
and it is suggested that the breakdown of the second
approximation is related to the critical behavior of
the density fluctuations. The application of the
present approach to liquid helium near the X tran-
sition is discussed in Sec. VI. It is conjectured
that the singular behavior of various static quantities
for a weakly interacting Bose gas in the first criti-
cal subrange is the same as the singular behavior
of the corresponding quantities for liquid helium in
the presently accessible temperature range near the
A transition.

II. FORMAL STRUCTURE OF THEORY

Although the formal development of the theory
of interacting bosons near the Bose-Einstein con-
densation T, can be found in numerous papers,® 8-10
it is convenient to summarize the microscopictheory
both above and below T,. We use the usual Hamil-
tonian for a system of bosons of mass m interacting
via an instantaneous two-body potential V(#),

H=—(2m)! [ dr, ¢"(1)vip(1)

+ 5 [ dF dF,dt 0t P2V AH2)P(D), (2.1)
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where ¥ (1) creates a boson at space-time point
1=r,,¢ and V(12)=V(r, =7,)0(¢, —t,). We adopt the
standard notation of Ref. 1 and set7Z7=c=kg=1,
where k5 is the Boltzmann constant, unless other-
wise stated.

A. Above Transition

Above T, where the order parameter (J) is zero,
the fluctuation propagator can be defined as

G(11") = —i(T{(1)¥" (1)} (2.2)

and the correlation of the fluctuations is contained
in

G5(121'2") = (= 9)XT{Q)¥(2)9"(2)3' (1)}, (2.3)

where T is the time-ordering operator and the brack-
ets denote a statistical average over the grand ca-
nonical ensemble. The functions G and G, can also
be given the usual interpretation in terms of parti-
cle propagation and correlation. However, near
T, it is more useful to interpret G and G, in terms
of fluctuations, since order-parameter fluctuations
dominate the behavior of the system. The nature
of the fluctuations will be discussed in Sec. III.
The equation of motion for G is

G;'(12)6(21") = 8(11) + =(1 2)G(21"), (2.4)

051(12)=( 15%+ﬁ v+ u) 5(12), (2.5)
where the self-energy = is given by

T(11)=iV(12)G41232*)G(31). (2.6)
All barred indices are integrated over. We define
a four -point vertex function® C(3456) by

G,(121'2") = G(11")G(22") + G(12")G(21")

+iG(13)6(29)c(3458)6(51)G(62") .  (2.7)

The vertex function C can be interpreted as the ef-
fective interaction between the fluctuations, and thus
the last term in (2.7) describes the correlation of
the fluctuations. Substituting (2.7) into (2.6) we
write the self-energy in the form
(117 = i V(12)G(22")6(11") +i V(11)G(11")
+i2V(12)G(13)G(24)C(341'5)G(52),  (2.8)

which is represented diagrammatically by Fig. 1.
As discussed in Sec. I, the first approximation
for the fluctuation propagator G sufficiently far
from T, is obtained by neglecting the effective in-
teraction between the fluctuations, i.e., C'V =0 or

G, (121'2") = G(11)G(22") +G(12)G(21"), (2.9)
T D(11) =4 V(12)6(22%)6(11') +4 V(11)G(11’) .
(2.10)

The first approximation, (2.9) and (2.10), isusu-
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FIG. 1. Self-energy =(11’) above T, as given by (2. 8).

The dashed lines represent the potential V, the solid
lines represent the fluctuation propagator G, and the
square indicates the vertex part C.

ally called the Hartree-Fock approximation. ! Closer
to T,, the second approximation is obtained by ap-
proximating the effective interaction C by the first-
order interaction V:

C'?(1234) = V(12) [6(24)5(13) + 6(23)5(14)]. (2.11)

Substituting (2. 11) into (2. 8), we obtain the self-
energy

=2(117) == V(11') +i2v(12)V(317)
x [6(11)6(23)G(32) + G(13)G(32)G(21")].
(2.12)

The second approximation, (2.11) and (2.12), is
usually called the Born-collision approximation, !

In order to go beyond the second approximation,
we examine the structure of the effective interaction
C(1234), which can be interpreted diagrammatically
as the sum of all connected diagrams with four ex-
ternal points.® We can group the four external
points of C(1234) into two pairs, e.g., (12) and (34).
A diagram is irreducible with respect to (12) or
(34) if the pairs (12) and (34) cannot be disconnected
by cutting one internal pair of G lines. Let S(12;34)
be the contribution to C of all four-point connected
diagrams that are irreducible with respect to (12),
and let T'(12; 34) be the contribution from reducible
diagrams with respect to (12). It follows that

C(1234) =S(12; 34) + T(12; 34), (2.13)

and C satisfies the Bethe-Salpeter integral equation

C(1234)=5(12; 34)+5(12; 56)G(57G(6 8)C(7T83 4).
(2.19)
Clearly, we can repeat the same analysis for the
other pairs, i.e.,
C(1234) =S(13; 24)+ T(13; 24)
=S(14; 23)+ T(14; 23), (2.13")

and write Bethe-Salpeter equations analogous to
(2.14).

An important subclass of C(1234) is the set of
four-point connected diagrams that are irreducible
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with respect to all three pairings of the external
points. This subclass is called the absolutely ir-
reducible vertex function J(1234). A four-point
connected diagram can only be reducible with respect
to one and only one of the pairings and thus contrib-
utes unambiguously to the corresponding 7. There-
fore it follows that

S(12; 34)=T(13; 24) + T(14; 23) +J(1234). (2.15)

Analogous equations to (2.15) can be written for the
other two pairs. From (2.13) and (2.15) we see

that

C(1234) = 5[5(12;34) +S(13; 24) +S(14; 23) -J(1234)].
(2.16)

If the first-order contribution to J,

J1(1234) = V(12)[6(24)6(13) + 6(23)6(14)], (2.17)

is substituted in (2.16), then the diagrams generated
for C by iterating (2. 14) are known as the parquet
diagrams.!' If we take only the first term in (2.14)
with (2.1%7) for J, then C reduces to the value in the
second approximation (2.11). Thus (2. 14) and (2. 16)
provide a systematic way of generating terms be-
yond the second approximation.

B. Below Transition

Below T,, where the order parameter () is non-
zero, it is convenient to define the fluctuation prop-
agator G, in terms of the spinor ¥ = (9, ¥"):

G,(11)= G,(11") = Gy, 5(1)G;/, (1), (2.18)
Gy 1) =v=i(T{E)}), (2.19)
G,(11") == i(T{e()et (1)}, (2. 20)

where the index 1 includes the spinor index, and the
statistical average is taken over a restricted en-
semble® in which the order parameter has well-de-
fined phase and amplitude. Althoughtheorder param-
eter (¥) is related to the first component of Gy ,,
for brevity we refer to Gy, as the order parameter.
The equations of motion for G,,; and G, are, re-
spectively,

Git(12)Gy (D) =4 i V(12)Gy f(122°) =2y 1), (2. 21)

G 12)6,(217) = 5(11") + 3(12)G,(21"), (2.22)

7

G;l(12) = [ﬁa)ift— + (zl—m vi 4 u)] 8(T, —T,) 6(t, —15) ,
1

(2.23)
where repeated indices are summed over the spinor
index, the potential V(12) has no spinor indices, and
the Pauli matrices 7 (=1, 2, 3) act in the spinor
space. The fluctuation self-energy ~ can be gen-
erated by
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Z(11")=[56/6G,,5,(1")]Z,,,(1) ,

where Z,,, is defined by the second equality in
(2.21). Equation (2. 24) yields self-energies that
satisfy the Hugenholtz-Pines'? relation and lead to
a gapless f}l spectrum.® The correlation function

Gs/p(122%) = (=32 (T{e(1)¥(2)¥' (2")}) , (2.25)

which is a spinor, can be written in terms of the
three-point vertex function C;,, as

Gs3,5(122%) = Gy ;5(1)Gy ;5(2)G}/5(2) + Gy /(1) G, (227)

(2.24)

+2G,(12)G, 5(2) +iG,(13)G,(29)

X Cy/5(345)G,(52) . (2.26)

_ It is convenient to separate the diagonal terms
2 and the off-diagonal terms X in the fluctuation
self-energy:

>11)=5a1)+3Q11) . (2.27)

We can now define a diagonal fluctuation propagator
G, by the equation
G;'(12)G,(21") =

5(11)+2(12)G,21'), (2.28)

which can be interpreted as the continuation below
T, of the normal fluctuation propagator G. Using
(2. 28) and (2. 22) we obtain
G:(11)=G,(11)+ 6,1 DE@3)G,(B1) . (2.29)
Near T, the order parameter G,,, is small and
the above equations can be simplified. The three-
point vertex function Cj,, in (2. 26) has been ex-
panded to lowest order in G,,, by Byckling, '
found

Cy/2(123)= cz(lzsi)c,,z(Z) , (2.30)

where C, can be interpreted as the effective inter-
action between fluctuations. In analogy to the
treatment above T,, we want to expand the effective
interaction C, in powers of the first-order interac-
tion V. It has been shown® that to low orders in V

it is not possible to construct an approximation that
leads to both a gapless él spectrum (gapless ap-
proximation®!2) and consistent thermodynamics
(conserving approximation'®). One advantage of a
gapless approximation is that the sound speed can
be simply determined from the f}l spectrum, where-
as in a conserving approximation a calculation of the
density-density correlation function is necessary.

A gapless approximation by itself is not a good can-
didate for a model near 7,, since above T, it reduces
to an approximation one order lower in V. In order
to get a sensible model, we add to the gapless ap-
proximation the continuation below T, of a normal
conserving approximation of at least the same order
in V. Such a continuation corresponds to ignoring in
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(2. 29) the factor containing % which vanishes at T,
and replacing G1 by Gd Using (2. 30), we can write
(2.26) as

63/2(122+) = Gllz(l)Gl/a(z)G;/a(z)
+Gy/5(1)G,(22%) +2G,(12)G, ,5(2)
+iG,(13)5,(24)C,(3456)G, ,,(6)G,(52)

+0(VGE,, GY) (2.31)
where the first term in (2. 31) gives rise to the low-
est-order gapless approximation first used by
Bogoliubov.'* The effective Jinteraction C2 is ob-
tained from C, by replacing G1 by Gd, and can

be interpreted as the continuation below T, of the
normal effective interaction C. Using (2. 21),
(2.24), and (2.31), we obtain

(11')=4iv(12)[G, ,.(2)G},»(2) + G,(22)]6(11")

+iV(11")[6y,5(1)G},,(1") + G, (117)]

+12V(12)6,(13)G,(24)C,(3451')G,(52)

+0(V2GE,Gl) . (2.32)
In contrast to (2. 8) above T,, (2.32) is not an exact
equation and is valid only near T..

The first approximation is obtained by ignoring
in (2. 32) the effective interaction C, between the
fluctuations and can be called the Bogoliubov-
Hartree-Fock approximation,’® since the approxi-
mation is a sum of the Bogoliubov approximation
and the continuation below T, of the normal Hartree-
Fock approximation.

The second approximation is obtained by including
the first-order interaction

C,®(1234) = V(12)[5(24)5(13) +6(23)5(14)], (2. 33)

which can be referred to as the Bogoliubov—-Born-
collision approximation. The second approximation
(2. 33) will be used in this paper. Discussion of the
terms omitted in the second approximation below

T, parallels that above T, and will not be reproduced
here.

IIl. STATIC PROPERTIES

We present a brief discussion of the criterion
for the superfluid transition. The spectrum of the
fluctuations is calculated within the second approxi-
mation and then used to evaluate explicitly the iso-
baric specific heat, the superfluid density, and the
correlation length.

A. Bose-Einstein Condensation

The Bose-Einstein (BE) condensation is charac-
terized by the onset of a macroscopic occupation of
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the zero-momentum state. The number of particles
with momentum p is given by

N, = [ (dw/2m) A(p, ) flw)

above the transition, where in the usual notation
A(p, w) is the spectral function of G, f(w)

=(e¥/T —1)! is the Bose statistical factor, and
the energy w is measured from the chemical poten-
tial u. The BE condensation occurs when Nj—~
in the thermodynamic limit. It is easy to see that
the integrand in (3.1) is well behaved for large w,
and any divergence in N, must come from small
w. It is known that for bosons A(p, w) is well be-
haved for small w and thus the divergence of N,
must come from the pole of f(w), that is, the di-
vergence of N, arises from the Bose statistics.
Therefore when N,> 1 we expand f(w)~ T/w and
write

N,:Tf £’2‘4(%“’—)=—Tc(p,.z,=0)

(3.1)

21
=T/W(p)>1, (3.2)
where
W(p)=p*/2m +Z(p,0)-2(0,0)+7, (3.3)
n==up+2(0,0). (3.4)

Equation (3. 2) will be referred to as the dense-
state limit. We see from (3. 2) that the criterion
for the BE condensation is W(0)=0, or

n(u, T)=0 . (3.5)

The criterion (3. 5) is sometimes referred to as
the Landau criterion®* and will be adopted as the
criterion for the transition. Above the transition
we have 7>0.

We now want to establish a criterion below T,
for the BE condensation. In Sec. II the second
approximation was constructed to be conserving
above T, and below T, to be the sum of a gapless
approximation and the continuation of the normal
conserving approximation. The continuation of
the normal conéerving approximation is physically
motivated by the continuous nature of the condensa-
tion and gives consistent thermodynamics for the
fluctuations on both sides of the transition. The
gapless approximation is necessary to ensure that
the criterion for the condensation be the same
above and below the transition. In general the
gapless approximations satisfy the Hugenholtz-
Pines relation'?

1=24,(0,0) = Z4,(0, 0) (3.6a)

where =,(0, 0) and Z,,(0, 0) are, respectively, the

p =2z,=0 values of the diagonal and off-diagonal ele-
ments of the matrix self energy =. The BE conden-
sation is given by the vanishing of the condensate

density ny=N,/V, so that (3. 6a) reduces to

=210, 0;725=0) (3. 6b)

since Z,, is of order ny. =,,(0, 0;25=0) reduces

to the normal =(0, 0) at the transition for a gapless-
conserving approximation, and (3. 6b) is the same
as (3.5). Below the transition it is convenient to
define 7 by

N==—u+2440,0)=2,,(0,0), (3.7)

which is positive. Hence 7 defined by (3. 4) above
and (3.7) below provides a measure of the distance
from the transition (3. 5) in the u7 plane.

The criterion (3. 5) defines a X curve in the p7T
plane. The thermodynamic transformation of the
A curve in the u7 plane to the pressure-temper-
ature (PT) plane has been discussed by Lee and
Puff'® and will not be reproduced here. It is con-
venient to refer to the normal phase above the
transition in either the uT or PT plane as phase
I, and the condensed phase as phase II.

B. Fluctuation Spectrum

The fluctuation self-energy in phase I is given
in the second approximation by (2.12) and can be
written as

2®(p,2,)=2P(p)+2(p, 2,) (3.8)

2
(0,225 [ ol 4B~ [ 22

Z,—w
x f {deo } (o + oy — g — wg) A(A(2)A(3)

X[AFofs=fifafsl ,  (3.9)

where A(1)=A(py, wy), fi=Fflwy), and fi=1+f.

> is given by (2.10) and for the simple choice
of the interparticle potential reduces to

=@ (p)=zD(0) = 20V, , (3.10)

where 7 is the total number density. It is conve-
nient to introduce the real and imaginary parts

Z(p, z2=w+ i0%) = Alp, w)F2iT(p, w) , (3.11)

where the real part A is related to the imaginary
part IT" by the dispersion relation

sy wrf 5 TLEL

.1
21 w-w' 8.12)

Near the transition we expect that the significant
contribution to the self-energy comes from the
states which are densely occupied, the low-momen-
tum states, and we apply the dense-state limit
(3.2) to all the intermediate states in (3.9). The
angular integrals in (3.9) can be performed by
introducing the Fourier transform of the momentum
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0 function. We thus write the real part of the
self-energy as

N(p)==1 VBT [ dr Pljolrp) - 11D°),  (3.13)
| dilrg)
D(r) j; dg TR (3.14)

where A(p)=A(p,0), A'(p)=A(p) - A(0), and jy(x)
=x! sinx. Because of the application of the dense-
state limit, the momentum range should be re-
stricted to p <py, where p; is defined by 7=W(p;)
~p2/2m. However, because the integral D(») con-
verges for large g, the upper limit has been ex-
tended to infinity.

In the momentum range p < p, where p, satisfies
pi/2m = A (p,), the self-energy A’(p) dominates the
kinetic energy p2/2m, and the system is said to be
characterized by strong coupling. For p <<p,,
(3.14) can be written as

(7, d%iglrg)
D(r) f qu'(q)+77 .

(3.15)
At the transition 7=0 and a solution of the nonlinear
integral equation (3.13), (3.15) can be found by
substituting the form A’(p)=A,p’. We obtain for
P<<pg

A'(p)=Asp®/2, (3.16a)

Ag=(2/157°) (V,T,)? (3.16b)

Above the transition we define a temperature-
dependent momentum p, by A’(p,)=7. In the range
Pa<<p<p,we find the solution (3.16). In the range
p<p, D) decays exponentially for large v and
the major contribution to the (3.13) comes from
small . We expand j, in (3. 13) for small » and
find for p <p,

A'(p)=A,p?, (3.17a)

A3 = (43278 (VoT)%/n . (3.17b)

Outside the strong-coupling range p >p,, we set
A'(p)=0.

To perform calculations; we extrapolate the
above results for the fluctuation spectrum to a con-
tinuous function W(p) given by

A1p2+n ’ 0<p<pc
W(p)= {Ap* 24, pe<p <bo (3.18)
pY/2m+n,  po<p

where the momentum p, satisfies the relation
AypZ=Asp3% or p,=(Ay/A,)°. The momentum p,
is related to p, by a numerical factor: (p,/p,)?
=288/57. The momentum p, is given by A,p3/?

=p2/2m or py=(2mA,)?. Note that p;' can be in-

v

Ab oo
o o
gr &

FIG. 2. Schematic plot of the various momentum
regions near T,. In the hydrodynamic regions (I and 1II)
we have W(p) =A;p%+71. In the critical region (I) we
have W(p) =A,p3/2 +7. The rectangular region bounded
by p, is the strong-coupling region where the scaling
hypothesis is valid.

terpreted as the correlation length that divides the
(p,p.) plane into a critical region p,<p <p, and a
hydrodynamic region p <p,, which is a charac-
teristic feature of the scaling hypothesis. A
schematic summary of the various regions is
shown in Fig. 2.

Using the spectrum (3.18) we can now go back
and calculate A(0) [see (3.13)] at the transition
from

A0) =~ VET2 [ arv?*D%(r) . (3.19)
In the evaluation of D(r) we consider only the con-
tribution due to fluctuations in the strong-coupling
region p <p,. We obtain (see Appendix)

A(0)=-(64/37) T, €, (3.20)
where the small parameter € is given by
G:VO/TCA‘;,C (3.21)

and the thermal wavelength A, is given by A2
=2r/mT. Note that po~0(€), p,772/3~0(/?),
A3~ 0(e!®), Ay~ 0(el/?).

We now calculate the imaginary part of the spec-
trum by using the fact that for bosons A(p, w)x w
for small w. It then follows from the general rela-
tion between A(p, w) and I'(p, w) that T'(p, w) can be
written in the form

T(p, w)=v(p)w~0(?), (3.22)

where ¥(p) is independent of w and w << W(p). The
linear relation (3. 22) on w should be compared with
quadratic relation T'(p, w)x w? for normal Fermi
systems near 7'=0. If we substitute the form

(3. 22) into (3.12), we can relate ¥(p) to A(p) in the
limit of strong coupling, p <<p,. We assume that the
the major contribution to the integral” in (3.12)
comes from w << W(p,)=~pa/2m~ O(€?) and find

A(p)==p2v(p)/2am . (3.23)
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In particular we find that v,=7(0)~ 0(€°):

Y= % . (3. 24)
The spectral function has the form
Y(p)w
A =
RSl P T ) R o
for p <py and w < W(p,). (3.25)

We see that contrary to PP and in analogy to the
superconducting transition, the order-parameter
fluctuations cannot be interpreted as quasiparticles
since the width of the spectral function (3. 25) is
comparable to the posittion of the peak.

It is easy to see that the small-w form (3. 25) sat-
isfies the identity

f_dﬂ Alp,w) __1

e W) (3.26)

which demonstrates the consistency of the dense-
state limit. Integrating (3. 26) from p =0 to p =p,,
we see that the total number of particles involved
in strong coupling is of the order O(¢).

In phase II, the second approximation is given
by the Bogoliubov~Born-collision approximation
(2. 32) and (2.33). For a short-ranged potential,
the zero-frequency matrix self-energy can be
written

2nVy+A(p) nVo
E(Pa 0)= ,
n()Vo 271V0+ A\P)

(8.27)

where A(p) satisfies the same equations [(3.13) and
(3.14)] as in phase I with n(u, T) defined by (3. 7).
For small w we have

Zh(p, 2,=w+30%) =A"(p)F 3 Y(p)w , (3.28)

where =,(p, 2,) =2y (p, 2,) - £1,(0, 0) .
The first element of the diagonal fluctuation
propagator in (p, z,) space is given by

Ry +p2/2m + E{l(p; Z,,) +7
D(p, z,) ’

Z;ll(py zu)= (3- 29)
D(p,z,) =25 - [p%/2m+2], (p,2,) +1F+ 52 (p,2,)° .

(3.30)
In the strong-coupling region p <p,, 2,=0, we can
express the fluctuation propagator in terms of
w(p)[(3.18)];
Gu1(p,0)== W (p)/[W2(p) -]

It is easy to see that the spectral function A,,(p,w)
at low frequency and momentum is given by two

(3.31)

peaks of the form (3. 25) centered at + [W3(p) - n?]*/2.

C. Macroscopic Properties

We now use the fluctuation spectrum (3. 18) to

calculate the critical behavior of the isobaric
specific heat Cp, the superfluid density p;, and
the correlation length £, The consistency of the
various thermodynamic derivatives near the super-
fluid transition has been discussed phenomenologi-
cally by several authors!®® and will not be pursued
here.

Near a point (p,, 7,) on the transition curve 7
=0, the function 77 (u, T) is expanded in a power
series in .~ p,and T - T,:

n(k, T)= (1= 1) [(Z—Z) T] Bepg

on
T-T — +..., (3.32)
+( c) [:(aT>u]T-TC ]
where the derivatives are given by
(g_n) _(-1+[6%(0,0)/61], , phasel
ou Jr |[8212(0,0/00] , phase II
(3.33)
and
(iy_) _ [«'3}:(0,())/8‘1‘]u , phaseI (3. 34)
8T/, |[82,(0,0)/8T], , phasemm . -

In Sec. V these derivatives are calculated in the
second approximation, and itis shownthatinthefirst
critical subrange these derivatives are well be-
haved. Thus in the first critical subrange, the
expansion (3. 32) for n(u, 7) is valid and we write

[(%)T]u~uc:“’ [(%‘;‘)H]T‘T;b, (3. 35)

where a and b are constants,

V that @ ~ 0 (€% and b~ 0(e).
The isobaric specific heat (per unit volume) Cp

can be expanded in terms of the grand potential
== TlnTr (e~PH-+0);

Cp=TV Q% /Quu—Qrr = (S/N=-Qur/Q,,)° 2]
(3.36)

where S is the entropy, V is the volume, and Q,,
=(8%Q/8%)r, v, etc. The grand potential can be
written in the form Q(u, 7) =" M (1, 7))+ e, T),
where ., is well behaved as 7—- 0. As emphasized
in Refs. 16 and 18, Q.. plays an important role

in the understanding of the pseudoasymptotic be-
havior, e.g., behavior in the first critical sub-
range, of the thermodynamic derivatives near the

A transition in helium. However, we will ignore
2, here, concentrate only on the singular part

', and write

We also find in Sec.

Quu=a*Qy,, Qr=abQ, Qrr=b2QL, . (3.37)

I we substitute (3. 37) into (3. 32), the singular part
of Cp can be reduced to the form
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Cp=—(T/V)(S/N-b/a)a®Q., (3.38)

Using (3. 38) and the thermodynamic identity

b_(op S 1 (sP
Ta <3T>,,=0—“N+n (8T>n=0 ’ (3. 39)
we can express the singular part of Cp as
_T1 (sPV .,
Cr== Vw2 (a T>,,=0“ S (3. 40)

In the dense-state limit Q,, can be written in
the form

Lo d’p 8A’ (p)
- Van—TfWGZ(p’O)(1+—8n )

(3.41)
Substituting the fluctuation spectrum (3. 18) into
(3. 41) and keeping only the divergent contribution,
we obtain

-(1/V) Q)= (15/18m)"/2 (1/V,) In (Bn)~! (3. 42)

The logarithmic singularity in (8. 42) arises from
the integration in (3. 41) over the critical region
Dpe<p <po. Inphase II, Q;,is also given by (3.42).
Combining (3. 40) and (3.42) we find the singular
part of the isobaric specific heat to be given by

15 \M2 o0 1(ap)2 a® |1
Cr= (1817) O v ne0 € i

Note that Cp/In7"'~0(€”'). The jump in Cj that
is superimposed on the symmetric logarithmic
singularity (3.43) can be obtained from the spec-
trum (3. 18), but will not be considered here.
Since the static properties are sensitive to only
the real part of the fluctuation spectrum (3.18),
it is not surprising that the above results coincide
with those of PP.

The condensate density n, can be found from
the relation (3.%7), and to lowest order in € in the
first critical subrange we find

(3.43)

no=1/Vo=CoT , (3.44)

where the constant C,~ O (€°).
The superfluid density ps can be obtained from
the relation®

ps = =ngm? lim [p? Gy, (p,0)] ™! (3. 45)
p=0
Substituting (3. 31) into (3. 45), we find!®
ps=2n0m2A1 N (3.46)

which is the microscopic analog of the phenomeno-
logical relation for p, found by Josephson.? Using
(3.17p) and b~ O (€), we see that to lowest order in
€, pg is given by

ps/poc €/ (= 7)*3 (3.47)

’

where p=mn. Note that (3.4%7) vanishes as expected
for the ideal Bose gas. The € dependence in (3. 47)
can easily be obtained by matching p at 7, the
temperature where mean-field theory breaks down.
For |7| >7,, we have py=mnyx<| 7|, independent

of €. Let us assume that in the critical range

T<7,, Ps has the form p, <€®| 7|3, Then at |7
=7, we have €*7%/% 7|, which implies a =%, since
7, <€ [see (5.4)].

The correlation length £ can be obtained from the
asymptotic behavior of the fluctuation propagator
for large ». In phase I we have from (3. 2) and
(3.17)

- TG (r,2,=0)=(T/41Ay) e™/* (3.48)
where £ is given by
E=pit=M/A) Pecny e t/3 7723 (3.49)

The € dependence of £ can also be obtained from a
matching condition at 7,. The asymptotic (large 7)
behavior of the fluctuation propagator in phase II

can be found from (2. 18) and (3. 31) and is given by

- Tén (r,2,=0)=[ng+(T/81A ) e-r/e,,]

X(1+T/8mAngr) , (3.50)

where the first factor on the right-hand side repre-
sents the amplitude (longitudinal) fluctuations and
the second factor represents the phase (transverse)
fluctuations. The amplitude correlation length £,
is given by

E,=(V2p,)t=(m/24)"%
and phase correlation length can be defined as
£,=T/8moA, =m?T/4mp, (3.52)

The Ginzburg criterion? has been used to deter-
mine the range of validity of phenomenological
theories?? 2 that give the order-parameter correla-
tion function in a form similar to (3.50). Applying
the Ginzburg criterion to (3. 50), we find the condi-
tion of validity (£,/e£,) <1, Since &, x&,, the
Ginzburg criterion would imply that if the second
approximation is valid, it is valid right up to the
superfluid transition. This result disagrees with
a more detailed calculation (see Sec. V) which
demonstrates that the fluctuation contribution from
the critical region p.<p <p, plays an important

(3.51)

role in determining the range of validity. The
Ginzburg criterion as applied to (3. 50) overesti-
mates the range of validity for the second approxi-
mation.

IV. DYNAMICAL PROPERTIES

An essential feature of the theory is the damping
of the critical fluctuations, which is seen from Sec.
III to be the same order of magnitude as the real
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part, namely, O (€?). 1t is misleading to refer to
a Bose gas near the superfluid transition as behav-
ing as an ideal gas of quasiparticles, even though
the damping plays no role in the calculation of the
thermodynamic properties.

A. Thermal Conductivity

We begin the discussion of dynamical properties
by considering the calculation of the thermal con-
ductivity of phase I of the Bose gas near 7,. The
thermal conductivity « can be related to the retarded
correlation function of j’ =]+ Ag by the general ex-
pression

w=0> ’

(4.1)

1 d g
K—Re<3iT dwK (p=0,w)

where

K®(p,w)=i [ dF dt e"TTt([j’ (r,1), §°(0,0)]) 6 (2)

(4.2)

>

and 6 (¢) is the usual step function. j¢can be inter-
preted as the heat-current density, § is the mo-
mentum-current density, and A is an arbitrary con-
stant, where the notation of Ref. 24 is used unless
otherwise noted. The interpretation of j’ depends
on the choice of A, but for convenience j" will be
referred to as the heat-current density also. Thus
it is necessary to calculate the heat-current fluc-
tuation propagator (j’ j') self-consistently in the
same spirit as the order-parameter fluctuation
propagator was determined earlier. Since the
order-parameter fluctuation propagator has the
structure of a one-particle Green’s function, the
first-order interaction between the order-parame-
ter fluctuations can be taken to be the interparticle
potential. However, the nature of the first-order
interaction between the heat-current fluctuations

is not known.

Although the heat-current fluctuation propagator
is not known self-consistently, it is possible to
calculate the contribution of the order-parameter
fluctuations to x.2° A similar calculation has been
done by Aslamazov and Larkin?® for the electrical
conductivity of a normal metal above the supercon-
ducting transition in the classical range and has
been extended by Tsuzuki® into the critical range.
It is convenient to choose X = (P + Ts)/nm, which
gives

i’=[1s1)-Tsn(1)/n+P(1)-P+Ts] ¥, (4.3)

where P is the pressure and s is the entropy per
unit volume. The Euler relation for the energy
density (at fixed N) has been used to obtain (4. 3).
If entropy and density fluctuations are ignored,
(4.3) reduces to ]’ = Ts¥, and k can be written as

727

FIG. 3. Diagrammatic
representation of the ve-
locity-velocity correlation
function with two fluctua-
tion propagators.

).
w=0

where x¥ is the Fourier transform of the retarded
velocity correlation function defined as in (4. 2).
Equation (4. 4) represents the contribution of order-
parameter fluctuations to the thermal conductivity.

The practical effect of the above approximations
is to reduce the correlation function {j’ j’) to the
form of a two-particle correlation function. The
retarded correlation function % (p,w) can be found
in the usual way from the analytic continuation into
the upper half-plane of the thermal function x (p, z,).
By analogy to Refs. 6 and 26, x can be factorized
into a product of two fluctuation propagators as
shown in Fig. 3. The corresponding integral for y
is

K=%TszRe<~iEdz;xR(p=0,w) (4.4)

2 d3
x(P=0,Zu)=—§;z ﬁm":ﬁ

X2 G(p,2,+2,) G(p,2,) , (4.5)

where the vertex function @ is determined by the
Ward identity

PQ=-mV,G™ (p,0)=-2mAD (4.6)

The sum over frequencies in (4. 5) can be converted
into an integral in the standard way, and x¥(w) can
be written in the form

Q° % ® dz
XR(w)=—;z (Z—W)sz,/_w z—m.f(z)
x [GE(p,z) - G*(p,2)]

x[GR(p,z +w)-G*(p,z-w)] , (4a.7)

where G*(z)=G® (z)*. G%(p,z) can be found by
combining (3. 18), (3.22), and (3. 24) and has the
form

GE(p,z)=[z-W(p)+izy (0)2z]7* (4.8)

where W(p)=A,p%+7n. The integral (4.7) is to be
evaluated with the condition that the energy of the
external disturbance w be less than the energy of
the fluctuations W(p). Combining (4.4) and (4.6)-
(4. 8), we find that the singular contribution to the
thermal conductivity is
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2 3
K’:%Tcsz;l—zy(o)[ (‘é—wi;ngW's(p) (4. 92)

=(8m) ' T2s%(Am) ™2 ¥ (0)~ O (e72/3) 7~1/3
(4. 9b)

A similar expression for «’ has been derived phe-
nomenologically by Stauffer and Wong.2?

B. Macroscopic Sound Mode

The macroscopic sound modes of the system
should be determined from the poles of the den-
sity-density correlation function. As discussed
earlier in this section, we do not know how to cal-
culate such a correlation function self-consistently
and are forced instead to consider the poles of
the fluctuation propagator. It might be thought
that the identification of the poles of G;; with the
macroscopic sound modes should be unambiguous,
since it is known that the poles of G;; are identical
to the poles of the density-density correlation
function for T< T, in the hydrodynamic limit. °
The identity is based upon the assumption that the
calculation of Gy is consistent with the conserva-
tion laws (hydrodynamics) and the gapless condi-
tion (3.6). However, as mentioned in Sec. II, it
is not possible to satisfy both conditions simul-
taneously to the first few orders in V.

The pole of the fluctuation propagator Gy; can be
obtained from (3. 29) and (3. 30). Using expres-
sions (3.18), (3.27), and (3.28) for the self-en-
ergy, we can write for small p and w

Git(p, w+i0*)oc w? = 2nyVoAsp 2 +i2¥A  pPw++ -+ .
(4.10)

Since the self-energy has been approximated for
small p and w, we do not get all the poles of Gy; .
The pole in (4. 10) is a sound mode with speed ¢
and damping D given, respectively, by

c?=2myVoA; = (ps /p) (nVy/m)~ (= 7)2/%0(*3),
(4.11)

D=2y,A,~ (- 7)0(e'3). (4.12)

Lee and Yang®® have shown that in the first ap-
proximation the pole in Gy; near T, corresponds
to oscillations in the superfluid component only,
and thus it is appropriate to identify ¢ and D of
(4.11) and (4. 12) with the fourth-sound mode.
The speed of the fourth-sound mode near 7, is
given in the hydrodynamic limit by

ci=(ps/p)ci, (4.13)

where ¢, is the first-sound speed. The micro-
scopic result (4.11) agrees in form with (4.13)
and thus is consistent with the assumption of dy-

|

namical scaling.
V. VALIDITY OF SECOND APPROXIMATION

It will be instructive to consider first the deter-
mination of the range of validity of the first ap-
proximation, since the range of validity of the
second approximation can be established in a simi-
lar, although not as rigorous, manner.

Let us first investigate the implications of ex-
pansion (3. 32) of the function n(u, T) near the
transition. In the first approximation, = =2nV,
and # is given by

n=X3 Fy ((u =2nV)/T), (5.1)

where Fj/, is the familiar Bose-Einstein integral.
Using (3. 33) and (3. 34), we find that in phase I

[( W)T] N uc= - {1+ 2¢ [nT/n(T)]2}1,

ou (5. %)

[<%> u]T" Tc: 3mxzfe {1+ 2¢ [n T, /n(w)]"2}". (5. 2b)

The derivatives (5.2a) and (5. 2b) are singular as
n— 0, and thus expansion (3. 32) appears to be un-
acceptable. However, the n-dependent term in
(5. 2a), which is proportional to 8x/6u and hence
to density fluctuations, can be neglected if 7> 74,
where 7, satisfies the relation 1=2¢ [T, /n(7,)]'2.
Similarly the n-dependent term in (5.2b) can be
neglected if o= | u -yl /u,> 0y, where oy satis-
fies the relation 1=2¢[nT, /1 (6,)]'”2. Thus in the
range 7> 7, and 0> 0y, the derivatives (5.2a) and
(5. 2b) behave as finite constants (3. 35) given by

a=-1+0(), b=3m%e+0(?, (5.3)
where
Ti= %0'1 = [éﬂ{(%)k . (5- 4)

This value of 7,, determined by the internal con-
sistency of the expansion of 7 [3.32)], is consis-
tent with the value obtained by the Ginzburg crite-
rion.? In phase II the constants a and b are just
the negatives of the values (5. 3) and 7 is symmetric
about the transition.

The range of validity of the first approximation
can also be determined by considering the magni-
tude of the self-energy diagrams neglected in the
first approximation. The next term in ¥ corre-
sponds to (3.9), the term calculated self-consis-
tently in the second approximation. Equation (3. 9)
is estimated within the first approximation by
taking W(p)=p 2/2m +n for the intermediate states.
Using (3. 13) and (3. 14), we find that W(p) —n has
an additional contribution:

W(p) —=n=(p%/2m)[1+4nT,/2Mm)e?]. (5. 5)

The second term in (5. 5) diverges as n— 0, and
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the first approximation breaks down when the sec-
ond term becomes comparable to the first. We
thus find that the first approximation is valid for
7> 7{ where

' =[#me(3)]e . (5.6)

This estimate of 7, implicitly assumes that the
perturbation series for ¥ converges for 7> 7.
The value 7, given in (5. 6) differs from (5. 4) only
by a numerical factor, which should not be taken
too seriously as the calculation is only an order-
of-magnitude argument.

Finding the value of 7 at which the second ap-
proximation reduces to the first approximation,

Ai(r)p2=p?/2m, (5.7)

is our final and most direct determination of the
range of validity of the first approximation. The
previous criteria have involved the spectrum de-
termined within the first approximation, whereas
(5.'7) can only be written down if we are able to
calculate beyond the first approximation. The re-
sulting value of 7, obtained from (5. 7) is exactly
the same as (5.6). We have now explicitly shown
that three independent criteria for the range of
validity of the first approximation are consistent
with one another.

Let us now consider the range of validity of the
second approximation in the same manner as was
done for the first approximation. First we investi-
gate the implications of the expansion (3. 32) for
the function 7(u, T) near the transition. In the
second approximation we have Z(0, 0) = 2nV,+ A(0),
and from (3. 33) and (3. 34) we see that the deriva-
tives of n to lowest order in € are given by

(m) =1
U T_ L’

(5. 8a)
(%)fs"”z% ’ (5. 8b)
an  9A(0)
D=1-2y, 22 220 )
o™ Ton (5.9)

The density # is given in the second approximation

by
Pe 2 2
T ‘pidp Po_pPdp
n—ﬁu A,p2+n+£c Agp3 %y

0 pldp -3
—/(; % omin) tT Fyp(Bn).  (5.10)
The contribution to » of the free-particle spectrum
in the momentum range p> p, has been written as
the integral from 0< p< p, minus the integral from
P<po. The dense-state limit [see (3.2)] has been
applied only to states with momentum p<p,. An
inspection of (5.10) shows that the contribution to

n from the momentum range p < p, is of the order
O(€). However, the range p< p, gives 4 singular
contribution to the derivative 8n/6n, and we find
after a straightforward calculation that

9 8/2
zVO;::—a.g- 1.031n(ff> ,

(5.11)

where pg’z is proportional to n and the numerical

coefficients have been calculated to O(¢%). Note
that the term proportional to /2 in (5. 2) does
not appear in the second approximation and that
the term proportional to Inp~! in (5. 11) comes from
intergrating over the momentum range p.<p <p,.
The form of (5.11), A+ Blnn, as well as the criti-
cal behavior of the quantities considered in Secs.
III and IV, depends only on the limiting behavior
(3.16) and (3.17) of the fluctuation spectrum W(p);
however, numerical coefficients such as A and B
are sensitive to the extrapolation procedure used
to obtain the spectrum (3. 18).

It is shown in the Appendix that the derivative
34(0)/5m has the value

24(0) (p(])s/z
==2.97-0,11 In{=2 .
an " De

Substituting (5. 11) and (5. 12) into (5. 10), we find
D=12.9+1. 14 In(pe/p.)%"2. (5. 13)

As n-0, we see from (5. 8) and (5. 13) that the deri-
vatives of 7(u, T) are singular and the expansion
(8.32) of n(, T) is suspect. However, in the range
7> 7, (and ¢ >0;), the derivatives behave as con-
stants (3. 35) given by

a=-1/12.9+0(e€),

b=3m%e/12.9+0(€?),
with
T,=12.9 e 1],

1/x=12.9/1.14=11.3,

where 7] is given by (5.6). Note that A is of the
order O(e®). The expansion (3. 32) for n(u, T) near
the transition is thus verified in the second approxi-
mation for 7>17,.

We now show that the interactions between fluc-
tuations that were ignored in the second approxi-
mation can be neglected in the temperature range
T>7,, where T, is estimated to be consistent with
the value (5. 15).

It is convenient to consider the diagrammatic ex-
pansion for the vertex part C discussed in Sec.

bs

(5.12)

(5. 14)

(5. 15)

FIG. 4. First two diagrams
for the irreducible vertex
function J. The symmetrized
potential (2.17) is represented
by a dot.
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II, since the vertex part can be interpreted as
representing the interaction between the order-
parameter fluctuations. The parquet diagrams
have been shown by PP to be convergent and to
simply renormalize the “bare” vertex V,. The
first two contributions to the absolutely irreducible
vertex part are shown in Fig. 4. The first diagram
is simply the potential V and is included in the

T3 Vs

d*qy d’q, d°qs

v

second approximation. To evaluate the second
diagram we approximate the vertex part by V,,
make the approximation f(w) = T,/w for all inter-
mediate states, and use the self-consistent solution
of G in the second approximation. It is easy to

see that the dominant contribution comes from the
%2 part of the spectrum. The second diagram then
corresponds to the integral

(5.16)

Ao(z'") q:{/qu/zqg/al 51 - 61 - 3213’2 151 + 52 - 54 |3/z|54 = 51

where §,=0; +d;— ds and the P, are the external
momenta. Since a logarithmic divergence arises
for large values of the momenta ¢;, it is convenient
to transform to the new variables @*=7Y, ¢% and
v;=q;/Q, which are, respectively, the square of
the radius and the directional cosines in a nine-
dimensional momenta space. The integral in the
new variables can be estimated by setting the ex-
ternal momenta equal to zero. The @ integration
is over the momenta p, to p, and can be done im-
mediately to give the form

X'V Inlpy/p.)32 (5.17)

The dimensionless number )’ is given by the inte-
gral

;273 V3 ase
- 6 \ 9
3A0(27T) Vg/ZVg/ZVg/ZVzlzl v+ V2|3/2|V1 v V3|3/2 )

(5. 18)

where df2 is the element of solid angle in the nine-
dimensional momenta space. Since (p,/p.)'2
=2m Ay, the argument of the logarithm is propor-
tional to 771,

The appearance of the logarithmically divergent
term (5. 17) contradicts the earlier assumption that
the interaction between fluctuations is well behaved
for small momenta. Such a term would be expected
to be important at temperatures very close to T,
but it can be neglected in comparison with Vj in
the temperature range away from 7,. We define
7, by equating the two terms Vo= 'Vyln(py/p, )%
We find

A

T,=12,9 ¢ V1], (5. 19)

The value of 72' depends only weakly on the magni-
tude of the interparticle potential but is very sen-
sitive to the value of 1’

The integral (5. 18) for 1’ is very complicated,
and we have been able to estimate A’ only very
roughly. Let us first set ;=1 so that the integral
becomes equal to the area of a nine-dimensional
sphere of radius 1. The corresponding value of

_ ’da |372 ’

A"1=336 (& m)2~218. Such an approximation
places a lower estimate on the value of 7,. A more
realistic approximation might be to set 7; ~%, which
yields x "'~ 19, 1.

It is possible to show that the dominant behavior
of the remaining diagrams for J have the same form
as (5.17). Hence the remaining diagrams also
contribute to A" and a more accurate calculation of
the integral (5. 18) for »’ may be incomplete, with-
out the additional assumption that the perturbation
expansion for J converges in the range 7> 72' .

It is interesting to compare the estimate of 7,
obtained by the above criteria to an estimate 7, of
the onset of critical density fluctuations. The con-
tribution to the density fluctuations 8n/8u from the
critical range p,<p <p, can be obtained from (5. 10),
and we find

om o\
" 1+A,,1n<pc> : (5. 20)
where

Al=AY/nA}=-288/57=18.3 . (5.21)

We see that the density fluctuations are not critical

for 7>7,, where

7,=12,9 e Pn 7], (5. 22)

Comparing the form of (5. 22) with (5. 15) and (5. 19),
we conjecture that the breakdown of the second ap-
proximation at 7, might be related to the critical
behavior of density fluctuations.

It would be desirable to extend the theory to the
next approximation in 7< 7, and to show that the
next approximation reduces to the second approxi-
mation for 7>7,. Unfortunately, the next approxi-
mation that includes both diagrams in Fig. 4 self-
consistently does not appear to be tractable. 29

We have seen that it is possible to establish
criteria for the range of validity of the second ap-
proximation in the same manner and with the same
assumptions as was done for the first approxima-
tion. Because of the greater complexity of the sec-
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ond approximation, it is not possible without much
further investigation to estimate 7, with the same
degree of confidence as it was possible to estimate
7, in the first approximation.

The assumptions described above are quite dif-
ferent from those made by PP. To maintain the
consistency condition that the absolutely irreducible
vertex part J is well behaved, PP assumed that
the sum of the logarithmically divergent terms for
J must give the result A'=0. However Migdal® has
given general arguments to show that 2 '#0 and
hence the assumption of PP is not correct.

For 7< T, the perturbation series for J diverges
and each term is of the same order of magnitude.
It might be thought that the theory can be extended
into the range 7< 7, by summing the leading powers
of x'In(po/p,), as has been done by Migdal.* How-
ever, the sum of a diverging series has been shown
to lead to incorrect results near the transition of
the two-dimensional Ising model. ®

In the present approach it is not possible to make
any statement about the critical behavior of the
system for 7< 7, without including a larger set of
diagrams self-consistently. The existence of at
least two critical subranges has been indicated for
the weakly interacting Bose gas, but it is still an
open question whether the range 7< 7, can be still
further subdivided. There exists the possibility
that the different critical subranges will exhibit
different critical behavior.

VI. DISCUSSION

It has been shown that it is possible to construct
a simple self-consistent theory of the superfluid
transition of a weakly interacting Bose gas, which
takes into account the first-order interaction be-
tween the order-parameter fluctuations. A number
of mathematical assumptions were not rigorously
proven, but were shown to be consistent with a
simple picture of the transition.

We now consider the possibility of regarding the
second approximation for a weakly interacting Bose
gas as a model calculation for helium near the x
transition. If we assume that the X transition is
mainly a consequence of Bose statistics, then the
nature of the singularities near the ) transition
should not be strongly dependent upon the quantita-
tive details of the interaction. Let us investigate
the consequences of this assumption and accept for
the moment that the concept of critical subranges
is applicable to liquid helium and that the first
critical subrange includes the presently accessible
temperature range. It is then expected that the
static properties of helium have the following criti-

cal behavior in the first critical subrange:
ng 7, £x T3 p o7 CLacInTl,

The critical behavior can be expressed in terms of

the standard notation®! for the various critical ex-
ponents. There is, however, an ambiguity in
choosing the order parameter for helium, e.g.,
we can choose either vu, or Vp, apart from phase
factors. Although the only quantity readily acces-
sible to experiment is the superfluid density p,, it
is clear microscopically that vz, is the order pa-
rameter which is analogous to the magnetization in
the ferromagnetic transition, to the density in the
liquid-gas transition, and to the gap function in the
superconducting transition. Thus the predicted
critical exponents in the usual notation®! are-

(6.1)

(It is easy to see that if Vp, were chosen as the or-
der parameter then the set =0, f=3, y=%, =0,
v=¢=% would result.) The values of a =0 and

v=¢ =% have been confirmed by experiments for
helium, but there is no direct experimental evidence
for the values of the remaining critical exponents.
An extremely difficult but useful experiment would
be to measure the condensate density near the x
transition, and that would be a direct check of our
prediction nyec 7 (8=1%). -Some authors have as-
sumed that pg < ny 723, but as Josephson?® has
emphasized, this assumption is equivalent to =0,
which is the prediction of the classical Ornstein-
Zernicke theory.

On the basis of an analogy® between the Bose
lattice gas and the general Heisenberg-Ising mag-
net, it is generally assumed that the critical ex-
ponents for the A transition in helium should be
approximately the same as those for the magnetic
transition. Since it is not the purpose of this paper
to discuss magneétic models, we confine ourselves
to one brief comment concerning the X transition of
helium and the Bose lattice gas analogs. The ap-
plication of the present model calculation to the
A transition assumes that the A transition is mainly
a consequence of the Bose statistics. The existence
of the Bose statistics can be expressed in terms of
the commutation relations between the Bose field
operators. However, the presence in the Bose
lattice gas of an infinitely repulsive interaction
profoundly modifies the structure and thus the sym-
metry of the underlying field description of the
system. The change in symmetry might suggest
that the Bose lattice gas is a poor model for helium
near the A transition. Near the critical point of
helium where the interaction rather than the Bose
statistics plays an essential role, it is expected
that the lattice gas would be an acceptable model.
We suggest that although the critical exponents for
the critical point of helium and magnetic systems
are similar, the critical exponents of the ) transi-
tion of helium may be different from magnetic sys-
tems because of the importance of the Bose statis-
tics. Unfortunately the critical exponents that dis-

a=0, B=3, y=1, n=3, v=f=%,
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tinguish the various models and analogies, e.g.,
B and 7, have not been measured for helium.

We now consider the applicability to helium of the
dynamic calculation in Sec. IV. The contribution
of order-parameter fluctuations to the thermal
conductivity k was found to be k' 7713, The ex-
tended dynamical scaling®® and the mode-mode
coupling® theories give a critical temperature de-
pendence for k proportional to T3CH(C3) V2,
where C} are the specific heat at constant pressure
above and below T,, respectively. The predicted
temperature dependence of k from the above phe-
nomenological theories is in excellent agreement
with the bulk measurements® in helium in the tem-
perature range 107%<7<10% We see that the con-
tribution of the order-parameter fluctuations to x
agrees with the phenomenological theories and with
experiment except for the logarithmic factors. In
the mode-mode coupling approach, the factors of
Cp arise from the normalization of the entropy
fluctuations. In the dynamical scaling approach,
entropy fluctuations are built in though the use of
hydrodynamics to obtain the poles of the various
correlation functions. We thus are led to suspect
that the absence of logarithmic factors in k may
be due to the inconsistent treatment of the entropy
fluctuations. From this point of view, we do not
expect logarithmic factors in the speed ¢, and
damping D, of fourth sound in helium since the nor-
mal fluid, which carries the entropy, is con-
strained. It would be desirable to measure the
properties of the fourth-sound mode near the
transition in helium,

The picture that arises from the present micro-
scopic approach is somewhat analogous to the
phenomenological mode-mode coupling approach.
The divergence of the various properties of the
system is tied to the existence of various critical
fluctuations. A complete theory would consist
of a closed set of self-consistent nonlinear coupled
equations for the propagators of the critical fluc-
tuations. 3° The critical fluctuations in helium are
those in the order parameter and the entropy. The
static entropy fluctuation is completely determined
by the order-parameter fluctuations. On the other
hand, in dynamic situations, entropy and order-
parameter fluctuations should be considered as
separate critical fluctuations. Since the entropy
fluctuations are only weakly critical, the present
model is useful for the calculation of the dominant
behavior of dynamic properties, but it is still in-
complete owing to the inconsistent treatment of the
entropy fluctuations.

We now return to the basic question concerning
the applicability of the concept of critical subranges
to the X transition in helium. Unfortunately, there
is no definitive answer to this question and the re-
maining discussion is only meant to be suggestive.

In Sec. V, it was seen that the criteria for the range
of validity of the second approximation, 7,<7<7,,
were related to the critical behavior of the density
fluctuations. A possible conjecture for helium is
that the existence of the first critical subrange is
associated with the fact that the density fluctuations
have not yet become critical. Estimates based upon
phenomenological considerations!® suggest that the
density fluctuations in helium become critical only
for extremely small 7~ 107,

We have indicated the existence of the first criti-
cal subrange for a weakly interacting Bose gas. It
would be interesting to see if the concept of criti-
cal subranges is useful in other systems. However,
the applicability of the present approach might be
model dependent.
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APPENDIX

The derivative 6A(0)/67n at T, is needed in the
evaluation of the constants a and b [see (3. 35),
(5. 8), and (5. 9)] and is given by

GA(O) _ 3 22 ® 2n2 aD(’)’)
ST V2T A dr v2D(v) e (A1)
We shall take the limit 7~0 in (A1) whenever di-
vergences do not result. Using (3. 15) and (3. 16)
we see that the contribution from the strong-cou-
pling region 0<p <p, to D(#) is given by

D) = {%Aa 3%, < 1/py
(BmMY2AL 732, y>1/p, . (A2)

The limiting forms (A2) for D(#) can be extrapolated
to join at »=7y=c/py, where ¢ =3, The value
of A(0) at T, [see (3. 20)] is obtained from (3. 19) by
the use of the above extrapolation for D(7).

The derivative 8D(#)/8n can be obtained from
(3.15) and (3. 18),

aD(») 1 ' . x%(1 - x%/3x,)
— an _ATIPCL dx]o(ﬂch) __2_(96 +)\'"‘_2_) '_

1 fPO/Pc ) xz
+:&g . dx](,(rpcx)mz—
=L +1,, (A3)
where x=¢q/p, and 1, is given by (5. 21). Since
jolrp,) =0 as n—0 for finite », the integral I; re-
duces to a constant and can be evaluated analytical-

ly. In the limit » <1/py, jol#p.%) in I, can be re-
placed by unity and I, is given by

L=AZ[In(pe/p)- 5 - 51n(142,)], 7<1/py. (A4)
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For 7> 1/p, we neglect X, in the denominator of I,
and obtain

1 i .
I,= yH (1- *Spl:%’ ~1In(p,) + Ci(rp,) - Cl(l)) s

1/po<r<1/p, (A5

where Ci(7) is the cosine integral

Ci(”) =y +Inr+ for dx x™(cosx - 1)

and y =0. 557. The derivative 8A(0)/an can be eval-
uated by breaking the » integral in (A1) into two
ranges, from 0 to ¢/p, and from c/pyto 1/p,~ =,
using the appropriate forms for D(#»), I, and I(»).
We evaluated numerically the integral

fc‘”dw"Ci(r)ho. 22 .

The remaining integrals are straightforward and we
obtain the value (5. 12) for 8A(0) /an.
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