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An accurate method for solving the one-electron Schrodinger equation for small molecules
is presented. For Li2, the valence-electron-core interaction is treated as an effective poten-
tial found by fitting the atomic energy levels. The intermolecular potentials for six low-lying
electronic states of Li2'are calculated. For the ground state o«, a binding energy of 1.30 eV
is found at a separation of 3. 08 A and a vibration frequency of 277 cm . From the intermo-
lecular potentials, three cross sections are calculated for Li ions scattering from Li atoms:
(i) elastic scattering, (ii) charge transfer, and (iii) inelastic scattering leaving the atom in a
2p excited state. This last process proceeds through a curve crossing of the 0«and 7t„l states
at 8 = 5. 95ap.

I. INTRODUCTION

An accurate and convenient numerical method
for solving the one-electron Schrodinger equation
for small molecules is presented. This method
is applied to the calculation of the intermolecular
potentials of six low-lying electronic states of the
Li~' molecule. The interaction between the valence
electron and the core electrons is treated as an
effective potential which is determined by fitting
the atomic energy levels of the Li atom. As long
as the cores of the Li' ions do not overlap appre-
ciably, this effective potential should provide an
accurate physical model for Li~'. For the ground
state o~„a binding energy of 1.30 eV is found at
an internuclear separation of R = 5. 85@0 and a vi-

bration frequency of 2'77 cm '.
From the intermolecular potentials we can cal-

culate the cross sections for the three scattering
processes that have been studied experimentally:
(i) the elastic differential scattering cross section
for lithium ions bombarding lithium atoms' Li'
+ Li- Li + Li, (ii) the total charge-transfer cross
section ' Li'+ Li- Li+ Li', and (iii) the inelastic
differential cross section for the process in which
the lithium atom is excited from the 2s ground
state to the 2P state. ' This last process goes at
low energy via a curve crossing of the o„, and z„,
states at R = 5. 95ao. We calculate the transition
probability o„,—m„, as a function of ion velocity
and impact parameter by integrating the time-
dependent Schrodinger equation numerically for
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The lithium molecular ion has one valence elec-
tron, and we can treat the ion as a one-electron
problem by replacing the interaction between the
valence electron and the core electrons by an ef-
fective potential. The effective potential concept
should be accurate provided the core electrons are
tightly bound compared to the valence electron. We
determine the effective potential by taking a one-
parameter potential and fitting the atomic energy
levels of the lithium atom. We take

U,«(~) = —3/~+ (2/~)[l —(1+Z,~)e ' ~"],

which is the potential of the nucleus plus the Cou-
lomb potential of two core electrons in hydrogenic
1s orbitals with effective charge Z, . With Z, = 1.655,
the calculated atomic energy levels (Table I) are in
excellent agreement with experiment (atomic units
are used throughout). This effective potential should
be accurate provided the cores of the two Li' ions
do not overlap appreciably, that is, for R &2ao.
The one-electron Hamiltonian is then

TABLE I. Comparison with experiment of theoretical
energy levels of the lithium atom using the effective po-
tential I, Eq. (1)J with Z~= l. 655.

Experimental
energy
(a. u. )

Yheor etical
energy
(a. u. )

the two-state problem. We can then find the dif-
ferential cross section for the inelastic process.
The elastic and charge-transfer cross sections
are computed from the o„, and 0~, potentials.
Both of these cross sections are modified by the
inelastic process, and these modifications are
taken into account. The over-all agreement with
the scattering experiments performed thus far is
good.

The plan of the paper is as follows: In Sec. II
we discuss the one-electron Hamiltonian, and in
Sec. III we present the numerical technique for
finding the electronic energies and wave functions.
In See. IV we calculate the intermolecular poten-
tials for the six states derived from the atomic
2s and 2P states. In Sec. V we calculate the elas-
tic differential cross section in the adiabatic ap-
proximation. In Sec. VI we compute the inelastic
differential cross section and the corrections to
the elastic cross section. In Sec. VII we calculate
the charge-transfer cross section.

II. ONE-ELECTRON HAMILTONIAN

V„, „„(R)= 1/R+ V„~q,(R) + V„„(R).
The van der Waals and core-core interactions are
determined by scaling the polarizability and He-He
interactions by the ratio of characteristic lengths
1.7/2. 7 for the Li and the He atom cores:

V„~v(R) = —0. 24/(2 +R ), (8)

V....(R) = 48e ""
which is Slater's He-He potential properly scaled.
These two terms are appreciable only for R & 3ao;
they affect only the elastic cross section at large
angles (small impa. ct parameters); they have no
effect on either the other cross sections or the
binding of the molecule.

One can treat the other alkali atoms in the same
way as we have treated Li and carry through cal-
culations for all the alkali molecular ions and the
alkali-hydride molecular ions. We believe that
this model is an accurate physical model for Liz'
for R & 2ao and that calculations based on the model
have the same validity as accurate ab initio calcu-
lations. It is therefore worthwhile to find accurate
solutions to the one-electron Schrodinger equation.
This problem is considered in Sec. III.

III. SOLVING ONE-ELECTRON PROBLEM

Briefly, the method used to solve the Schrodinger
equation is as follows. We write the wave function
as a linear combination of convenient functions

(8)

(2)

where R, and R2 are the positions of the Li' ions.
The Schrodinger equation is then

(3)

where the electronic eigenvalue E„(R) is a function
of internuclear separation R= IR, —ffa~. The mole-
cule has rotational symmetry about the internuclear
axis and a center of symmetry. The wave functions
are labeled by the angular momentum about the
internuclear axis l, by the inversion symmetry,
gerade or ungerade, and by the principal quantum
number n= 1, 2, . . . .

The intermolecular potential is the total energy
of the molecular ion at separation R minus the
energy of the separated Li' ion and Li atom:

V„(R)=E„(R)+V„, „„(R)—E, ,( ),

where

2s
2p
3s
3p
3d

—0. 1981
—0. 1302
—0. 0742
—0. 0572
—0. 0556

—0. 1981
—0. 1299
—0. 0743
—0. 0573
—0. 0556

Since the potential is Coulombic both near the
nuclei and far from the molecule, it is convenient
to use Slater functions centered on the nuclei.
Since we will deal with excited states, we will not
minimize the energy, but will minimize instead
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the energy variance E = ((H —E) ). Minimizing E
minimizes the rms error in the solution of the
Schrodinger equation and provides an upper limit
on the energy error as well as an optimized wave
function and eigenvalue. With 8 fixed, we minimize
I' with respect to the linear parameters of the wave
function and find and eigenvalue equation for I":

Zq(H;) —2EH;q+ E S;) ES-;,)aq = 0,

where

3

H;, = f pfHp, ,d r,
H3, = f (Hp, )"Hp, d r .

(9)

is a convenient absolute measure of the accuracy
of the wave function. One can show that the energy
error is less than e&& I,E; —E~I.

TABLE II. Parameters for the o~l wave function for
R = 6. Wave function is not normalized.

Using Slater functions one can easily compute Hy;
at a point in space; the integrations are then per-
formed by mesh integration. The eigenvalue equa-
tion (9) can be readily solved for the lowest eigen-
value and eigenfunction by standard numerical
techniques. One then fixes the wave function and
minimizes I" with respect to E to find the optimum
energy

E =Z a~H, )a) Z a;S;)a~ ——(H). (11)
ij ij

This two-step minimization procedure is iterated
until it converges.

If the trial wave function were completely flexi-
ble, the energy variance E(E) would vanish at the
eigenvalues and rise to the value —,

' (E; —E,) be-
tween neighboring eigenvalues. In order to have
an accurate solution of the Schrodinger equation
we require that F(E;)« —,

' (E; —E&), where E; —E&

is the energy difference from the closest eigen-
function of the same symmetry. The error function

(12)
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FIG. 1. Intermolecular potentials of six low-lying
electronic states of Li2'vs internuclear separation. Solid
squares are from the Hartree-Fock-Roothaan calculation
by Fisher and Kemmy for the 0~& and 0«states.

IV. ELECTRONIC STATES OF Lj2'

In order to illustrate a typical run we present
the calculation of the ground state 0, at R= 6ao.
We take 12 basis functions of the form

j0( = Zlgl
l n] W&rl+ &l ~& n~e-A~i'2

2

and use 130 mesh points to perform the two-dimen-
sional integrals (10). The optimized wave function
is given in Table II, the energy is —0.4122, and the
energy variance is 1.0&& 10 . The energy differ-
ence from the next state of the same symmetry is
0. 14, so that &=0.0051, and energy error is less
than 0.0007. The intermolecular potential is
—0. 0474+ 0. 0007, which is near the minimum.
The computing time was 20 sec on a GE 635.

ai

1
0. 7262

—1.4053
1.5840

—1.0832
0. 0727
0. 5619

—0. 6020
0. 6238

—0. 0067
0. 0189
0, 0601

ni

3.5
2. 1
1.3
0. 8
0. 8
0. 8
2. 1
1.3
0. 8
0. 8
1.3
0. 8

Using the method described in Sec. III, we have
computed the electronic eigenvalues of the six
lowest-lying states of Li2' for R between 2ao and
18ao. The electronic energies of the o~„o„„and
m„, states, which are of interest for the cross sec-
tion calculations, are listed in Table III. The in-
termolecular potentials for six states are plotted
in Fig. 1 together with the energies for the 0«
Bnd 0„, computed by Fischer and Kemmey' by the
Hartree-Fock-Roothaan (HFR) method. The ener-
gies for the 0 f state are in excellent agreement;
however, the HFR energies for the g«state lie
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TABLE III. Energy and energy variance of Ihe three lowest electronic states of Li2 as a function of internuclear
separ ation.

+ui

R(a. u. )

2

3

5
6
7
8

10
12
15
18

E(a.u. )

—0. 4746
—0. 4678
—0. 4647
—0. 4413
—0. 4122
—0. 3841
—0. 3593
—0. 3199
—0. 2929
—0. 2684
—0. 2550

F x10

1.3
1.2

1.0

0. 56
0. 25
0. 11

E(a.u. )

—0. 3603
—0. 3394
—0. 3233
—0. 3119
—0. 3043
— 0. 2992
—0. 2951
—0. 2868
-- 0. 2776
—0. 2644
—0. 2541

+x104

0. 21
0. 29
0. 26
0. 19
0. 14
0. 12
0. 10
0. 10
0. 13
0. 12
0. 09

E(a. u. )

—0. 4650
—0. 4057
—0. 3628
—0. 3300
—0. 3035
—0. 2817
—0. 2640
—0. 2367
—0.2177
—0. 1987

E x104

9. 7
4. 4
1.3
0.56
0. 88
1.4
1.7
l. 3
0. 75
0. 39

significantly above the energies which we calculate.
The largest deviation is 0. 006 a. u, = Q. 16 eV at
II', =- 4ap. It is not known whether this discrepancy
is due to a la, ck of convergence in the HFR calcu-
lation or to some inadequacy of the effective poten-
tial. At a. separation of R= 2ap the core states be-
gin to overlap appreciably, and the energy splitting
bebveen the v~ and v„core states is about 10% ot

the core binding energy. As the core wave func-
tions become modified, the effective potential felt
by the valence electron should also be modified and

the effective potential breaks down. For R & 2ap,

however, the model should be accurate.
The ground-state intermolecular potential can

be fit by a. Morse potential

V(R) V (
-2 &RRD 2

- R Ro
)

within + 0. 0007 in the attractive region 3. 5ap(R
& 12ap. The parameters are Vp= 0. 048 a. u. ,
e =- 0. 325ap, Rp ——5. 82ap. This potential yields a
binding energy of 1.30+ 0. 02 eV, an equilibrium
radius of 3.08+0. 05 A, and a vibrational frequency
of 277+8 cm '.

The curve crossing of the 0„, and p„, states occurs
at R= (5. 95+0. 1)ao. The m„, states goes to an

atomic 2P state in the united-atom and separated-
atom limits, while the 0„, state goes to an atomic
3P state in the united-atom and to an atomic 2s
state in the separated-atom limit. Thus we expect
this level crossing to be characteristic of all the

alkali molecular ions, and we expect it to occur
at a separation of the order of the size of the
atomic wave functions.

V. ELASTIC SCATTERING CROSS SECTION

The elastic differential cross section for the

scattering of Li ions by Li atoms has been rnea-
sured by Aberth et al. ' for center-of-mass ener-
gies between 25 and 150 eV. In this section we
calculate the elastic cross section within the adia-
batic approximation, neglecting the inelastic chan-

aV„(R) 8V„(R) b

PR R dt ' (15)

where p. is the reduced mass —,'ML, and v„ is the
velocity in the x direction. The scattering angle
is then

b
" dg 8V„(R)

)Uv „R dR

In terms of the reduced angle v. = F0 the scattering
is a function of 5 alone'p:

p.v38 b dz 8 V„(R)7b =
2 2 „R M (17)

If we write the intermolecular potential as a sum
of Gaussians, the z integral can be performed,
and we find

V (R) Q n -(m «B)
2

-(0. b)~7„(b)= W~bZ, c";n,e' ~" . .

(18)

(19)

The coefficients c"; are determined by a least-
squares fit to the calculated potentials. The dif-
ferential cross section is

v(8) sin8d8 = bdb,

and one defines a reduced cross section:
7'„b

p„(~)=8v(8) sin8=
d

",
db

.
d7 „id'

(20)

(21)

nel. This calculation is similar to the one by
Marchi and Smith for He2'. The modifications
of the elastic cross section due to the inelastic
channel will be computed in Sec. VI.

A. Classical Approximation

The ion motion can be treated classically in
this energy range, and we calculate the angle of
scattering versus impact parameter using classical
perturbation theory. Consider the bombarding ion

moving in the z direction with velocity v and im-
pact parameter b. With the electron in the state
~, the force on the ion in the x direction is



THEORY OF ONE-ELECTRON MOLECULES. I. Lip'

500—

200—

LJJ

C9

I 00—
C9

fL
tJJI-
I-
O
V)

0

tential is Gaussian, leading to a reduced cross
section which is constant for small angles and in-
creases slowly as a function of angle. For R& 6ao
the potential is more repulsive than the large-A
Gaussian, and this turns the cross section down-
ward. The bump at 440 eVdeg in both p, , and p, ,
is due to the strongly repulsive core-core inter-
action. This feature of the calculated cross sec-
tion is sensitive to the choice of core-core inter-
action and the cross section for v' &400 eVdeg may
not be quantitatively correct. The observed rain-
bow angle' of about 80 eVdeg is in substantial
agreement with the calculation.

B. Semiclassical Approximation

The interference effects between the two chan-
nels are included in the semiclassical approxima-
tion. According to Ford and Wheeler' the scat-
tering amplitude is well approximated by the classi-
cal cross section

u'3

~f"( ) I =, (d7„/dh) e sine

-IOO
0 4 6 8 10

IMPACT PARAMETER b (aa)
12 l4

and the phase of the scattering amplitude is given
by the classical action integral, which we write as

FIG. 2. Reduced scattering angle vs impact parameter
for elastic scattering in the cr~~ and o.

„& states and for in-
elastic scattering.

I I I I I I

Equations (17) and (21) were derived in the small-
angle or high-energy approximation, and the ex-
plicit energy dependences of p and v' were thus arti-
ficially removed ~ This approximation will lead to
some error al. the lowest experimental energy for
large scattering angles.

For the case of Li'+ Li the initial electronic
state with the electron on one nucleus is a linear
combination of the two degenerate states ag, and

a„,. The scattering proceeds through the two
channels, and in the final state of both channels
the electron is equally likely to sit on either nu-

cleus. Neglecting the interference between the
two channels, the reduced elastic cross section is

p.&(~) =- l [p,,(~)+ p. ,(~)].

In Fig. 2 we plot the reduced scattering angle
7(b) versus impact parameter for the o„and cr„,
states. The attractive region of the 0~, potential
at large separations gives rise to a negative scat-
tering angle with a maximum value (rainbow scat-
'tel'lllg angle) of 94 eVdeg. The differential cx'oss
sections for the Og, and au, channel. s and their sum
(= 4p„) are plotted in Fig. 3. The sharp peak at
94 eVdeg is the rainbow feature. The smooth bump
near 170 eV deg is due to the detailed shape of the
0.„, intermolecular potential. For R & 6ao this po-
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SCATTERING ANGLE V (eV deg)
IGGG

FIG. 3. Classical reduced elastic differential cross
section vs reduced scattering angle for the 0«and 0«
states and their "um, vehich is four times p ] the experi-
mental cross section.
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= H(t) o()t,

where

(28)R,=a+ v,.„,.„(R(t))-z. ,( ).

We expand the wave function as a linear combina-
tion of solutions of the adiabatic problem found in
Sec. IV:

200 and 600 eVdeg. The magnitude of the experi-
mental oscillations is much smaller than the cal-
culated magnitude. It is desirable to have a thor-
ough experimental study of these oscillations to
verify both the form of the phase factor and its
calculated magnitude. It appears that the phase
factor is in excellent agreement with experiment.

VI. INELASTIC CROSS SECTION

Aberth et al. ' also measured an inelastic cross
section Li'+ Li- Li'+ Li* in which the Li atom is
left in the 2P excited state. These authors plot
an unnormalized ratio of signals in the 2P and elas-
tic channels. This inelastic process goes via
transitions at the 0„,—qI„~ curve crossing at R
= 5. 95a0. Within the adiabatic approximation the

0„, and z„, states have different symmetry and
there are no transitions, The transitions occur
because of the breakdown of this symmetry in the
time-dependent problem. A similar problem arises
in H&' and has been treated by Bates and Williams. "

We again treat the ion motion classically and take
one ion at the origin and the other at X= b, I'= 0,
Z=vt, R=(b +v t )V . We solve the one-electron
problem in the time-dependent potentials of the
nuclei. The time-dependent Schrodinger equation
ls

H, (t)q.(t) = V.(R(t))C.(t),

C'(t) =~.a, (t))t).(t) exp[- if V.(t ) dt ~ ~ (29)

We consider only the two-state problem with the
cr» and m» states and find the Schrodinger equation

-'- = —a, *, ——'exp i V, —V, dt'

"=—a, ) It,* ' exp —i (V, —V,)dt'
et

(so)

The matrix element in this equation is

, „8$, ~8$ vbM
9'fy eg n et R2

where

M= $*2- ' —X —' dr8))'), 8 tJ),

ex eg

(sl)

(32)

and perform the t' integration to find

In this integral the internuclear axis is in the z di-
rection and the z orbital is directed in the x direc-
tion. The matrix element M is a function of R and
can be calculated by performing the integral (32)
numerically using the wave functions found in Sec.
IV. We find M =0. 64, 0. 68, and 0. 72 for R=4,
6, and 8a0, respectively, which is essentially con-
stant. In what follows we take M= (0. 68)'~2=0. 825.

We find the phase factor in (30) by expanding
V, —V, about the level crossing separation R0.'

v, —v, =(R-R,) v',

V' s(b + s )'i
v — 2

O 2.0
C3

D

b2 S+ (b2 S2)l /2

+ ln " ' —R()s, (34)

where s = vt. The time-dependent Schrodinger equa-
tion now reads

da, (s) bM, , (~ &,)

(35)

with the boundary conditions

a,(-~)=l, a,(-~)=0. (36)
l.5

IOO

I ~ I

500

SCATTERING ANGLE T (eV deg)

l

500 We want to solve (35) for a, and a, to find the tran-
sition probability

FIG. 6. Phase function [Eq. (26)] vs reduced scatter-
ing angle which determines the phase of the interference
oscillations for all ion velocities and for scattering angles
greater than the rainbow angle.

&..(b) =
I
a,(")I'.

One's first thought is to use time-dependent per-
turbation theory to solve (35). When this is done
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n & = 2&(n+ —,'), where n= 0, l, 2, . . . , and the ™p»-
tudes interfere destructively, and P„vanishes
when bp = 2~(n+-', ).

In the inelastic scattering channel the ion comes
in on the o„, curve and goes out on the m„, curve.
The reduced scattering angle is then (see Fig. 2)

(39)~...,(b) = -' [r. ,(b). ~, ,(b)]

This is a classical expression for the scattering
angle which assumes a definite potential curve for
the ion. For R near the curve-crossingradius the
valence electron is hopping between the 0 and the
m states and there is no definite potential. Equation
(39) is an approximation which we do not know how

to correct. Within this approximation the reduced
inelastic cross section is

-1

1(7) r' 1
l " f 1181 (40)

This cross section is plotted in Fig. 8 for the
three experimental energies F-, =25, 50, and
100 eV. The experimental' "ratio of signals in the
2P and the elastic channel at each angle" is plotted
for E, = 25 eV on the same figure. One can only
compare the positions of the peaks and valleys,

for the experimental range of energies one finds
transition probabili. ties greater than unity, so that
lt 1s necessary to find a more accurate method of
solving the equations. We have solved t85) by 1n-
tegrating the differential equations numerically.
Care must be taken to treat the rapidly varying
phase factor y(s) accurately hut, when this is done,
numerical integration works satisfactorily. We
f' d V' ——0. 021 by f1tt1ng V„—V, for 3&R & 7, and
we take A{,=- 5. 95ao and M--- 0 825. The calculated
transition probabilities versus impact parameter
are shown in Fig. 7 for several values of ion energy.

For 6 &Ao the systenl passe" through the level
crossing twice and transitions occur dur1ng both
passes. There is a quantum-mechanical interfer-
ence effect between the two transition amplitudes
which depends on the phase difference generated
between the two transitions. The phase difference
18

bq -+ p[(a'„- b')'"] —q f- (Z', - b')"']

D

u
4J
M

to
fll
O
K
O
O

CO
Cf 2
td
X

Ro(&o-b )"v'
t

g, /

IOO 200 300

The transition amplitudes interfere constructively,
and the transition probability is maximum when

SCATTERING ANGLE T {eV deg)

FIG. 8. Reduced inelastic differential cross section
vs reduced scattering angle for the three ion energies
used experimentally. Dashed line is the experimental
"ratio of signals in the 2p and elastic channels" from
Ref. l.
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pax"aMe at 50 and 100 GV. The position of the first
pe&. is at a reduced scattering angle of about 85
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iea y. In the calculation the position of the first
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than the positions of the higher peaks. A more de-
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~ajt Unt:1 absolute cross section IncaITleasurements
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The total &non-( -charge-transfer) inelastic cross
section is found by integrating P„(b) over the im-
pact parRIDGter:

C3

}
4h

4J

}TTI I }II I I I I I }

Yhl8 cro88 section 18 plotted versus ion velocity In

ig. 9. Since in the final state P,„, the electron is
equally likely to sit on eithex ion, the total charge-

0ransfer lnelastlc cross secti.on is equal to the total
non-charge-transfer inelastic cross section.

The inelastic r
o' ch

process rexnoves particles from th

„,channel and the elastic cross section (26) is
x' ~ 6

IQodified to x'ead

p.&(~) =-,'&.„(~)+p.„,(7) [l —P (&)]

2(p.„p.„,fl —~.,(t )]V"

x cos[y(7)/u+ p'] ), (42)

h q' s the phase of a (~) this phase shift is
small and unimportant. The modified classical

P.OO 300 400
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FKl. j[0. Reduced elastic differential cross section vH
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ment of the wave function is determined by the
phase factors

e(t) = (1/v 2)y.„exp(- t 1 V.„dt)

+(1/0 2)g, , exp(-i j V, dt) . (45)

.15-

The overlap with the final state is then

&4, IC(-)&=-,'[exp(-z J'"
V.„dt)

—exp( —i f V, dt)], (45)

and the charge-transfer probability is

.1 )R
hl

O

f'. (b) =
I

&+~
I
~(")&

I'= -'[1 —cos«(b)]
where

t ~(b)= J (V, , —V, ,)dt .

(47)

4J

i5
5
tL.

O .p5-

Writing the difference potential as a sum of Gaus-
sians (found by a Least-squares fit)

~V(Z) = V. ,(Z) - V. ,(ft) = Z, c,e-"»"', (49

we find

b, y(b)= Z c, —exp(- na, b~),
g l'v

(50)

p ~==-
0 5 IO

INTERNUCI -EAR SEPARATION R(Op)

FIG. 11. 0„~—
a~~ difference potential used in the

charge-transfer cross section vs internuclear separation.
Crosses are the present calculation and the solid line is
the Gaussian fit to the crosses. Solid circles are the
potential due to Mchels and used in a previous calcula-
tion.

A. Adiabatic Approximation

We continue the discussion of the time-dependent
Schrodinger equation of Sec. VI. In the initial state
the electron sits on the ion at the origin and the
wave function is

@(-")= (1/~2)(4.„+4.„,) (43)

in Sec. IV, making use of two approximations.
First we use the adiabatic approximation which
should be valid for small ion velocities. Second,
we use a three-state approximation which takes into
account the inelastic transition at the a„,-m„& curve
crossing. This approximation should be valid for
higher ion velocities than the adiabatic approxima-
tion, but should break down for sufficiently high
ion velocity, owing to the excitation of higher states.

where v is the ion velocity. Equations (47)-(50)
are equivalent to the conventional expression for
the charge-transfer probability. '

In Fig. 11 we show the difference potential. The
crosses are the calculated points taken from Sec.
DIT. The solid line is the sum of Qaussians fitted
to the calculated points. The parameters of the
Gaussian fit are given in Table IV. The solid cir-
cles are the difference potential calculated by
Michels' and used in the previous calculation' of
the cross section. Our difference potential is about
50/q larger than Michels's for large separations and
behaves qualitatively differently for small separa-
tion. The phase difference Acp(b) is plotted in Fig.
12 for v = 0. 1 and the charge-transfer probability
P„(b) is shown in the upper half of Fig. 13, again
for v = 0. 1.

The physical picture of the charge-transfer pro-
cess is as follows. '3 Initially the electron sits in
the 2s state of the target atom, which is degenerate
with the 2s state of the moving ion. As the ions
approach there is an increasing matrix element be-
tween these two states, which causes them to split

TABLE IV. Parameters (in a. u. ) of the least-squares
Gaussian fit [Eq. (49)J to the difference potential.

In the final state the electron sits on the moving
ion:

Og = (1/~2) (8.„—4.„.,) (44)

Within the adiabatic approximation the amplitudes
a„(t) in Eq. (29) are constant and the time develop-

0. 0927
0. 1463

—0. 0537
—0. 2603

0. 3660
0. 1231

0. 12
0. 16
0. 25
0.45
0. 7
1.3
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periment tends to confirm these features of the cal-
culation. The absolute magnitude of the theoretical
cross section is 25~/g larger than experiment at low
velocity, and this discrepancy decreases at higher
velocities. The magnitude of the cross section de-
pends on the difference potential for large internu-
clear separation R &10ao. The relative accuracy of
the difference potential is less at large R where the
difference potential is small. The uncertainty in AV
at R = 15ap is +10%, and the uncertainty in the theo-
retical cross section is +5~/c. The stated experi-
mental uncertainty is +15/c. Michels's potential,
which is considerably smaller than ours for large R,
yields a cross section whose magnitude is in good
agreement with experiment.

VIII. CONCLUSIONS

To review, we have set up a one-electron effective
Hamiltonian for Lia' and have found the six lowest
eigenvalues as a function of internuclear separation.
The numerical method used is economical and ac-
curate and may find application in other one-electron
problems. The intermolecular potentials, together

with one matrix element, were used to calculate
absolute cross sections for three scattering pro-
cesses which have been measured. Qualitatively,
the theoretical model explains all the observed fea-
tures of the cross sections. In particular, the ob-
served level crossing' is identified as a crossing
of the 0„, and ~„, levels. Where a quantitative com-
parison is possible, the calculated cross sections
agree with experiment within the author's assess-
ment of possible experimental error. There are
sound theoretical reasons for believing that the
theoretical model, simple though it is, is an accu-
rate physical model for Li&' for B& 2ao. It is there-
fore desirable to have accurate experimental mea-
surements to test the theory. It is desirable to have
(a) absolute elastic cross sections over a wider
range of energies with a careful study of the inter-
ference term, (b) absolute inelastic cross sections
in order to compare the magnitude and shape of the
curves, and (c) a more accurate absolute measure-
ment of the charge-transfer cross section.

The theoretical methods used here can be applied
to the other symmetric or asymmetric alkali molec-
ular ions and to the alkali-hydride molecular ions.
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The 43I' state of helium has been excited and aligned by electron impact in a strong mag-
netic field. Transitions between Zeeman levels of the fine-structure states are induced by
microwave frequency radiation and are detected through the resulting change in polarization
of 8188-~ fluorescence. The derived values of the fine-structure intervals are 4 Pp 4
=3306.6+1.0 MHz and 4 P~-4 P2=270. 7+0. 8 MHz. The diamagnetic Zeeman interaction
produces an observable effect, and the magnitude of its anisotropic part has been measured.
The atomic radius and quadrupole moment are derived from this measurement and agree
within experimental error with the values for a hydrogenic 4p orbital.

I. INTRODUCTION

Accurate measurements of the fine structure of

helium 2'P and 3'P have been carried out for many

years, ' ' both for the purpose of testing higher-
order corrections to calculated He wave functions


