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The existence of liquid crystalline order in two dimensions is discussed. It is shown that,
contrary to a previous contention, a theory based on the lowest-order approximation to the
virial expansion of the free energy (the Onsager limit) indicates that a nematic ordering
transition does occur. The effects of the fluctuations in order are considered, and it is shown
that the usual elastic theories cannot hold in two dimensions. I attempt to construct a mi-
croscopic discussion based on the Bogoliubov inequality, but find that it cannot be applied
straightforwardly to this case.

I. INTRODUCTION

The existence of a two-dimensional liquid crystal,
can be characterized by the nonvanishing of the
order parameter

where 8, is the inclination of a principal axis of the
ith molecule to an arbitrary fixed axis. Recent
Monte Carlo studies' of a two-dimensional gas of
hard ellipses indicate the possibility of three
phases: (a) a crystalline phase at high density,
(b) a noncrystalline phase at intermediate density,
in which M is nonvanishing, and (c) a disordered
phase at low density where M vanishes. The transi-
tions between phases appear to be first order.

It is generally assumed that long-range order
corresponding to the breaking of a continuous sym-
metry group is not possible in a two-dimensional
system of particles interacting via short-ranged
forces. In particular, it can be rigorously shown
that such a system cannot display normal super-
fluid, ~ 4 superconducting, 4 or magnetic ordering, 5

nor is it likely to be crystalline. ' In view of the
Monte Carlo results it is appropriate to discuss
the theory of this system.

I discuss this problem from two points of view.
In Sec. II, I examine the description afforded by
the virial expansion of the equation of state. The
two-dimensional analog of the Onsager~ limit can
be shown to give a phase transition, contrary to
previous contention.

In Sec. III, I discuss the effects of disordering
fluctuations. The two-dimensional analog of the
usual elastic theory for liquid crystals " leads
to divergent mean-square fluctuations in order.
I attempt to construct an argument based on the
Bogoliubov inequality, modeled on its previous
applicationss '~ ' to continuous broken symme-
tries, but find that in this case the construction
fails in all but trivial cases. I trace the origin
of this difficulty, which seems quite profound, to

the special nature of the liquid-crystalline order-
ing.

II. VIRIAL EXPANSIONS

Onsager has given a discussion of the three-
dimensional gas of asymmetric molecules, based
on an expansion of the free energy in powers of
the density and of the orientational distribution
function f(Q) [defined by Nf(Q) dQ=number of parti-
cles having orientations in dQ]. The expansion
may be written quite generally as

F/Nk T = p. ,(r)+1np+ ff(Q) 1n[4vf(Q)]dQ

--,'pj' f p, (Q, Q')f(Q)f(Q') dQdQ'

,'p'f f—fp, (Q, Q', Q")f(Q)f(Q')f(Q") dQdQ'dQ"

+ ~ ~ ~
p

where p„ is the nth irreducible cluster integral for
m+1 molecules of fixed orientations 0, O', ... . The
coefficient P,(Q, Q') measures the volume from
which a molecule of orientation 0 is excluded by a
molecule of orientation Q'; similarly, P ~(Q, Q', Q")
is proportional to the number of configurations in
which three molecules of orientations 0, 0', 0"
are simultaneously overlapping each other.

For obvious geometrical reasons, in three dimen-
sions P2 and higher-order coefficients are relatively
small for long molecules when Q, O', 0" do not lie
nearly in a common plane, and since most orienta-
tional configurations meet this condition, these
terms may reasonably be neglected. The resulting
approximation is essentially a form of mean-field
theory, in that only the second virial coefficient
plays a role. For given density, the stable config-
uration is that which minimizes the free energy.
At low density this occurs for the isotropic dis-
tribution [f= (4w) j for which M = 0; at sufficiently
high densities the free energy is lower for an aniso-
tropic distribution (M4 0) sharply peaked about
some direction of average orientation.
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The considerations which justify the simple ap-
proximation of the Qnsager model are closely tied
to dimensionality: In a two-dimensional system it
is overwhelmingly probable that three rods will lie
in a common plane. Nonetheless, Lakatos has dis-
cussed the two-dimensional gas of very long hard
rods in the mean-field approximation. She con-
cluded that the only physically meaningful minimum
of the free energy occurs for the isotropic distribu-
tion function. This contention is not so strong as
to rigorously exclude a phase transition, but could
be regarded as strong evidence that there is none.

I will briefly outline Lakatos's arguments for
her contention, forewarning the reader that both
the argument and the contention are incorrect.
The free energy in the Qnsager approximation for
two dimensions is given by

E/NP Ts= go(T) + lnp+ f f (8) In[vf (6)]de

a solution of (4), are untenable. In fact, a contin-
uous family of solutions of (7) are possible [param-
etrized by the unspecified boundary condition on
g (0)], only one of which is a solution of (4) for a
particular value of p.

To demonstrate the failure of Lakatos's argu-
ment, I prove that for sufficiently high density
the minimum of the free energy (3) must occur for
some anisotropic distribution function. Consider
the trial function

(6) = (2p) ', 0 & 6 &q, v - y + 8 & v

Oy P& 6& 3'- P

where p is an arbitrary parameter. This function
is normalized to unity, and the family contains the
isotropic function as the case p= v/2. With f,
substituted in (3), the integrals may be done to
give

,'p f-f-J(8)P(e, e')f(8') cede'.
0

(3)
E m pB sin2y—po —lnp = ln —+ —I — . (10)Nk&T 2p p 2p

For the case of very long rods we may justifiably
approximate P(6, 8') by B I sin(6 —8')

I . The free
energy is minimized (for fixed density) if the angu-
lar distribution function satisfies

lnf (8) = p f f(8 ')P(8 —8') de'+ X, (4)

where ~ is a Lagrange multiplier to be chosen so
that f obeys the normalization condition

f f(8) de= 1.

Defining

g(8) = —lnf(8)
d

d~ (8)

and taking several derivatives of g, Lakatos shows
that g satisfies the equation

' dP(8 —8 ) I d g(8') p

de g(e') de" (7)

g(0) =g(v) = 0, g'(0) =g'(v) . (8)

However, the solution of (7) with the boundary con-
ditions (8) cannot depend on the density since p
appears nowhere; but in the limit of low density
the only minimum of the free energy (3) occurs
for the isotropic distribution; hence anisotropic
distributions can have no physical significance,
and no phase transition can occur.

Unfortunately, the claim that the boundary con-
ditions (8) are sufficient to determine a solution of
(7), and the assumption that any solution of (7) is

in which the density p does not appear. It is then
suggested that a solution of (7) is determined by the
boundary conditions

In Fig. 1, I show the dependence of this function
on p and p. For pB sufficiently large the minimum
value does not occur for the isotropic function.
Therefore the minimum of the free energy (3) must
occur for some anisotropic distribution, indicating
the existence of a phase transition.

Finally, in Fig. 2 I exhibit a specific aniso-
tropic solution to the original problem. This solu-
tion was obtained by integrating the differential
equations

—lnf (8) =g(8)
d8

d2
, g(8) = -g(8) 2p&f(8) g(8)—

by the point-slope method. " For any choice of the
initial values f(0) and g (0) a solution of these equa-
tions can be obtained; f(0) must be determined,
however, by the normalization condition (8), while

g (0) is determined by the condition that g(8) be
periodic with period v [Eq. (8)]. The set of equa-
tions has an anisotropic solution for pB& 3v/2; at
low densities the numerical techniques yield only
the (disordered) isotropic solution.

Thus the mean-field theory predicts the existence
of a liquid-crystalline phase in two dimensions. "
This result is in accord with our experience with
other types of systems, and is thus not really
surpr1s lng.

Timling' has given a scaled-particle treatment
of the two-dimensional gas of hard asymmetric
particles. The angular distribution function is
again determined by an integral equation of the
form (4), but the factor p is replaced by a. function
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N

length fluctuations in order. Several parallel, but

not wholly equivalent, arguments of this sort can
be given.

A. Anisotropic Elastic Medium

FIG. 1. Behavior of the right-hand side of Eq. (10)
as a function of the parameter y, for various densities.
The case tIt) = m/2 is the isotropic limit; we see that for
sufficiently high density the minimum free energy occurs
for some nonisotropic distribution function.

of the density. He finds a second-order phase
transition at a density in reasonable agreement
with the Monte Carlo studies.

I commented above that the deletion of the
higher-order terms in the virial expansion (2) can-
not be justified in two dimensions by the argument
Onsager used in three dimensions. The effect of
these higher-order terms can be estimated by
study of a model first proposed by Zwanzig. ' He

considers a gas of very long rods which are allowed
to have only two orthogonal orientations. If only
the graph integrals of leading order in the length-
to-breadth ratio are kept, a great simplification
in the computation of the virial coefficients results;
in this way the coefficients of terms through p' in
the expansion (2) have been, calculated. "'" In the
Onsager or mean-field approximation, this model
predicts a second-order phase transition; however,
with the successive inclusion of the higher-order
terms the position of the transition is strongly
affected, and in some truncations the transition
does not occur at all. "

The higher-order terms in the expansion (2) will
be comparable to the corresponding terms of the
Zwanzig model; since the latter are important, no
definite conclusions may be drawn concerning the
existence of liquid-crystalline order in two dimen-
sions.

The simplest but least rigorous of these approach-
es is based on the concept of an elastic restoring
fprce. e assume that we may assign lpcally a
unit vector n(r ) (the "director" ) indicating the mean
orientation at z, which will fluctuate about an av-
erage orientation zo. Symmetry requires that the
free energy does not depend on the orientation of
no, and hence suggests that it should depend only
on the gradients of n(r). A low-order expansion
then gives '

E=E 0—+' f [«(v ~)'+«„(&&&n) ]d ~ . (13)

This is the two-dimensional analog of the Oseen'-
Zpcher —Frank elastic thepry. This expansipn
could equally well be made in terms of the deriva-
tives of a position-dependent orientation angle
6(r), related to n(r) by ~(r) =xcos8(r)+y sin6(r):

E=EO+-, f [«,(n~&6) +«„(n &8) ] dr .

A simple equipartition argument ' shows that the
thermal average of the kth Fourier component of
the fluctuating part of 8(r) is given by 4

where k, and k, are the appropriate components
of k with respect to the equilibrium director rso.

As in I andau's discussion of crystalline order, '
this expression may be used to show that the mean-
squared displacement (I 6(r ) —8O ~

2) diverges
logarithmically with the size of the system; it can
also be used to show that the correlation function
(I 8(r) —6(r') I ) increases indefinitely at large

III. ORDER-DESTROYING FLUCTUATIONS

Our previous experience with two-dimensional 0

systems having a broken continuous symmetry
(such as the continuous range of possible axes of
average orientation of a gas of ellipses) is that
long-range order is destroyed by the long-wave-

FIG. 2. Function f(0) for the case pB=5.23, as de-
termined by a numerical solution to Eqs. (11) and (12)
with boundary values (5) and (8). Since this density is
not much greater than the critical density pB =3m/2, the
function is not too strongly peaked.



J. P. STRA LEY

separation (compare Ref. 6). The conclusion we
would like to draw is that the equilibrium director
no does not exist, i.e. , there can be no "spon-
taneous order"; but to do so we must defend the
other assumptions leading to (15), in particular,
the validity of the phenomenological expansion (14).

B. Bogoliubov. Inequality

A more rigorous discussion of order in two di-
mensions generally can be afforded by use of the
Bogoliubov inequality. The conclusion of this sub-
section will be, however, that this technique seems
to have no direct application to the present problem.
I will attempt to construct an argument patterned
on its previous applications to classical sys-
tem&, ' ' motivating as completely as possible
the steps involved, and indicating how this problem
differs from those previously considered.

Let N particles be confined within a square (two-
dimensional) box of side I, and assume that their
configuration can be specified by a set of position
coordinates r; and orientations 6;. We define the
configurational partition function Q by

(16)

and the configurational average of a function f by

(f) = J Jf(r, , 8,) e "d"r-d"8/q,

where

over k, the resulting divergence in two dimensions
forces us to conclude that Al is zero.

Consider first a deformation of a given config-
uration described by the transformation

8;-8,+p(r, ), (2O)

where p is some slowly varying function which
vanishes near the edges of the box. The change
in potential energy caused by this deformation is

82
5U=Zp(r;) U+ & Z p(r))p(re) U+ ~ ~ ~

(21)

We will take the energy associated with a fluctua-
tion described by p(r ) to be the average of (21):

a2
+ — p r& p r~ — — U (22)

which is of the form P(2IB I ), with

The first term may be shown to vanish by consid-
eration of the integral over 8;. After an integration
by parts the second term becomes

(eee)=le Zo(o;) se rrEe( )se &o), (ee)
i J.

U= ~z Q (1& (r; —r;, 8;, 8;) —fQ cos2(8; —80) B=ee P(r;) U (24)

is the potential energy, g is an orienting field, and
where the integrals all run over the interior of the
square box. The field f will eventually be put
equal to zero; however, it serves to break the
symmetry and allow the order parameter

M =(cos2(8, —8O)) (18)

to be defined.
Since all weighting factors in the average (17)

are positive, we can establish a Schwartz inequality

(19)

I hope to make use of this inequality by showing
that it is inconsistent with the existence of an order
parameter. The choice of A and B can be motivated
by the following considerations: The average
(AB) is to be proportional to the order parameter,
and (I Bl ) should describe the small energy (-0 )

required for a long-wavelength fluctuation in order.
Then the inequality (19) will have the form
(I&), l ) & ~ /ck; when this inequality is integrated

In the special case that the interparticle poten-
tial has the form ~

C(r; —r;, 8;, 8, ) =u(r; —r;) v(8; —8,),
Eq. (22) can be written as

(26)

e&lBl') = -~ I:~(,) -~(.,)]'.(,—,)2, .

82
~ '. . .(e, e,),cere (,-,)...e(e, -e,)) .

(26)

Since u is short ranged, the only terms that enter
the double sum are pairs of particles that are close-
to each other; since q is slowly varying, y(r, )
—y(r;) equals (r; —r;) Vp(r;) to good accuracy.
Then this expression is reminiscent of the elastic
theory considered above in that the first term is a
function of only the gradients of p.

Putting p = cosk r, we then have

e((lee(ls)= —, s(s (~ o,))'s'o 'k s(.~ — ~) (e —e) e(Z osk' oose(e e)) . (27)
p J i
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Since u is short ranged, the double sum is only of
order ¹ in the small-k limit this term is depen-
dent on the direction of k and proportional to k .
The oscillatory part of the cos k' r may be neglect-
ed in taking the indicated average; thus, we have

P(~ B
~

') =XC„a'„+XC,n,'+ 2I)ILI)d (28)

for some C, I
and C~.

Now we choose

1 2A = —g sin (8, —80) sink ~ r, 1

and the average (AB) becomes

(28) = —(-Z cos'2,. cos2(S,. —2,)) =2 2M,

(3O)

where again the oscillatory part is negligible. Then
the inequality (19) becomes

21
SC 2 slo2(HSc)sl;o 2' c' )

M
+~ f 3+2~~

which is standard form for arguments of this sort.
The thermodynamic limit is now taken, and the in-
equality is integrated over a restricted region of
k space (e & I k I &K). The left-hand side is bounded
by unity; the right-hand side can be made arbitrar-
ily large by choice of & and f small enough, if the
order parameter is finite. In order to retain the
inequality we are forced to conclude that M van-
ishes.

Unfortunately, the interparticle potential is not
generally of the form (25), and hence the rewriting
of U in terms of the gradients of y [Eq. (26)]
cannot be done. The physical meaning of this is
simply that the deformation 8,- 8;+y(r, ), in
which the particles rotate but do not move, is not
a good description of a fluctuation in a liquid-
crystalline phase. The geometrical basis for this

FIG. 4. Transformation (32' retains local order, and
thus does not suffer from the disadvantages of trans-
formation (20). Small angular displacements over a
large region give rise to large positional displacements,
however, and thus inevitably to large strains.

fact is illustrated in Fig. 3.
There is a second obvious choice of deformation:

the transformation

8;- 8, + y (r;), r, - r, + X,(r,), (32)

where y(r;) =VxA;(r;). This class of deforma-
tions includes the uniform rotation of a configura-
tion about a fixed point, and the potential energy
does not change in regions in which y is constant,
because the transformation retains relative orien-
tations locally. Nevertheless, the change in po-
tential energy caused by a deformation of this form
is, in general, of order p rather than of order V'y,
due to terms in the expansion of U of order V )A ( .
The point is that a small angular displacement
over a large area gives rise to a large positional
displacement. In Fig. 4, I show how the trans-
formation (32) attempts to retain relative orienta-
tions locally, treating the initial configuration as
if painted on an elastic sheet. Thus, our conclu-
sion is closely related to Mermin's observation
that the two-dimensional harmonic lattice retains
directional long-range order.

Analogy with previous applications of the
Bogoliubov inequality suggests the choice B= dZ, /dt,
with

J, =Z, sinq ~ r;(I8, + r, x p,), (33)

where I is the moment of inertia of a particle about
its center of mass. This choice fails even for a
noninteracting system, for which case it can be
shown that

8;+p, r,

FIG. 3. Typical configuration before and after the
transformation 0& 8&+ fIf). The potential energy is
greatly increased, because of the overlapping particles,
even though q is constant in space. Thus, the change in
energy is not a function of the gradient of q alone.

x [-,'Ik~ Tq'+ 3~,'. q' —2(q r;)']), (34)

where the averages over momentum space have al-
ready been taken. Although this expression van-
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ishes as q in the long-wavelength limit, the co-
efficient of q is of order NJ: The denominator
of Eq. (19) cannot be regarded as small.

C. Broken Symmetry

In Sec. IIIB, I have attempted to provide a ra-
tionale for the choice of functions A and B to use
in the Bogoliubov inequality. I will now restate
those considerations in a different language in or-
der to make clear that no simple resolution of the
difficulties found there has eluded me. Consider
now the quantum-mechanical version of the
Bogoliubov inequality &: For any operators A and

C,

P(AA +A A) ~ 1([A, C])l /([[C', a], C ]), (35)

where H is the Hamiltonian operator, and the an-
gular brackets now represent canonical-ensemble
averages. The first desideratum of any proof we
should construct is a series of operators C-„such
that the denominator in (35) vanishes as k in the
small-k limit. This requires that the limit Cy p

be a constant of the motion. The simplest con-
stants of motion are the conserved quantities con-
jugate to a symmetry of the Hamiltonian; the
relevant symmetry is in general the one broken
by the ordering. In our case, it is the rotational
symmetry that is broken by the existence of M;
the only explicitly known constant of motion related
to this symmetry is the total angular momentum

I =Q; 8; I++; r,.x p,

led to the transformation (32). I conclude that one
cannot improve on the simple considerations
presented above.

IV. CONCLUSION

I have shown that neither the low-order ap-
proximate equations of state based on the Onsager
virial expansion nor the usual Bogoliubov tech-
niques can be justifiably interpreted as ruling out

long-range order of the liquid-crystalline type.
I have succeeded only in showing that two-di-
mensional liquid crystals, if they exist, cannot

obey the Oseen-Zocher-Frank elastic equations.
In the Onsager theory for the ordering of long

hard rods it is essentially the differences in en-
tropy (i.e. , the relative regions of available con-
figuration space) between ordered and isotropic
phases which cause the phase transition. The un-

successful use of the Bogoliubov inequality was
motivated by consideration of the change in poten-
tial energy involved in a fluctuation in order. All
previous successful applications of this technique
to classical systems have been dominated by the
potential energy in the sense that the ordered state
could be characterized by a potential energy min-
imum. In view of the fundamentally different na-
ture of the Onsager ordering, it is perhaps not
surprising that the Bogoliubov technique fails, and
until a method of estimating the changes in entropy
associated with a fluctuation is found, the question
of two-dimensional liquid-crystalline order will
lack a rigorous discussion.

The angular momentum operator generates the
rotation

(3&)8; 8+5, r;- r +r xgg,

which is the special case of the transformation
(32) for which y is a constant. Thus, in the ab-
sence of a specialized assumption such as Eq. (25),
which decouples the position coordinates r, and
the orientation coordinates 8;, one is naturally
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A relationship between the Brueckner and Jastrow many-body theories, which was previously
derived for three- and four-particle wave functions, is shown to be valid for any number of
particles.

I. INTRODUCTION II. DERIVATION

Two widely used approaches to the ground-state
problem of quantum fluids are the reaction-matrix
perturbation theory of Brueckner and Goldstone' '
and the Jastrow method of correlated basis func-
tions's (called for brevity the Jastrow-CBF meth-
od). Both methods can be applied to either fer-
mions or bosons, ' and are applicable to liquid 'He,
liquid 'He, and nuclear matter. The two theories
are based on similar physical ideas, but the pre-
cise relationship between them remains to be clar-
ified. Backman, Chakkalakal, and Clark have
made a numerical comparison of the two theories
for nuclear matter. Wong has shown how the lead-
ing approximation in one theory is related to that
in the other. Sim, Woo, and Buchler' have found,
for weak potentials, that there is complete agree-
ment between these two approaches through the
first four orders of perturbation theory. In the
development of practical methods for calculating
three- and four-body terms in the Brueckner the-
ory, a simple approximation has been found that
leads to the Jastrow form for the three- and four-
body wave functions. ~' The purpose of this paper
is to demonstrate that this connection between the
two theories is valid for any number of particles.
A certain subclass of diagrams in the Brueckner
theory, evaluated in a well-defined approximation,
gives a total wave function of the Jastrow form,
i.e. , a product of two-body correlation functions,
one for each pair of particles.

The result will be derived for spinless bosons.
The fermion wave function can then bc approximated
by multiplying the boson result by the unperturbed
fermion ground-state Slater detern;i". ta,;, as sug-
gested by Wu and Feenberg. "

A complete reaction-matrix perturbation expan-
sion for a system of many spinless bosons has been
derived by Brandow. ' His result can be understood
in terms of the corresponding Brueckner-GoMstone
expansion for fermions, interacting through the
two-body boson-boson potential. If the spin degen-
eracy of the fermions is taken to be greater than
or equal to the number of particles N, then the un-
perturbed fermion ground state is the product of
two factors. The first factor is a, completely sym-
metric spatial function consisting of a product of
N zero-momentum plane waves. The second factor
is the completely antisymmetric O'I.ater determinant
of spin functions. The two-body boson potential
does not affect the spins of the fermions. Thus, in
all higher approximations thi= spin function re-
mains as a constant factor, multiplying a completely
symmetric spatial. function. When the calculation
is finished, the fermion spi.n function is discarded,
leaving a completely symmetric spatial wave func-
tion, which will be the correct many-boson wave
function. ~

We therefore consider the Brueckner-Goldstone
expansion for the many-body wave function +. The
two-body potential is assumed to have a hard core


