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equation is correct except for terms of order (e4g ‘/mM),
where g is the BS kernel (or potential). Since the calcu-
lations presented in this paperare only to first order in
binding, we conclude that minimal coupling of the Breit
equation is valid to the accuracy required.

15%See Eqs. (8) and (9), which are va}jd expressions
even between different eigenstates of P. In this section
we are assuming a scalar nucleus. In the more general
case we also write (Hy,, ), but if there is nuclear spin,
this expectation value does not give the energy shift.
Degenerate perturbation theory is needed because of the
various total spin states which are possible; this leads
to the Breit-Rabi formula. In evaluating expressions
like (Hgae ) We are merely evaluating the spatial parts,
which for the 1S state are the same regardless of the
spin-dependent part of the wave function.
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An accurate method for solving the one-electron Schrddinger equation for small molecules
is presented. For Li,", the valence-electron-core interaction is treated as an effective poten-

tial found by fitting the atomic energy levels.

is found at a separation of 3.08 A and a vibration frequency of 277 cm

The intermolecular potentials for six low-lying
electronic states of Li," are calculated. For the ground state o,

1, abinding energy of 1.30 eV

I3
-1, From the intermo-

lecular potentials, three cross sections are calculated for Li ions scattering from Li atoms:
(i) elastic scattering, (ii) charge transfer, and (iii) inelastic scattering leaving the atom in a
2p excited state. This last process proceeds through a curve crossing of the o,; and m, states

at R =5. 95a,.

1. INTRODUCTION

An accurate and convenient numerical method
for solving the one-electron Schrédinger equation
for small molecules is presented. This method
is applied to the calculation of the intermolecular
potentials of six low-lying electronic states of the
Li," molecule. The interaction between the valence
electron and the core electrons is treated as an
effective potential which is determined by fitting
the atomic energy levels of the Li atom. As long
as the cores of the Li* ions do not overlap appre-
ciably, this effective potential should provide an
accurate physical model for Li,*. For the ground
state 0,, a binding energy of 1.30 eV is found at
an internuclear separation of R=5.85q, and a vi-

bration frequency of 277 cm™.

From the intermolecular potentials we can cal-
culate the cross sections for the three scattering
processes that have been studied experimentally:
(i) the elastic differential scattering cross section
for lithium ions bombarding lithium atoms® Li*
+Li-Li*+ Li, (ii) the total charge-transfer cross
section®?® Li*+ Li— Li+ Li*, and (iii) the inelastic
differential cross section for the process in which
the lithium atom is excited from the 2s ground
state to the 2p state.! This last process goes at
low energy via a curve crossing of the o,, and 7,
states at R=5.95a,. We calculate the transition
probability o,,—~ m,; as a function of ion velocity
and impact parameter by integrating the time-
dependent Schrodinger equation numerically for
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the two-state problem. We can then find the dif-
ferential cross section for the inelastic process.
The elastic and charge-transfer cross sections
are computed from the o, and o, potentials.*~¢
Both of these cross sections are modified by the
inelastic process, and these modifications are
taken into account. The over-all agreement with
the scattering experiments performed thus far is
good.

The plan of the paper is as follows: In Sec. II
we discuss the one-electron Hamiltonian, and in
Sec. III we present the numerical technique for
finding the electronic energies and wave functions.
In Sec. IV we calculate the intermolecular poten-
tials for the six states derived from the atomic
2s and 2p states. In Sec. V we calculate the elas-
tic differential cross section in the adiabatic ap-
proximation. In Sec. VI we compute the inelastic
differential cross section and the corrections to
the elastic cross section. In Sec. VII we calculate
the charge-transfer cross section.

II. ONE-ELECTRON HAMILTONIAN

The lithium molecular ion has one valence elec-
tron, and we can treat the ion as a one-electron
problem by replacing the interaction between the
valence electron and the core electrons by an ef-
fective potential. The effective potential concept
should be accurate provided the core electrons are
tightly bound compared to the valence electron. We
determine the effective potential by taking a one-
parameter potential and fitting the atomic energy
levels of the lithium atom. We take

Ugse () = = 3/7+ (2/7)[1 = (1 + Z,7)e 2%e7], 1)

which is the potential of the nucleus plus the Cou-
lomb potential of two core electrons in hydrogenic

1s orbitals with effective charge Z,. WithZ, =1.655,
the calculated atomic energy levels (Table I) are in
excellent agreement with experiment:7 (atomic units
are used throughout). This effective potential should
be accurate provided the cores of the two Li* ions

do not overlap appreciably, that is, for R > 2a,.

The one-electron Hamiltonian is then

TABLE I. Comparison with experiment of theoretical
energy levels of the lithium atom using the effective po-
tential [Eq. (1)] with Z,=1.655.

Experimental Theoretical
energy energy
(a.u.) (a.u.)
2s —-0.1981 —0.1981
2p —-0.1302 - 0.1299
3s —0.0742 —0.0743
3p —0.0572 -0.0573
3d — 0. 0556 — 0. 0556

7}(3:-——é—V2+Ue,,("r—R1’)+Ue”(l’r—Rzl), (2)

where R, and R, are the positions of the Li* ions.
The Schrodinger equation is then

ZCZ/)”=E”(R)¢,, ’ (3)

where the electronic eigenvalue E,(R) is a function
of internuclear separation R= |R,-R,/. The mole-
cule has rotational symmetry about the internuclear
axis and a center of symmetry. The wave functions
are labeled by the angular momentum about the
internuclear axis /, by the inversion symmetry,
gerade or ungerade, and by the principal quantum
number n=1,2,... .

The intermolecular potential is the total energy
of the molecular ion at separation R minus the
energy of the separated Li* ion and Li atom:

Vn(R) = En(R) + Vion-ion(R) - Eogl(oo), (4)
where
Vion-ion(R) = l/R + VvdW(R) + Vcore(R)' (5)

The van der Waals and core-core interactions are
determined by scaling the polarizability and He-He
interactions® by the ratio of characteristic lengths
1.7/2.7 for the Li and the He atom cores:

Veaw(R)=~ 0. 24/(24+R4), (6)

Veore(R) = 45¢73-%3%, (7)

which is Slater’s® He-He potential properly scaled.
These two terms are appreciable only for R < 3a,;
they affect only the elastic cross section at large
angles (small impact parameters); they have no
effect on either the other cross sections or the

binding of the molecule.
One can treat the other alkali atoms in the same

way as we have treated Li and carry through cal-
culations for all the alkali molecular ions and the
alkali-hydride molecular ions. We believe that
this model is an accurate physical model for Li,"
for R > 2a, and that calculations based on the model
have the same validity as accurate ab initio calcu-
lations. It is therefore worthwhile to find accurate
solutions to the one-electron Schrodinger equation.
This problem is considered in Sec. III.

III. SOLVING ONE-ELECTRON PROBLEM

Briefly, the method used to solve the Schrodinger
equation is as follows. We write the wave function
as a linear combination of convenient functions

‘P:Eiai%‘- (8)

Since the potential is Coulombic both near the
nuclei and far from the molecule, it is convenient
to use Slater functions centered on the nuclei.
Since we will deal with excited states, we will not
minimize the energy, but will minimize instead
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the energy variance F = {((H — E)%. Minimizing F
minimizes the rms error in the solution of the
Schrodinger equation and provides an upper limit

on the energy error as well as an optimized wave
function and eigenvalue. With E fixed, we minimize
F with respect to the linear parameters of the wave
function and find and eigenvalue equation for F:

22,(H%, - 2EH,; + E%S,; ~ FS;,)a; = 0, (9)
where

Suy=J oro;d’r,

Hy= f ﬁf’fH(Pj‘da?’ ’

H%jzf(H%)*H%ds” .
Using Slater functions one can easily compute He;
at a point in space; the integrations are then per-
formed by mesh integration. The eigenvalue equa-
tion (9) can be readily solved for the lowest eigen-
value and eigenfunction by standard numerical
techniques. One then fixes the wave function and

minimizes F with respect to E to find the optimum
energy

E=EaiH“aj/EaiS“aj = <H>.
ij if

(10)

(11)

This two-~step minimization procedure is iterated
until it converges.

If the trial wave function were completely flexi-
ble, the energy variance F(E) would vanish at the
eigenvalues and rise to the value § (E; - E;)? be-
tween neighboring eigenvalues. In order to have
an accurate solution of the Schrodinger equation
we require that F(E,;) <} (E; - E,)?, where E,; - E,
is the energy difference from the closest eigen-
function of the same symmetry. The error function

€=F(E,)/(E; - E,)? (12)

is a convenient absolute measure of the accuracy
of the wave function. One can show that the energy
error is less than €X |E; - E;|.

TABLE II. Parameters for the o,q wave function for
R=6. Wave function is not normalized.

a;

~
-
S
&
o

0.7262
—1.4053
1.5840
—-1.0832
0.0727
0.5619
—-0.6020
0.6238
- 0.0067
0.0189
0.0601
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FIG. 1. Intermolecular potentials of six low-lying

electronic states of Li,"vs internuclear separation. Solid
squares are from the Hartree-Fock-Roothaan calculation
by Fisher and Kemmy for the o, and o, states.

In order to illustrate a typ'ical run we present
the calculation of the ground state o, at R = 6a,.
We take 12 basis functions of the form

(13)

and use 130 mesh points to perform the two-dimen-
sional integrals (10). The optimized wave function
is given in Table II, the energy is — 0.4122, and the
energy variance is 1.0x 10™, The energy differ-
ence from the next state of the same symmetry is
0.14, so that €=0.0051, and energy error is less
than 0.0007. The intermolecular potential is
—0.0474+0.0007, which is near the minimum.

The computing time was 20 sec on a GE 635.

- 1 i oAy
(p£= Z{’}’:i e Airl.{_ zlifya"le i 2’

IV. ELECTRONIC STATES OF Li,"

Using the method described in Sec. III, we have
computed the electronic eigenvalues of the six
lowest-lying states of Li,* for R between 2a, and
18a,. The electronic energies of the o,,, ¢,, and
Ty States, which are of interest for the cross sec-
tion calculations, are listed in Table III. The in-
termolecular potentials for six states are plotted
in Fig. 1 together with the energies for the o,
and ¢,, computed by Fischer and Kemmey® by the
Hartree-Fock-Roothaan (HFR) method. The ener-
gies for the 0, state are in excellent agreement;
however, the HFR energies for the o,, state lie
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TABLE III. Energy and energy variance of the three lowest electronic states of Li,*as a function of internuclear
separation.

Ot Oyt Tut
R(a.u.) E(a.u.) Fx104 E(a.u.) Fx10* E(a.u.) Fx10
2 ~0.4746 4.7 —0.3603 0.21 —0.4650 9.7
3 -0.4678 0.9 - 0.3394 0.29 —0.4057 4.4
4 —0.4647 1.3 -0.3233 0.26 —0.3628 1.3
5 —0.4413 1.2 —0.3119 0.19 —-0.3300 0.56
6 —-0.4122 1.0 —0.3043 0.14 -0.3035 0.88
7 —0.3841 1.0 - 0.2992 0.12 —0.2817 1.4
8 -0.3593 1.0 —0.2951 0.10 —0.2640 1.7
10 -0.3199 1.1 —0.2868 0.10 -0.2367 1.8
12 -0.2929 0,56 —0.2776 0.13 -0.2177 0.75
15 ~0.2684 0.25 —0.2644 0.12 —0.1987 0.39
18 —0.2550 0.11 - 0.2541 0.09

significantly above the energies which we calculate.
The largest deviation is 0.006 a.u. =0.16 eV at
R=4a, Itis not known whether this discrepancy
is due to a lack of convergence in the HFR calcu-
lation or to some inadequacy of the effective poten-
tial. At a separation of R = 2a, the core states be-
gin to overlap appreciably, and the energy splitting
between the o, and o, core states is about 10% of
the core binding energy. As the core wave func-
tions become modified, the effective potential felt
by the valence electron should also be modified and
the effective potential breaks down. For R > 2ay,
however, the model should be accurate.

The ground-state intermolecular potential can
be fit by a Morse potential

V(R)= Vo(e-sz(R_Ro)_ ze-m(R~Rg))’ (14)

within + 0. 0007 in the attractive region 3. 5a,<R
<12a,. The parameters are V;=0.048 a.u.,
a=0.325a;5, Ry=5.82a, This potential yields a
binding energy of 1.30+0.02 eV, an equilibrium
radius of 3.08+0.05 f&, and a vibrational frequency
of 277+ 8 cm™.

The curve crossing of the o, and 7, states occurs
at R=(5.95+0.1)a,. The 7,, states goes to an
atomic 2p state in the united-atom and separated-
atom limits, while the o,, state goes to an atomic
3p state in the united-atom and to an atomic 2s
state in the separated-atom limit. Thus we expect
this level crossing to be characteristic of all the
alkali molecular ions, and we expect it to occur
at a separation of the order of the size of the
atomic wave functions.

V. ELASTIC SCATTERING CROSS SECTION

The elastic differential cross section for the
scattering of Li ions by Li atoms has been mea-
sured by Aberth ef al. ! for center-of-mass ener-
gies between 25 and 150 eV. In this section we
calculate the elastic cross section within the adia-
batic approximation, neglecting the inelastic chan-

nel. This calculation is similar to the one by
Marchi and Smith® for He,*. The modifications
of the elastic cross section due to the inelastic
channel will be computed in Sec. VI.

A. Classical Approximation

The ion motion can be treated classically in
this energy range, and we calculate the angle of
scattering versus impact parameter using classical
perturbation theory. Consider the bombarding ion
moving in the z direction with velocity » and im-
pact parameter b. With the electron in the state
n, the force on the ion in the x direction is

_aVv,R)__aV,R) b _
ax R R~

v,

o (15)

F,=

where p is the reduced mass $ My, and v, is the
velocity in the x direction. The scattering angle

is then
/ = dz 3V,(R)
-w R oR

In terms of the reduced angle 7=E#6 the scattering
is a function of b alone'’:

1?0 _ 9/” dz 3V,(R)

2 2 R OR
If we write the intermolecular potential as a sum
of Gaussians, the z integral can be performed,
and we find

b

s (16)

6=

7(b) = 17

2
Vn(R):Z;iC’;e-(aiR) ) (18)
7u(0)= VT DD clae i, (19)
The coefficients ¢} are determined by a least-
squares fit to the calculated potentials. The dif-
ferential cross section is
o(6) sin6d 6 = bdb, (20)
and one defines a reduced cross section:
- g Tnd
p,(1)=00(6) sinf ar.Jdb (21)
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FIG. 2. Reduced scattering angle vs impact parameter

for elastic scattering in the g, and oy states and for in-
elastic scattering.

Equations (17) and (21) were derived in the small-
angle or high-energy approximation, and the ex-
plicit energy dependences of p and 7 were thus arti-
ficially removed. This approximation will lead to
some error at the lowest experimental energy for
large scattering angles.

For the case of Li* + Li the initial electronic
state with the electron on one nucleus is a linear
combination of the two degenerate states o,, and
0, The scattering proceeds through the two
channels, and in the final state of both channels
the electron is equally likely to sit on either nu-
cleus. Neglecting the interference between the
two channels, the reduced elastic cross section is

Pa(m) =5 [pg,, (1) +pg,, (T)]. (22)

In ¥Fig. 2 we plot the reduced scattering angle
7(b) versus impact parameter for the o,, and o,
states. The atiractive region of the o, potential
at large separations gives rise to a negative scat-
tering angle with a maximum value (rainbow scat-
tering angle) of 94 eVdeg. The differential cross
sections for the o,, and o,, channels and their sum
(=4p,,) are plotted in Fig. 3. The sharp peak at
94 eV deg is the rainbow feature.
near 170 eV deg is due to the detailed shape of the
0, intermolecular potential. For R > 6a, this po-

The smooth bump

Li,* 73

tential is Gaussian, leading to a reduced cross
section which is constant for small angles and in-
creases slowly as a function of angle. For R< 6q,
the potential is more repulsive than the large-R
Gaussian, and this turns the cross section down-
ward. The bump at 440 eV deg in both Pogy and Poy
is due to the strongly repulsive core-core inter-
action. This feature of the calculated cross sec-
tion is sensitive to the choice of core-core inter-
action and the cross section for 7>400 eV deg may
not be quantitatively correct. The observed rain-
bow angle! of about 80 eV deg is in substantial
agreement with the calculation.

B. Semiclassical Approximation

The interference effects between the two chan-
nels are included in the semiclassical approxima-
tion. According to Ford and Wheeler® the scat-
tering amplitude is well approximated by the classi~
cal cross section

7,0 ve

——tnr
(dT,/db) 6 sind ) (23)

|fn(7)l =

and the phase of the scattering amplitude is given
by the classical action integral, which we write as
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FIG. 3. Classical reduced elastic differential cross

section vs reduced scattering angle for the o, and o,
states and their sum, which is four times pg;, the experi-
mental cross section.
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- n
b= - Jr s et (1 +2a2b?) exp(- a2b?)
v

ar
1 - Z) - 24
ir [2 sgn(db) sgn(T)J . (29)
The semiclassical cross section is then

2 2
T v is,,l
b

dr,/db (25)

Pe1 (r)= :} Z—)
n
where the sum is taken over the classical paths
contributing at angle |7| for both the o, and ¢,
states. For 7<94 eVdeg there are three classical
paths for the o, state. The semiclassical cross
section is shown in Fig. 4 for E, ,, =40 eV. The
interference pattern is complicated with the slow
period due to the interference between the two
paths of the o, state with the negative scattering
angle near the rainbow angle. These oscillations
are not observed in the experiment® for T<94 eVdeg
although the slow period may be observable with
some improvement in resolution. The semiclassi-
cal approximation breaks down near the rainbow
angle and predicts too abrupt a drop in the cross
section at the rainbow angle.

For scattering angles greater than the rainbow
angle only one classical path from each quantum
state contributes to the elastic differential cross
section, and we find

|

pa(7)=1{p5,, +p5, + 2(05] 05! )2 cosly (1)/v]}.
(26)

The charge-transfer differential cross section is
given by (26) with a negative interference term.
The classical cross sections are a function of 7
alone, and the relative phase is a function of 7
divided by the ion velocity. The semiclassical
cross section is plotted in Fig. 5 for E, ,, =40 eV,
and the phase function y(7) is plotted in Fig. 6.
The phase function increases for small angles and
then flattens out. Therefore the interference
oscillations are rapid for small angles and slow
for large angles. However, the magnitude of y(r)
is large, and for fixed reduced angle 7 the cross
section oscillates rapidly as a function of ion
velocity. The phase function y(7) can be mapped
out experimentally by measuring the differential
cross section as a function of ion velocity for
fixed 7. These interference oscillations are pres-
ent in the experimental data although they were
not identified as such. The positions of the maxima
and minima in the calculated cross sections agree
well with experiment! for ion energies between 25
and 100 eV and for scattering angles between about

+
ﬂ Lig
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FIG. 5. Semiclassical reduced elastic differential cross
section vs reduced scattering angle at 40 eV, showing the
interference effects for scattering angles greater than the
rainbow angle. Dashed line is the classical cross sec-
tion which omits the interference effect; in the charge-
transfer differential cross section the oscillatory term
has the opposite sign. The long dashed line includes the
effects of the inelastic channel [Eq. (42)].
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200 and 600 eVdeg. The magnitude of the experi-
mental oscillations is much smaller than the cal-
culated magnitude. It is desirable to have a thor-
ough experimental study of these oscillations to
verify both the form of the phase factor and its
calculated magnitude. It appears that the phase
factor is in excellent agreement with experiment.

V1. INELASTIC CROSS SECTION

Aberth et al.! also measured an inelastic cross
section Li*+ Li~— Li*+ Li* in which the Li atom is
left in the 2p excited state. These authors plot
an unnormalized ratio of signals in the 2p and elas-
tic channels. This inelastic process goes via
transitions at the o, ~ 7, curve crossing at R
=5.95a,. Within the adiabatic approximation the
0, and 7, states have different symmetry and
there are no transitions, The transitions occur
because of the breakdown of this symmetry in the
time-dependent problem. A similar problem arises
in H,* and has been treated by Bates and Williams. 1

We again treat the ion motion classically and take
one ion at the origin and the other at X=b, Y =0,
Z=vt, R=(%+v%?Y2 We solve the one-electron
problem in the time-dependent potentials of the

nuclei. The time-dependent Schrodinger equation
is

i0®(t)

T=Hr(t)<1>(t), (27)
where

Hp=H+ Vion-ion(R(t))_Eugl(oo)' (28)

We expand the wave function as a linear combina-
tion of solutions of the adiabatic problem found in
Sec. IV:

PHASE FUNCTION ¥

“loo 300 500
SCATTERING ANGLE T (eV deg)

FIG. 6. Phase function [Eq. (26)] vs reduced scatter-
ing angle which determines the phase of the interference
oscillations for all ion velocities and for scattering angles
greater than the rainbow angle.

Li,* 5
H p(£)a(8) = Vo(R())s(2),
& () =20,a, (W, () expl~i [V, (") at'] . (29)

We consider only the two-state problem with the
o, and T, states and find the Schrodinger equation

t
L o —a for 2 exp]i [ .- voar],
(30)

t
%:-a,,f ¥ %“exp[—if (VG—V,)dt’] .

The matrix element in this equation is

where

M:f X (z%—xaa—@d%.
In this integral the internuclear axis is in the z di-
rection and the 7 orbital is directed in the x direc-
tion. The matrix element M is a function of R and
can be calculated by performing the integral (32)
numerically using the wave functions found in Sec.
IV. We find M%=0. 64, 0.68, and 0.72 for R=4,
6, and 8a,, respectively, which is essentially con-
stant. In what follows we take M= (0. 68)!/2=0. 825.

We find the phase factor in (30) by expanding
V,— V, about the level crossing separation R:

V,-V,=(R=Ry) V',

(32)

r_ 4 (33)
V= aﬁ (Vu_ VF)IR=R0 ’
and perform the ¢’ integration to find
¢
go(s)zf (Vo= V,)at!
0
v [M
T 2
bZ s bz sZ 1/2
e ln<.__+L_+é_)_. “Res| , (34

where s =vt. The time-dependent Schrodinger equa-
tion now reads

da,(s oM ;
dsg( ) - b2+sa ar(s)ew (s) ,
) (35)
da,s) oM -i0(9)
ds " prast )T
with the boundary conditions
a(-»)=1, a,(-=)=0. (36)

We want to solve (35) for a, and a, to find the tran-
sition probability

Pcnr(b): |a1r(°°)|2 . (37)

One’s first thought is to use time-dependent per-
turbation theory to solve (35). When this is done
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FIG. 7. Transition probability o,;— m, vs impact pa-
rameter for four ion energies (center of mass).

for the experimental range of energies one finds
transition probabilities greater than unity, so that
it is necessary to find a more accurate method of
solving the equations. We have solved (35} by in-
tegrating the differential equations numerically.
Care must be taken to treat the rapidly varying
phase facter ¢(s) accurately but, when this is done,
numerical integration works satisfactorily. We
find V' = - 0.021 by fitting V-~ V, for 3<R <7, and
we take Ry=5.95ay and M =0.825. The calculated
transition probabilities versus impact parameter
areshownin Fig, 7for severalvalues of ion energy.

For b <R, the system passes through the level
crossing twice and transitions occur during both
passes. There is a quantum-mechanical interfer-
ence effect between the two transition amplitudes
which depends on the phase difference generated
between the two transitions. The phase difference
is

b¢ =+ @ (R~ b7 /%] = o[- (R - b?)"/]

v’ ,
- T [RO(R(%—— bZ)l, 2

- bzm(f_"ﬂ'* (R;?)* b%)! )] . (38)

The transition amplitudes interfere constructively,
and the transition probability is maximum when

L. McMILLAN e
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Ag=2n(n+%), where n=0,1,2,..., and the ampli-
tudes interfere destructively, and P, vanishes
when 6¢ = 21(n + 3.

In the inelastic scattering channel the ion comes
in on the ¢, curve and goes out on the 7, curve.
The reduced scattering angle is then (see Fig. 2)

Tine() = 2 [Taul(b) + Tﬂ’ul(b)] . (39)
This is a classical expression for the scattering
angle which assumes a definite potential curve for
the ion. For R near the curve-crossingradius the
valence electron is hopping between the ¢ and the
7 states and there is no definite potential. Equation
(39) is an approximation which we do not know how

to correct. Within this approximation the reduced
inelastic cross section is
f dr -
Pine1 (T) = %‘ Tinel b Pmr(D)(“_d—!l:_e—l') . (40)

This cross section is plotted in Fig. 8 for the
three experimental energies E, , =25, 50, and
100 eV. The experimental® “ratio of signals in the
2p and the elastic channel at each angle” is plotted
for E, .= 25 eV on the same figure. One can only
compare the positions of the peaks and valleys,

[ D

INELASTIC CROSS SECTION pmel(dg)
)

(o] 100 200 300
SCATTERING ANGLE T (eV deg)

FIG. 8. Reduced inelastic differential cross section
vs reduced scattering angle for the three ion energies
used experimentally. Dashed line is the experimental
“ratio of signals in the 2p and elastic channels” from

Ref. 1.
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since the experimental data are given as a ratio of
cross sections with unspecified normalization. As
seen in Fig. 8 the agreement in peak positions is
reasonably good at 25 eV; the agreement is com-
parable at 50 and 100 eV. The position of the first
peak is at a reduced scattering angle of about 85
eV deg experimentally and about 100 eV deg theoret-
ically. In the calculation the position of the first
peak is determined primarily by the level crossing
radius and the potential curves and is less sensitive
to the approximations involved in Eqgs. (33) and (39)
than the positions of the higher peaks. A more de-
tailed comparison with experiment will have to
wait until absolute cross section measurements
are available.

The total (non-charge-transfer) inelastic cross
section is found by integrating P,,(b) over the im-
pact parameter:

Oper = 57 fo‘” P, (b)bdb . (41)

This cross section is piotted versus ion velocity in
Fig. 9. Since in the final state ¢, , the electron is
equally likely to sit on either ion, the total charge-
transfer inelastic cross section is equal to the total
non-charge-transfer inelastic cross section.

The inelastic process removes particles from the
0, channel and the elastic cross section (26) is
modified to read

Pe1(T) = $(0g,,(T) + Pg,y(T) [1 = Py, (b)]
+ 2'{p03190u1 [1 - Purr(b)]}llz
xcosfy(r)/v+e’]), (42)

where ¢’ is the phase of g (~); this phase shift is
small and unimportant. The modified classical

100 T T T =TT T

T 1 117

R S T

}
T

2
(o]

20} -1

INELASTIC CROSS SECTION ¢ {q

10 o ]
2 1 1 ) SO S T 1 1 I S .
K]l .02 A 2 [
1ON VELOCITY v {a.u.)
FIG. 9. Total inelastic (non-charge-transfer) cross

section vs ion velocity.
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ADIABATIC

ELASTIC CROSS SECTION Pep (Gg)

0 1 I
100 200 300 400

SCATTERING ANGLE 7 (ev deg)

FIG. 10. Reduced elastic differential cross section vs
reduced scattering angle within the adiabatic approxima-
tion and with corrections for the inelastic process.

cross section, neglecting the interference term, is
plotted in Fig. 10 for E_ =25 and 100 eV and is
compared with the adiabatic approximation of Sec.
V. The classical elastic cross section has a deep
minimum at 7=190 eV deg and oscillates for larger
angles. This effect occurs in the same region of
scattering angle since the interference oscillations
and the periods of oscillation are similar. The
modified semiclassical elastic cross section, con-
taining both the interference oscillations and the
inelastic effect, is shown as the long dashed line in
Fig. 5for E, , =40 eV. We see that the interfer-
ence oscillations are the dominant effect and that
the modifications due to the inelastic channel are
small. This supports the statement that the ob-
served oscillations are due to the interference os-
cillations rather than the inelastic channel.

VII. CHARGE-TRANSFER CROSS SECTION

The charge-transfer total cross section for the
process

Li*+Li- Li+ Li*

has been measured as a function of ion velocity by
Perel et al.® What is measured is the total cross
section, including elastic and inelastic processes.
This cross section has been calculated by Peek

et al.® within the adiabatic approximation using in-
termolecular potentials calculated by Michels. In
this section we calculate the charge-transfer cross
section, using the intermolecular potentials found
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DIFFERENCE POTENTIAL AV (a.u)

[
o
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[ ]

0 L 1
0 5 10 15
INTERNUCLEAR SEPARATION R(d,)

FIG. 11. o0, —~ 0, difference potential used in the
charge-transfer cross section vs internuclear separation.
Crosses are the present calculation and the solid line is
the Gaussian fit to the crosses. Solid circles are the
potential due to Michels and used in a previous calcula-
tion.

in Sec. IV, making use of two approximations.

First we use the adiabatic approximation which
should be valid for small ion velocities. Second,

we use a three-state approximation which takes into
account the inelastic transition at the o,,-m, curve
crossing. This approximation should be valid for
higher ion velocities than the adiabatic approxima-
tion, but should break down for sufficiently high

ion velocity, owing to the excitation of higher states.

A. Adiabatic Approximation

We continue the discussion of the time-dependent
Schrodinger equation of Sec. VI. In the initial state
the electron sits on the ion at the origin and the
wave function is

(=)= (1/VO oy + by - (43)
In the final state the electron sits on the moving
ion:

&= (1N2) Wopy ~ Vo, - (44)

Within the adiabatic approximation the amplitudes
a,(t) in Eq. (29) are constant and the time develop-

|

ment of the wave function is determined by the
phase factors

&)= (1/V2) Yy, exp(=i [ Vo, at)
+ (AN 2 exp(=i [* v, at). (45)
The overlap with the final state is then
(@;]@(0)) =4 [exp(~i [ V,,, dt)
—exp(-i[ Vo, 4], (46)
and the charge-transfer probability is

Py(b)= |(¥;| ¥())|2= 4 [1 - cosap®)],  (47)
where
qu(b)= _[: (V"ul - Va

g1

)dt . (48)

Writing the difference potential as a sum of Gaus-
sians (found by a least-squares fit)
AV(R)=V,, (R) =V, (R)=D,c;e P (49)

%1

we find
-
8g(b)=2 ¢~ exp(-afb?), (50)
i i

where v is the ion velocity. Equations (47)-(50)
are equivalent to the conventional expression for
the charge-transfer probability. **

In Fig. 11 we show the difference potential. The
crosses are the calculated points taken from Sec.
IV. The solid line is the sum of Gaussians fitted
to the calculated points. The parameters of the
Gaussian fit are given in Table IV. The solid cir-
cles are the difference potential calculated by
Michels'? and used in the previous calculation'? of
the cross section. Our difference potential is about
50% larger than Michels’s for large separations and
behaves qualitatively differently for small separa-
tion. The phase difference Ag(b) is plotted in Fig.
12 for v=0.1 and the charge-transfer probability
P, (b) is shown in the upper half of Fig. 13, again
for v=0.1.

The physical picture of the charge~transfer pro-
cess is as follows. ¥ Initially the electron sits in
the 2s state of the target atom, which is degenerate
with the 2s state of the moving ion. As the ions
approach there is an increasing matrix element be-
tween these two states, which causes them to split

TABLE IV. Parameters (in a.u.) of the least-squares
Gaussian fit [Eq. (49)] to the difference potential.

Cq o
0. 0927 0.12
0. 1463 0.16
- 0.0537 0.25
-0.2603 0.45
0.3660 0.7
0.1231 1.3
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FIG. 12. Phase difference between the o, and o, states

vs impact parameter within the adiabatic and three-state
approximations.

apart. The electron is no longer in a stationary
state and it begins to transfer from one atom to the
other and back again with a period A¢=2q7/AV(R).
This transfer process is terminated as the ions
move apart. Referring to Fig. 13 for ion velocity
v=0.1 and an impact parameter b =11, the elecfron
has enough time during the collision to transfer to
the moving ion but not enough time to begin the
transfer back. For b=9 the ions approach more
closely, the difference potential becomes larger,
and the electron transfer takes place more rapidly;
the electron has transferred to the moving ion and
back to the target ion during the collision. Because
of this resonance behavior the charge-transfer
probability oscillates between 0 and 1 as a function
of b. The total charge-transfer cross section is
just the integral over impact parameter of the
charge-transfer probability:

ot @)= 21 [ 7 Pey(b) bdb (51)

The charge-~transfer cross section is plotted in Fig.
14 and compared with experiment.® The magnitude
of the cross section is determined by the impact
parameter (the Firsov'* radius) at which the phase
difference drops to a small fraction of 7. The os-
cillatory term in the cross section arises from the
anomaly in the phase difference A@(b) near b=3q,
which is itself due to the wiggle in the difference
potential. Note that the phase difference does not
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go through an extremum® but that it is approximate-
ly flat near b= 2. 5a,.

Perhaps it is worthwhile to comment, at this
point, on the use of a classical expression for the
total cross section and a semiclassical expression
for the differential cross section. In the expression
for the differential scattering cross section (25) one
permits the waves from the o,; and o, states to in-
terfere at the same scattering angle, that is, for
different impact parameters. However, in the clas-
sical calculation of the total cross section, ¢ne per-
mits the waves from the o,y and o, states to inter-
fere at the same impact parameter; one then inte-
grates over impact parameter. Since the total cross
section is just the integral over angles of the differ-
ential cross section, it appears that we have two
physically different expressions for the total cross
section. The question arises, are the two expres-
sions different, and if so, which one is correct.

In order to resolve this point, we have to go back
to the quantum-mechanical expression for the
charge-transfer scattering amplitude*:

£(6)= ;1%7? zZ:)) (27 +1) [exp(2i6%)

- exp(2i6%)] P,(cosd) . (52)

1t is from this expression that Ford and Wheeler®
derive the semiclassical scattering amplitude by
making use of WKB phase shifts, replacing ¥, by

n
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FIG. 13. Charge-transfer probability vs impact pa-
rameter for v =0. 1 within the adiabatic and three-state
approximations.
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FIG. 14. Total charge-transfer cross section vs ion
velocity within the adiabatic and three-state approxima-
tion compared with the experimental cross section of
Perel et al. (Ref. 3).

] dl and performing the integration by the method of
stationary phase. Quantum mechanically, the total
cross section is

o= Z}?T;'Z— 17.3) (21+1) |exp(2i85) - exp(2:5)) |2 . (53)

The WKB phase shift at high energy, V/E<«< 1, is

,,,,,

b z B A

(54)
Making the usual correspondence kb=1++ and re-
placing 3, by [ kdb, we find precisely the classical
expression (51) for the total cross section. Thus
the classical expression for the total charge-trans-
fer cross section is correct and one has the choice
in the calculation of allowing the two waves to inter-
fere either at the same impact parameter or at the
same scattering angle. It is more convenient to use
the classical expression (51) than to go through the
intermediate differential cross section calculation.
In fact, one cannot use the semiclassical differential
cross section to compute the total cross section be-
cause it fails for small scattering angle, and the in-
tegral diverges.

B. Three-State Approximation

The adiabatic approximation neglects the inelastic
transitions at the ¢,, - 7,; curve crossing which we

know are important even for relatively small ion
velocities. In order to include the inelastic pro-
cesses we solve the time-dependent Schrodinger
equation (27) in the three-state approximation, keep-
ing only the oy, 0,;, and 7 ,; states in the wave
function expansion (29). The time-dependent wave
function is

®(t)=(1/V2)3,, exp(-i [ Ve, dt)
+(1/VDa, (o, exp(=i [ Vo, di)

+(1/V2) ag, (O by exp(=i [ [V, ab),  (55)

where a, ,(¢) and a, (f) were calculated in Sec. VL
We have two final states with the electron in a 2s
or 2p atomic state on the moving ion:

q”Zs = (1/‘/2) (nggl - ¢qu1) 1)
(56)
Prop=(1/V2) @ypy = ¥r) »

so that the total charge-transfer probability is
Pe(8)= {1 - Refag, (=) e @1}, (57)

with A¢(d) given by (50). Both the phase and the
amplitude of a,, (~) are affected by the curve cross-
ing. The total phase of this interference term is
plotted as a dashed line in Fig. 12 for v=0.1. The
o - 7 transition probability P,,(d) for » =0. 1 is plotted
in Fig. 7 and the amplitude of a, () is [1 - P,,(b)]”2
For v=0.1, this amplitude is unity for large b,
drops to ~0.1 for =5, and rises to near unity for
small b. The charge-transfer probability for v=0.1
in the three-state approximation is plotted in Fig.

13 for comparison with the adiabatic approzimation.
There is a small shift in the oscillation due to the
phase difference in Fig. 12; the magnitude of the
oscillation is reduced near b =5 due to the reduction
in the amplitude of a, (<). The total charge-trans-
fer cross section calculated from (51) is plotted in
Fig. 14. At low ion velocity the three-state ap-
proximation approaches the adiabatic approximation,
as it should. The magnitude of the cross section is
almost unaifected by the inelastic process. This
magnitude is determined by the scatiering at large
impact parameter near the Firsov radius &~ 15aq,,
whereas the inelastic process goes only for smaller
impact parameters b <7q¢;. However, the oscillatory
term inthe cross section is affected for high ion veloc-
ity. The phase of the oscillatory term is changed
without much effect on its amplitude. The positions
of the maxima and minima of the charge-transfer
cross section in the three-~state approximation are
in excellent agreement with experiment, ® and the
magnitude of the oscillations agrees pretty well.

The oscillatory term depends on the difference po-
tential for R £6a, and also on the treatment of the
inelastic process and the good agreement with ex-
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periment tends to confirm these features of the cal-
culation. The absolute magnitude of the theoretical
cross section is 25% larger than experiment at low
velocity, and this discrepancy decreases at higher
velocities. The magnitude of the cross section de-
pends on the difference potential for large internu-
clear separation R >10a,. The relative accuracy of
the difference potential is less at large R where the
difference potential is small, The uncertainty in AV
at R=15a,is +10%, and the uncertainty in the theo-
retical cross section is +5%. The stated experi-
mental uncertainty is £15%. Michels’s potential,
which is considerably smaller than ours for large R,
yields a cross section whose magnitude is in good
agreement with experiment.

VIII. CONCLUSIONS

To review, we have set up a one-electron effective
Hamiltonian for Li," and have found the six lowest
eigenvalues as a function of internuclear separation.
The numerical method used is economical and ac-
curate and may find application in other one-electron
problems. The intermolecular potentials, together

Li,* 81

with one matrix element, were used to calculate
absolute cross sections for three scattering pro-
cesses which have been measured. Qualitatively,
the theoretical model explains all the observed fea-
tures of the cross sections. In particular, the ob-
served level crossing’ is identified as a crossing
of the ¢,, and 7,, levels. Where a quantitative com-
parison is possible, the calculated cross sections
agree with experiment within the author’s assess-
ment of possible experimental error. There are
sound theoretical reasons for believing that the
theoretical model, simple though it is, is an accu-
rate physical model for Li,* for R>2a, It is there-
fore desirable to have accurate experimental mea-
surements to test the theory. It is desirable to have
(a) absolute elastic cross sections over a wider
range of energies with a careful study of the inter-
ference term, (b) absolute inelastic cross sections
in order to compare the magnitude and shape of the
curves, and (c) a more accurate absolute measure-
ment of the charge-transfer cross section.

The theoretical methods used here can be applied
to the other symmetric or asymmetric alkali molec-
ular ions and to the alkali-hydride molecular ions.
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The 4 3P state of helium has been excited and aligned by electron impact in a strong mag-
netic field. Transitions between Zeeman levels of the fine-structure states are induced by
microwave frequency radiation and are detected through the resulting change in polarization
of 3188-A fluorescence. The derived values of the fine-structure intervals are 43P)-4 5Py
=3306.6+1.0 MHz and 4 3P1-4 3P2 =270.7+0.8 MHz. The diamagnetic Zeeman interaction
produces an observable effect, and the magnitude of its anisotropic part has been measured.
The atomic radius and quadrupole moment are derived from this measurement and agree
within experimental error with the values for a hydrogenic 4p orbital.

I. INTRODUCTION

Accurate measurements of the fine structure of

helium 23P and 33P have been carried out for many
years, '~1% both for the purpose of testing higher-
order corrections to calculated He wave functions



