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We develop a theory of optical absorption of a diatomic molecule in a simple monatomic
liquid. Using approximations appropriate to the case of a light molecule like H2, we show
that the absorption spectrum near an infrared-inactive vibrational transition of the molecule
can be interpreted to give information about collective effects in the fluid. W'e show that some
features of existing experimental results on H2-Ar mixtures are consistent with the theory,
although no direct evidence of collective effects is seen in these experiments.

I. INTRODUCTION

A primary motivation for the study of optical
properties of liquids is the possibility that collective
properties of the liquid may be studied optically.
This possibility has recently been realized in Ra-
man scattering experiments, ' but no collective ef-
fects have yet been identified in optical absorption
spectra in liquids. In an earlier study we showed
that sidebands analogous to those seen in intrinsic
optical absorption in solids would not be observed
in optical absorption in pure liquids, and hence that
phonons in liquids could not be studied by this meth-
od as they are in solids. The physical reason for
this result is the following: In an insulating solid,
when the electron-phonon coupling is weak, the one-
exciton no-phonon peak is narrow because absorp-

tion takes place only into the k = 0 exciton mode. In

a liquid, even if the coupling is weak, the one-exci-
ton peak will be greatly broadened because in the
weak-coupling limit the excitons cannot be charac-
terized by a k vector. The absorption correspond-
ing to the one-exciton peak in a solid is then broad-
ened in a liquid because absorption takes place into
many exciton modes corresponding to various solu-
tions of the exciton problem in a system of amor-
phously distributed fixed sites. The bandwidth of
this spectrum of solutions is of the order of the
transfer rate of excitations from site to site through
the Coulomb interactions between electronic states
on different sites. In liquid helium both theory and

experiment indicate that this width is of the order
of a few tenths of an electron volt. Thus, the one-
exciton peak is broadened to swamp the phonon side-



COLLECTIVE EFFECTS IN THE OPTICAL ABSORPTION. . .

bands in a liquid.
In our previous work we suggested that this prob-

lem of broadening of the one-exciton peak would not
exist in impurity spectra in liquids where the trans-
fer of the excitation from the impurity to neighbor-
ing sites could not take place because the atomic
excitations on the host atoms would not have the
same energy as the excitation on the impurity. In
the present paper we study the consequences of this
idea. We choose to study the vibrational transitions
of a diatomic molecule in weakly polarizable liquid.
In particular, we have in mind the Hz molecule in
rare-gas liquids including helium. The reasons for
this choice of system include the following:

(a) The H~ molecule is light and small, making
it more likely that the weak-coupling approximation
between the molecule and the liquid will apply.

(b) A vibrational mode is selected because the
size of the molecule does not greatly change on ex-
citon of a vibrational mode (though it does for exci-
ton of an excited electronic state). This also im-
proves the weak-coupling approximation.

(c) Rare-gas liquids are considered for their
simplicity and because some information on collec-
tive effects already exists.

(d) There are already some studies of hydrogen-
molecule spectra in rare gases in the vapor phase
as well as some partially analyzed data of H& mole-
cules in liquid argon. '

We study the absorption spectrum of the molecule
in the neighborhood of a forbidden vibrational tran-
sition, making a series of simple decoupling ap-
proximations which seem physically justified at
least for the 82-rare-gas-liquid system. Compar-
ing our results with some accessible features of the
experiments gives good agreement. A more de-
tailed comparison of the theory with experiments
requires a numerical line-shape calculation which
will be reported later.

The microscopic mechanisms of absorption of
light by an infrared forbidden vibrational level in a
molecule are described in perturbation theory as
follows: The light couples to the host atoms of the
liquid, virtually exciting them through the dipole
interaction to high-lying odd-parity states (or equi-
valently, causing a fluctuating dipole moment on
these host atoms). The virtually excited host atoms
couple to the excited vibrational levels of the mole-
cule either through the quadrupole-dipole part of the
direct Coulomb interaction between molecule and
host atom or through effects arising from the over-
lap of host-atom and molecular wave functions.

In Secs. II-VI we derive formulas for the absorp-
tion line shape of a forbidden vibrational transition
in a homonuclear diatomic impurity dissolved in a
simple liquid on the basis of these ideas. We as-
sume the impurity concentration to be small enough
to justify neglect of any interaction between impuri-

Confining attention to electric dipole transitions,
the optical absorption coefficient of a many-body
system is

where (d; are the energies of the exact eigenstates
li& of the system; P; are the associated Boltzmann
factors; M is the electric dipole moment operator;
and X= 8v'/% VXn, n being the refractive index and
X the wavelength at frequency co.

It is easier to calculate the related function J'(u),

which is connected with A(&u), thus

A((o) = (I —e '"")J((o).

The function J' is the Fourier transform of the
electric dipole moment autocorrelation function:

J((u) = (X/2v) f dte'"' e(t), (4a)

where

(4c)

For the purpose of calculation, we describe the
physical mechanism of absorption near the vibra-
tional frequency already mentioned in the introduc-
tion as follows: For a free homonuclear diatomic
molecule there is no electric dipole moment asso-
ciated with vibrations, and therefore, no vibrational

ties. The translational motions enter the line shape
through a four-point dynamical density correlation
function. In order to make the formulas of practi-
cal use, we assume the impurity and liquid motions
to be independent in a certain sense which implies
the factorization of the correlation function. The
motion of the liquid then enters the spectrum
through the van Hove correlation function.

In Sec. VII we illustrate some of the uses of these
formulas by estimating two of the dimensionless
quantities which characterize the spectrum for the
case of hydrogen in liquid argon. We compare these
with experiment and find qualitative agreement.
From this comparison it appears that single-parti-
cle motions in the liquid and local-mode motions of
the impurity affect the line shape, butwe find no direct
evidence for collective-motion effects in the re-
ported experiments.

Finally we discuss how the experimental data can
be analyzed more extensively and what results are
to be expected from studies of other impurity-liquid
system, in particular regarding the observation of
collective effects. An alternative interpretation of
the absorption line shapes in Ar-H2 is discussed.

II. ABSORPTION SPECTRUM
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absorption. When such a molecule is perturbed by
the presence of atoms of a host solute, electric di-
pole moments fluctuating at the vibrational frequen-
cy are induced on the host atoms and the restriction
is lifted.

We assume that the concentration of the impurity
molecules in the liquid is so small that the interac-
tion between them is negligible. Then the moments
induced in the host by different impurity molecules
are independent and we have

c ""(f)=P„(m„"(f)M„"(o)),

where M„ is the electric dipole moment operator
arising from the nth impurity molecule. If there
are N impurities in the volume V and we call
Q= 4/N, then

y"'(f) = (m"(t) m'(O)), (8)

where m is the electric dipole moment operator as-
sociated with any one impurity. By calculating P
and using Eqs. (4a), (4b), and (3), we obtain the ab-
sorption coefficient. Q""(t) is equal to C""(f) for a
one-impurity system. We calculate P'"(f}for a
one-impurity system in Sec. III.

III. INDUCED ELECTRIC DIPOLE MOMENT OPERATORS

Since we are interested only in vibrational transi-
0 ~

tions, m is of no interest, and we assume the vi-
brational amplitude to be small enough to justify
neglect of all but the second term.

We write the dependence of m' on the positions of
the host atoms and the orientation of the impurity
molecule as

Let x be the vibrational coordinate of the impurity
molecule. The electric moment of the impurity-
liquid system can be expanded in x:

pm=m +xm' =. . .

first part arises from the interaction of the quadru-
pole moment of the impurity molecule with the di-
pole moment of the host atom. It falls off as 1/R
and depends on the orientation of the molecule. The
second short-range part comes from the distortion
of the atomic and molecular charge clouds due to
their overlap. It is found that this part of p is al-
most independent of 4 and to that approximation is
parallel to the line joining the impurity to the host
atom. It falls off approximately exponentially with
distance. We express these facts as follows:

(9c)

The B's have the dimensions of charge and charac-
terize the strengths of the induced moments. We
can write B, explicitly as

dgB =27tn — —4,
dX „p 0'

(lo)

(1lb)

where p is a length characterizing the range of the

overlap moment.
Using Eqs. 9(a)-9(c), (8a), and (Sb) in (7) and

omitting m we have

where q(x) is the quadrupole moment of the impur-
ity, Q. is the atomic polarizability of the host atoms,
and 0 is a length which we later identify with the

range of the Lennard-Jones potential between im-
purity and host molecules. The T's are dimension-
less function of A which are shown in the Appendix
to be

T;(R)=(o/ft)' ~ Z. (12vo~8m) y;(ft), (lla)

m' =Z g p (Rg, +), (8a.) m'= x f d'r d' $ p(r) p, (&)

m' = fd rd ( p, (r —$, 4') p(r) p ($). (8b)

Following van Kranendonk we represent p as the
sum of its longest- and shortest-range parts. The

where R, is the position of the jth host atom relative
to the impurity and 4 is the pair of angles specify-
ing the orientation of the molecular axis relative to
fixed axes. Here we have assumed that the interac-
tion between the impurity and a host atom at j is in-
dependent of the presence of other host atoms.

It is convenient to have p, expressed as a function
of dummy variables; to this end we introduce den-
sities p(r) and p,(() defined as

p(r)=&t ~(r r~) pt(() = &($ Fr),

where r; and r~ are the positions of the ith host
atom and of the impurity. Then we have

x fB,Z, Y2(4') T (r —$)+8, T~(r —&)]

+mg o

IV. VIBRATION-ROTATION BANDS

In using Eq. (12}in Eq. (6}we assume (a,) that
the motion of x is independent of both the transla-
tional and rotational motions and (b) that the mo-
tion of + is independent of the translational motions.

Assumption (a) is expected to be good since the

vibrational energy is much greater than (i} the x-
dependent part of the interaction between impurity
and host molecules and (ii) the vibration-rotation
coupling. Assumption (b) is known to be quite good

for hydrogen in solution, but is presumably not so
good for other impurities.
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The thermal average in Eq. (6) ean then be fac-
tored into averages over the vibrational, rotational,
and translational spaces. We notice that cross
terms between m, and m~ must vanish since in
space m, is a sum of second-rank tensors while m~
is a scalar. Therefore we have

y""' (t) = &m,"(t)m", (0) &+ &mq (t)m,"(0))

ture will usually be much greater than the experi-
mental temperature we may take this average in
the vibrational ground state:

&x(t)x(0)&=(0lx(t)x(0)IO)=e '"o'x', (14)

where x is the mean square displacement and Qp

is the vibrational frequency.

B. Rotation Averages

= ~."" (t)+el" (f) .

A. Vibration Average

The same vibration average oeeurs as a factor
in both Q, and Q~. Since the vibrational tempera-

By the free rotation assumption we can consider
different rotational transitions independently.
First, we consider transitions J-O', J J'. Since
m~ is a scalar in 4 space, P~ vanishes in this case.
The rotational averages which occur in P„are of
the type

I. E' &~MI Fl(~(f))'Id'I'&«'~'IF (+(»)I&M&=5... &. ~ I«'I'Iyl(~)l'M&l"'"'"'"'"
N, M' N, N'

2
= 5 ~

—(2Z'+1)(28+1) e' ~
4m 0 0 0

j(EJ-EJ~)t /5
a, a' JJ'e

where PJ is the Boltzmann factor for a single mag-
netic state of the J rotational level, which has en-
ergy EJ.

Denoting by Qzz. the part of Q pertaining to theJ-J' transition, and combining Eqs. (15), (12),
and (6), we have for 8 'J'

4m~ (f)=4',zz (f)

I

th™portant case 8=J'= 0), but we must add to
it Q«~. . The rotational average is trivial in this
case and we have [C.=I'.(21+1)]

(f)=e 0 CgIBgI x

xZ„J'd rd r'd'yd y' T(((r'-y)T", '(r' —y')

xI.(r, r', y, y', f). (18)&-&(QP+EJ~«EJ)t/h (~ ( 2C X2JJ'

x P f d r d r' d ydsy' T'"(r y)—For a general rotational transition we have then
v&a

4m~ (t)=4,zz (f)+5m
~ ~ 4uzz (f), (19)

where

xT',"(r' —y')L(r, r', y, y', f), (16) with Q,«. and Q«~. given by Eqs. (16) and (18).

V. TRANSLATIONAL DYNAMICS

L(r, r', y, y', f)=&p(r, f)pI(y, f)p(r', o) pl(y', o)&.

From the definition of C«' we note that if J4J'
then 4= + 2. From Eq. (16) we deduce the impor-
tant result that under our assumptions (a) and (b)
the line shape of every J 4J' transition is identical.
This follows from the fact that the time dependence
responsible for the line shape occurs in a factor
which is independent of J, J'.

If J=O', Q,zz. does not vanish in general (only in

The translational motions of the system insofar
as they affect the spectrum, are all contained in
the function I.(r, r', y, y'; t). We assume the impurity
to be performing a quasioscillatory motion in the
cage of surrounding host atoms, the center of oscil-
lation R being fixed; diffusion of the impurity is
ignored. The host liquid density also fluctuates,
but we take this motion to be independent of the
impurity oscillation in the sense that we can ap-
proximate

I (r, r', y, y'; t) =& p(r, t)p(r', 0)&R& p (y, t) p (y', t)&-
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-=L (, ';t)L (y, y';t) . (2o)

We regard this assumption as a reasonable ap-
proximation for the case of H~ in heavy rare-gas
liquids because the light H3 molecule will have
much higher resonant vibrational frequencies than
will the fluid due to the difference in masses. This
is borne out in the experiments in H~-Ar, where the

Hz vibrational frequency is' 158 cm '. The collec-
tive excitation frequency in argon on the other hand
is about 25 cm '.

In the Eq. (20), the subscripts R are a reminder
that these averages are functions of the relative
coordinates r-R, y —8, etc. , L~ and LI describe,
respectively, the correlated density fluctuation of
the host liquid and local-mode fluctuations of the
impurity. In order to separate the characteristic
frequencies „, &, of these two, we assume the
impurity to be light, so that +z» &„. We separate
from LI, and Li the zero frequency parts L~ and

def inedby

Le,r = limLe, r (t) as t -~

L'(r, r', y, y'; t) =g(r)g(r')gz(y)gz(y') .
B Low Frequency

(2V)

In order to write I~ in terms of familiar func-
tions we make the approximate decomposition

(p(r, t)p(r', 0) &Ii—-g(r)g (r') (S(r — ', t)+ p',),
(28)

where g =g/po, po being the mean density of the
liquid, and S is the Van Hove correlation function
for the pure liquid

S(r - r ', f) = ((p(r, t) —po) (p(r', 0) -p, ) & . (28)

Equations (22), (26a), and (29) give

I,„(r, r', t) =g (r)g(r')S(r —r ', t) .

LI =»m (P&(y, t)pi(y', o) &=(Pi(y) &Ii (p&(y') &ll
g vOO

(26b)

[These equations define the densities g(r), g, (y). ]
Therefore we have

and call

LH, I (t) LH, I(t) LH, I (22)

Vfe do not treat LI explicitly, except to note that it
would vanish if the oscillations of the impurity were
truly undamped [see discussion of Eq. (23)],

I.(t) = I. '+ I.'(t) + I.' (t) , (24)

The Fourier transform of L~ has most of its in-
tensity in a region of width &&= 2+„around +=0;
the intensity of the transform of LI will be concen-
trated in the regions —nevi, with n a positive or
negative integer or zero. The widths of these re-
gions will be related to the damping of the oscil-
latory motion. We expect most of the intensity to
occur for n=+ 1, corresponding to emission or
absorption of one quantum of oscillation. Now divide
I.I into parts LI and L» which oscillate in the fre-
quency regions corresponding to n=O and In( =1,
respectivelyv:

L, (t) = L,'(t)+ L,'(t) . (23)

This allows us to divide L(t) into zero-, low-, and

high-frequency parts:

Io(r, r', y, y';i) =g(r)g(r')II(y, y', t) +g(r)g(r')

xS(r - r', t) (g, (y) g, (y')+L,'(y, y', t)) . (30)

C. High Frequency

Using Eq. (28) we have approximately

L~(r, r', y, y'; t) =g(r)g(r') (S(r —r', t)+ p~~)Lz'(y, y', t) .

By hypothesis Lz'(t) fluctuates much faster than

S(t), so that we can replace the latter by S(t = 0).
If we call G(r —r') = p~2+ S(r —r'„/= 0) we have

L'(r, r', y, y'; t) =g(r)g(r')G(r r')LI(y, y';t) .—

VI. FINAL FORM FOR ABSORPTION SPECTRUM

with
I I IL =LH Ll,

L =LH Ll+LILH+LILe y

0 ~ 0 I 0

L =L+Lr+L„LI .1 ~ 1

(25a)

(25b)

(25c)

We now examine the contributions oI I (t) in the
three frequency regions when integrated with the T
functions over the spatial coordinates [cf. Eqs.
(16) and (18)]. We define

E(t)= fd'rd~r'd'yd y'T(r-y)

A. Zero Frequency

=g(r)g(r'), (26a)

The self-correlation of the motions of both the
impurity and the liquid damp to zero at large times:

L„'= lim (p(r, t)p(r', 0))~= (p(r)&R(p(r )) a

x T(r' —y') L(r, r', y, y'; t), (32)

where T stands for a component of either T, or T~.

A. Zero Frequency

We have

E'(t) = fda rdo r'd'yd3y' r(r -y)
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x T(r' y—')g(r)g(r')g/(y)gi(y') = o
S(k, &o) = (1/2w) f e' "'S(k, t) dt . (39)

since T is odd under inversion [Eqs. (11a) and
(lib)]. There is, therefore, no zero-frequency
part of F(t).

B. Low Frequency

This is the regime in which we expect to find
collective effects. If Ll can be neglected, then

Fo(t) = f d'r dsr' d y d~y' T(r —y) T(r' —y ')

xg(r)g(r')g/(y)g/(y')S(r —r', t) (33)

= fd r d r' T(r)T(r')g(r)g(r')S(r —r', t),
(34)

the second equation serving as a definition for T.
We introduce the spatial transforms, e. g. ,

S(r, t) = [1/(27/)'] fd k S(k, t) e" ' (35

to get

F'(t) = [1/(27/)'] fd% t(R)t(- k)S$., t), (36)

where t(fc) is the transform of f'(r)g(r). For quad-
rupole-dipole and distortion parts let us write

t;"(k) =P„(12ev i 3m ) F, (k)r, (k),

C. High Frequency

This part of the absorption corresponds to exci-
tation of a vibrational level plus a local mode. We
have

F'(t) = ff d r d r' d y d y' T(r —y) T(r' -y')

xg(r)g(r')G(r —r') L,'(y, y', t) . (4O)

If we define

4 4

v(;, v)=pf x.x"-( '
) (,', )

x p,"(uz .,)1,(uz &)*g(r)g(r')G(r - r') (41b)

(where u&=—r), we find for the sum over spherical
components of I'

Q [F,'(t)]'"= ~f d'y d y'V, (y, y')L,'(y, y', t),

~q(uq ~) Ya (u&. )) )*g(r)g(r')G(r —r'), (41a)

1/ ( )) g dsrdsr) -eP(-Fl/)) -IP- rI/()
tf

tq(k) = Pj(k)7'q(k) .
e, v

(42a)

Then, the forms for F (t) summed over spherica].
components are

2 [FÃt)1"=— d y d'y'~~(y, y')LI(y, y', t) .
V

4m.

Z(&()))-=
2 sf Iv.())(l'a'd&,

Z(vl()))"=,' .f l..())l')."~)',

(37a)

(37b)

(42b)

This leads to an expression for the high-frequency
par't of Jgpi ((())

&' ~ ( )=tx& )v(t)l .l)')c(„fd'yx'y'.

for quadrupole-dipole and distortion mechanisms,
respectively.

Using Eqs. (16)-(19), (37a), and (37b) we find
the low-frequency parts of Q«. (t), and thence by
Fourier transformations Jzz. ((d) [the low-frequency
part of J(~) corresponding to the J- J' transition],

where

x l' (y, y')LI(y, y', ~)+ I &.I'—)"d'yd'y'

x ( y') v((vjr, v', ctx)), (4m

J„.(x)=( )x x'(V()). ('C, ~. Li'(y, y', (u) =— dt e' '
L) (y, y, t) .

7r.
(44)

X 7', k SP, (g —g0+E~ —g~, y d
0

M„I)) I
c ~f(,"() ).I *'~(.~, x —c.))."x~),

0

(36)

where S(k, (d) is the time Fourier transform of
S(k, t),

VII. PREDICTED RELATIVE INTENSITIES

The primary interest of the results of Sec. VI
is in Eq. (36). This equation shows that, within
our approximation, transitions involving excitation
of a forbidden vibrational transition will have a
line shape which can be interpreted to give infor-
mation about the collective properties of the fluid.
In Sec. VIII, we will proceed to a discussion of
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this result. First, it is worthwhile to consider
some tests by which the general features of the
theory can be checked with experiment. In this
section we consider two such simple tests.

A. Rotational Components

We can now calculate the intensity ratio of the
Q and S(l) components of the spectrum (we use the
notation of Ref. 5). Supposing that the hydrogen
molecules are in the ground orthostate and para-
state, the Boltzmann factors are PO=P, =-,' and the
C coefficients are

The formulas we have derived can be used to cal-
culate the intensity ratios of different rotational
components of the spectrum. Indeed, since

Cg$ —
$Q (I/4') p C$3 —

oo (I/4w)
1 =3CO=4, C)=4 . (49)

J d(u J~~. ((u) = (3.'N/2w) y~~, (f = 0), (45) The intensity ratio is

(&au+ &zoo+ &uii)/&q&o 14
~ (50)

we need only know the ratios of the p«. at t = 0.
According to the discussion of Sec. IV we obtain
at the same time a measure of the relative impor-
tance of the quadrupole-dipole and distortion mech-

anismss.

We make a rough estimate of these ratios for hy-
drogen in liquid argon, using Eqs. (16) and (18),
and compare the result with the experimental find-
ings of Ref. 5.

We approximate the f= 0 value of L(rr', yy'; f) by

L(r, r', y, y', &=0) =&(y-y')&(r —r')g (y)g(~),

where gr and g are defined by Eqs. (26a) and
(26b). In fact we should include a rex' part in L
for a more accurate estimate. Experiments' indi-
cate that the hydrogen spends most of its time in a
kind of ground oscillation state within the solute
cavity and we therefore represent gi by the square
of a wave function:

g. (y) = It(y) I'

We take the oscillation frequency from Bef. 5 to
be about 2. 5x10' sec ' and approximate p inside
the classical turning point by a harmonic oscillator
wave function appropriate to this frequency and the
mass of a hydrogen molecule. It is known that the
substitution of hydrogen in solid argon results in
only a small distortion of the lattice. ' It therefore
seems reasonable to assume that the radius of the
cavity only depends on the parameters of the host;
we take this radius equal to '80 where 'pro is the
density of pure liquid argon. Assuming a uniform
distribution of atoms outside the radius and know-
ing the Lennard-Jones parameters for the hydrogen-
argon interaction' we calculate the potential felt
by the hydrogen molecule inside the cavity and from
that we form a WEB approximation to g outside the
classical turning point. The amplitudes of the
WEB and harmonic oscillator functions are matched
at the turning point.

From Bef. 9 we also take the parameters con-
tained in B~ and 89. By numerical integration we
then find

p&gt gt t (f = 0)/pggg = 0. 16 x 47I'(Cgr gee/Cg), (48)

which is in order of magnitude agreement with ex-
periment. It should be noted that since the spatial
dependence of the distortion moment is of very short
range (about ~|o of the intermolecular spacing), an
estimate such as we have made is very sensitive to
the values chosen for the lengths involved.

B. High and Low Frequency

Another important ratio is the relative intensity
of low- and high-frequency contributions. A mean-
ingful estimate is easiest to make for the J4J'
transitions since only the quadrupole-dipole mech-
anism then plays a part.

From Eqs. (30) and (31) we see that the relevant
ratio is K,/Ko, where

K, = Z d'r dor' d'y d'y' T'"(r - y) T,'"(r' y')-
Oq V

x g(&)g(~')S(r - r', t=0)g (y)g (y )

dord r'doyd y'T (r —y)T', "(r' —y )'
fly V'

(51)

x g(~)g(r')G(r —r')L,'(y, y', t =0) .

We have taken LIo= 0, which implies [using (21),
(23), (26b), and (46)]

LI(y, y', f=o)=6(y y')gI(y) gl-(Y)gI(y'), (5-2)

so that

K, =& dordor'd y T',"(r y)T (r' —y)g(r)—g(r )

x [S(r —r') + no]gi ( y) —Ko = K' y K" —Ko . (53)

Note that K' is very similar to Ko. As we only
want an order of magnitude estimate we replace
S(r —~') by no5(r r'), and pe—rform the r, r' inte-
grations, calling

S(y) = n, ~~ d'r
I
T;"(r —y) I

' . (54)
a, v

Since we are dealing with entirely Coulomb interac-
tions, and g, (y) is spherically symmetric, we have
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=K, +fd'yg, (y)[y vs(y)+ ]. (56)

This is an expansion in 5no where 5 is the range
of g, (y). The parameters we have already used
give 5no =0. 1, so that the expansion converges
rapidly. Only even powers of 6no appear. By
numerical integration we find

f d'y g, (y)&", (r y)-= T, (r) fd'y g, (y) = &: (r)
(55)

for r outside the cavity. Therefore we have

K, =s(y=o),

K'= fd'y S(y)g, (y)

have omitted diffusive motion of the H2 molecule
from our considerations. Recent work by Zaidi
and Van Kranendonk suggests that this motion plays
the dominant role in determining the absorption
line shape. ' Application of our results to calculate
experimental line shapes together with extensions
of our model to include diffusive motion will help
to resolve the question of the dominant effects in

the line shapes in the future.

APPENDIX: INDUCED MOMENT OPERATORS

We briefly derive the forms Eqs. (lla) and

(lib) for the induced moment functions.
The potential produced by the quadrupole moment

q of an axially symmetric charge distribution p (r):
K~ = K(,(1 + 0. 09) .

The integral K" involves the functions

f "(y)= no f d'r T,"(r —y)g(r),

(57)

(58)
ls

q = (16m/5)'~ fd r Yo~ (r )r p (r ) (Al )

whose first nonzero terms in an expansion in powers
of 5no are cubic, since 7, contains only third-order
spherical harmonics. This implies that

V'(R) = Y~(ft)(I/ft')(-. ~)"'q .

This may be equivalently expressed

q(R)=- -'q(p V)'(I/ft),

(A2)

&a'=~ d'ylf'"(y)I'g(y)
tv

(59)

is of order (5no~') and we can therefore neglect it
and set K, = K' —Ko. Equation (57) then shows that

K(/Kp = 0. 09, (6o)

which means that the low-frequency contribution is
dominant in the JcJ' transitions. This is in qual-
itative agreement with observation, although there
is some indication that our prediction for the ratio
is somewhat low.

VIII. DISCUSSION

We believe that the most interesting qualitative
result of the present work is in Eq. (38) which
shows that in a simple liquid, the absorption spec-
trum of a light diatomic molecule near a forbidden
vibrational transition plus a rotational transition
(Zo 8') will show features which can be interpreted
to give information about the collective excitation
spectrum of the liquid. Because the function r,(k).
peaks at k = I/O, where 5 is the size of the cavity
containing the molecule, this information will con-
cern the short-wavelength collective excitations in
which there is considerable current theoretical and
experimental interest.

The results of Sec. VI and an inspection of the
known S(q, &u) for argon indicate that the formula
(38) may indeed account for the observed width of
the absorption lines observed in Ref. 5. To con-
firm this more fully requires a numerical calcula-
tion of the line shapes based on Eq. (38) which is
presently under way. It should be noted that we

where p is a unit vector along the axis of the
quadrupole. Therefore the electric field of the
quadrupole is

E (R) = ~ q (p ~ V)2 V(1/R). (A4)

If we express the angular R dependence of E(R)
in spherical harmonics, then the highest harmonic
which enters is of order three. The only other
one allowed by parity is of order one; we can
verify that the component vanishes by noting that
the integral of (A4) with any component of R van-
ishes. The dependence of E(r) on IRI is IRI

These facts are sufficient to confirm that the
functional form of p,",(+,R) expressed in Eqs. (9b)
and (lla) is correct. We now derive the value of
the coefficient of Eq. (lla).

Let us write

E"(R)= —
4 Q (12vo'l3m) Y~ (R) Y2(4).

fy, m
(A5)

If R and + both point along the z axis we have

Eo(R) = (c/8') (1200
l
30 ) Yo (0) Y,'(u&),

but from Eq. (A2) we see

E (R) = 3Y02(0)(1/R4)( —,'m')'i2q. (AV)

Inserting the numerical value of (1200130)we find

c = 2v(f ', )q . —

This confirms the values of the coefficients in
Eqs. (10) and (1la).
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The IR l dependence in Eg. (lib) was introduced
phenomenologically, and we only have to verify
the angular dependence. But if the induced moment
lies along the radius vector, then we must have

p,"(R)-R"

for the angular dependence; this is equivalent to
Eq. (11b).
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Investigations concerning the behavior of the He(2 S ) population in active-discharge and after-
glow helium plasmas are described. Good quantitative agreement is obtained between measured
He(2 S ) densities in active discharges and predicted, values based on the solution of a nonlinear
rate equation. The rate coefficient for ionizing triplet-metastable-metastable collisions is
measured in afterglow helium plasmas for the pressure range 10-40 Torr; close agreement is
obtained with the value reported by Phelps and Molnar, though consideration of effects due to
electrons suggests a downward revision of about 20%. The electron temperature decay in the
afterglow is measured and found to agree closely with the decay expected on the basis of calcu-
lated energy source and loss processes which affect the electron gas. In this work, measure-
ment of the He(2 S ) metastable density is accomplished by the novel use of a He-Ne laser opera-
ting at 1.0798 p in an interferometer as well as by the conventional optical-absorption method.
Advantages and disadvantages of this interferometer technique are discussed.

I. INTRODUCTION

The behavior of atoms excited to the 2'S meta-
stable state of helium has been studied in detail
by many previous authors. In this paper we
report further investigations concerning the triplet-
metastable populations of weakly ionized active-
discharge and afterglow helium plasmas. In our
work we attempt to describe accurately the steady-
state triplet populations in active discharges in
pure helium, the electron temperature decay in
helium afterglows, and we perform a remeasure-
ment of the triplet-metastable-metastable collision
rate coefficient. Our experimental apparatus in-
cludes a laser interferometer operating in the in-
frared which is used for 2'S metastable density

measurements, as described in Sec. II. Triplet-
metastable concentrations are inferred from plasma
refractivity measurements by use of the standard
formula for anomalous dispersion. In Sec. III, a
continuity equation describing the production and
loss of triplet-metastable atoms in active discharg-
es in pure helium is presented. The equation uses
cross sections and calculated electron-energy dis-
tribution functions which are in the literature.
Good quantitative agreement is obtained in the
range of pressures and currents studied between
the measured triplet-metastable densities and the
densities predicted by the solution to the continuity
equation. In Sec. IV, the electron temperature de-
cay of an afterglow helium plasma is considered.
We show that, with knowledge of triplet-metastable


