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In a previous paper, the stabilization method of calculating resonance parameters was ap-
plied to a one-dimensional model problem of potential scattering. The method is here ex-
tended to compound-state resonances in elastic scattering, Rnd its application to a model prob-
lem for a target with two bound states is examined. The resonance parameters are calculated
by two methods which use information obtained in the diagonabzation of the exact Hamiltonian
in appropriately chosen sets of square-integrable basis functions: One is presented for the
first time here; the other is similar to the procedure used in the potential-scattering problem.
In addition to the stabilization method, we have applied to the model problem some other tech-
niques, which have been previously proposed for the calculation of I esonance parameters. The
availability of the exact solutions enables us to make some preliminary assessments of the re-
liability and tI1e difficulty that might be expected f1om these Rppx'oximation methods.

I. INTRODUCTION

Methods for calculating resonance parameters
may be divided into two categories. In one, the
experimentRllst 8 Rppl oReh ls followed: The 6Ilt1x'6

scattering problem is solved, in some approxima-
tion, for many energies, and the resonance energy
and width are extracted from the energy-dependent
cross section. The method of close coupling falls
into thi. s category. ' In the other, E„and I" are cal-
culated directly from approximations to the exact
resonance wave function. One example is the sta-
bilization method ' which we propose to study
here.

In a previous paper, ' the stabilization method was
ppl dt tt . gfo o -d, s l odl

potential whose barrier gave rise to so-called
single-particle resonances. The understanding of
the method was enhanced by the possibility ot com-
parison with the exact results. Often the reson-
ances of interest, such as those in e-H or e-He'
scRtteI'1ng, RI'6 examples of compound I'eson-
ances, i.e. , resonances which are associated with
excited states of the target. '3 In this paper, we
shall extend the stabilization method to elastic
scattering from a target and study its application
to a model problem which simulates the scattering
from a target, and in which compound resonances
OCCul.

The stabilization method for finding resonance
pRx'Rmetel 8 may be briefly summarized: Aftel th6
choice of an appropriate basis of square-integrable
functions, the complete Hamiltonian II is diagon-
alized ln successively lRI'gex' bases. Fox" sufficiently
large basis sets, the presence of a "stable" root
indicates a resonance, and the degree of stability
of that 1"oot 18 R measure of the width.

In the course of studying the model problem of
potential scattering in I, it was learned that the N

eigenvectors resulting from the diagonalization of
II in an N-dimensional basis were approximations
to the exact wave functions at energies given by the
corresponding roots. The eigenvectors represented
those exRct solutions wh1ch hRve R node Rpploxl-
mately where the (square-integrable) eigenvectors
exponentially go to zero. By examining the '"mall"

at which the last added basis function goes to zero,
the slope of the stable root as a function of the basis
size could be related to t e resonance energy and
width. The resulting values for E„and I' obtained
from this application of the stabilization method
compared favorably with the exact results.

When extended to scattering from a target, the
stabilization method is complicated by the presence
of the target states. The simplest kind of basis,
where exchange does not enter, might consist of
product functions u„(r)y, (ro) where y, represent
the target states and (u„) is the basis for the scat-
terer. In I, all of the basis elements contributed
in the scattering region; in elastic scattering from
the ground state pl of the target, basis functions
of the type u y, contribute in the scattering region,
whereas all others contribute only in the inner re-
gion. This may be seen by an analogy with close
coupling, where the complete (no-exchange) wave
function may be written

@~=K tg(roV', (r) .

For elastic scattering, only E,(~) is nonzero in the
asymptotic region. We write the jth eigenvector
associated with the eigenvalue && that results from
the diagonalization procedure as

In this expression, the /= 1 term): ', u (r)c'~,)
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will represent the scattering function E,(r). When

the eigenvector associated with the resonance state
has been identified, information from the scatter-
ing part of the eigenvector, i.e. , the t = 1 term of

Eq. (1.2), will yield the resonance parameters. In

the following, we refer to basis functions of the form

cp, (ro)u (r) as "type-t" functions, t= 1, 2, . . .T.
The extension of the stabilization method to com-

pound resonances is discussed in Sec. IIA. Two
methods for calculating E„and 1 (and, in some
cases, the potential phase shift 5~) are developed
in Sec. IIB. The first is a new method which ex-
presses the change in energy due to the addition
of a type-1 basis function in terms of the resonance
parameters; the second is an elaboration of the
method used in I.

We shall apply the stabilization method to com-
pound resonances occurring in the elastic scatter-
ing from a fictitious target which has two states.
In Sec. III, we discuss this model problem and its
exact solution in detail, and present the results of
the stabilization methods. In Sec. IV, we apply
some additional approximation methods for finding
resonance parameters to the model problem. These
methods, in general, make use of Feshbach's pro-
jection-operator formalism, and range in com-
plexity from complete neglect of the continuum of
QQQ~to inclusion of all continuum states by a per-
turbation approach. In addition, we study two
methods recently proposed, the "adiabatic" approx-
imation of Muckerman and the "Golden-rul. e-like
formula" of Miller. 7 We conclude the paper with
a few remarks concerning the comparative virtues
of the methods considered.

II. STABILIZATION METHOD

A. Qualitative Remarks

For scattering from a target with internal states
at energies E„ i =1, 2, . . . , the exact (no-exchange)
scattering wave function is given by Kq. (1.1).
In Eq. (1.1) ro represents the coordinates of the
target particles, r is the coordinate of the scat-
terer, and E is the total energy. In the case of
elastic scattering from the ground state of the tar-
get (E, & E& E2), p, (ro) is the exact ground-state
wave function. The other functions p, (ro), t& 2,
may represent either the true excited states' or
pseudostates chosen to improve the convergence
of the expansion in Eq. (1.1). In the stabilization
method for specific energies the channel functions
F, (r), including the continuum function E„are ex-
panded in terms of a set of square-integrable basis
function u (r), m = 1, 2, . . . . Thus, the scattering
wave function 4~ is approximated by the expression
in Eq. (1.2). The specific energies e& and the ex-
pansion coefficients c'~,' are just the eigenvalues
and the corresponding eigenvectors obtained from

the diagonalization of the complete Hamiltonian in

the basis (y, (ro)u (r)I. t=1, . . . T, m=1, . . .M, .
Next, we come to the major assumptions of the

stabilization method. Let us assume that the basis
set is sufficiently large to span the range of the po-
tentials involved in the problem. Then the expan-
sion of the closed-channel functions E„ t ~ 2, in ter ms
of {u ) converges because for t&2thefunctions E,
themselves are exponentially decaying in the as-
ymptotic region. The expansion of the continuum

function F„however, cannot converge in the strict
mathematical sense. Nevertheless, based on the
results of I, we assume that the expansion of F, in
terms of the square-integrable basis functions
determines the specific energies e& and contains the

scattering information. For a given basis set
(u )m= 1, . . . M, those eigenenergies e& (between

E, and Ez for elastic scattering) are produced by

the diagonalization for which the open-channel func-
tion E,(r) has a node at the point where the ampli-
tude of the basis function uu(r) becomes negligible,
say x~. The point x~ is not uniquely defined, but
in most cases one can reasonably assume that it
equals the outer classical turning point of u„(r).
This is the definition we adopt for the discussion
that follows. (Here we take the basis set to be
so ordered that r &r, for all m. ) Correspond-
ingly, the expansion

S,(r)=g u (r)c",' (2. 1)

is a good approximation, apart from an arbitrary
normalization constant, to the function E, out to

The numerical results presented in Sec. III
show that these assumptions are essentially correct

Next, we briefly discuss the "stabilization" prop-
erty of certain eigenvalues obtained in the diagon-
alization. Let us assume that for a given basis
set (large enough such that ru is greater than the
range of the potentials) one of the eigenenergies,
say e,, is close to the resonance energy E„. Then,
based on the results of I, we predict that && will be
stable with respect to the addition of basis func-
tions y,u~, j, regardless of the value of t. For
t ~ 2, c, will not change significantly as y,u~„ is
added to the basis because, if x~ is greater than the
range of the potentials, then the expansion of F,
in terms of (u„}m=1, . . .M has already converged.
The fact that e~ will decrease only slightly (depend-
ing on the magnitude of the width I') with the addi-
tion of p&u~, &

to the basis can be shown using argu-
ments exactly analogous to those given in Sec. IV
of I, with the open-channel function E,(r) substituted
for tl.e scattering function 4'(x) of I. Qualitatively,
it is known that, for energies near E„, 4~ has a
much smaller amplitude in the asymptotic region
than in the inner region. We can argue that, since
z~ is greater than the range of the potential, p&u&, q
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contributes only to the asymptotic part of 4E which

has relatively small amplitude. As a result, u~„
enters the expansion of E& with a small coefficient,
and the eigenenergy E& is only slightly affected.
Again, the numerical results presented in Sec. III
show that these arguments are essentially correct.

In addition to the stabilization property of an ei-
genvalue near E„, the behavior of the expansion co-
efficients in the associated eigenvector 4& also in-
dicates that a root near E„represents the resonance
state. In the sense that a resonance state is a
"quasibound" state, and thus 4» is larger in the in-
ner region than in the asymptotic region, we expect
for a resonance associated with the tth target state
that c'~,' (for one or more m values) in Eq. (1.2)
will be large for the u which contribute most in the
inner region. In particular, large c'&'will indicate
single-particle resonances while large c",' for t
11 will indicate compound resonances. Hence, we
can apply the stabilization method equally well to
both types of resonances.

The Hylleraas-Undheim theorem ensures that,
with the addition of basis functions, all roots de-
crease, i.e. , e,' "«e,'"' for all i, where N is the

total number of basis functions (N=g~=qM, ). Since
for elastic scattering E, contains the scattering in-

formation, the variation of the resonance root e'&

with the addition of p, u basis functions enables us
to determine the resonance energy E„and, to a
good approximation, the width I .

B. Calculation of Resonance Parameters

Since the eigenvector associated with the stable
root is a good approximation in the inner region
(save, for an over-all normalization factor) to the
exact resonance eigenfunction, and since it is known

how to extract resonance parameters from the ex-
act eigenfunction, one might hope to develop a nor-
malization-independent formalism in which the re-
sonance parameters can be extracted from the

eingenvector produced by stabilization. This is ac-
complished by considering the change in the jth root
in going from an N to (N+ 1)-dime-nsional basis, i. e. ,
4e'"+" -=e'"+"—e'"'. Taking Q,] as the basis
[e.g. , g, = p, (ro)u„(r)], let 4, be the jth eigenvector
from the diagonalization of II using N basis func-

tions, and let y, be the corresponding eigenvector
from N+ 1 functions. Then it can easily be shown-

I

and will be so done in Appendix A-that for the jth
root we have

~e(N+1) & J 4+1&(4N+1X.P&

(4,X,&

(2. 2)

In order to introduce resonance parameters, we
make the assumption that y, , apart from the nor-
malization, is a good approximation to the inner
Pa& of the exact wave function 4~ at E= e,'N"'.
Guided by the Feshbach formalism of projection
operators, we define Q =

I X,)(X, l, and construct
Q4', which for e&

+" near E„gives a relationship
between y,. and +;,

(I y2,)'~'(&&" »- Z„+ -,'fr) '~ X, &. (2. 3)

&0 .X;) = && . K& (
'""—E.+-' I')

for I = 0 . (2.4)

if the N+ 1 dimensional basis ($&j spans into the

asymptotic region and the last-added basis function

g„„contributes only in the asymptotic region, then

in the integral (g„.,4'; &, 4'; may be replaced by its
asymptotic form

(kv) '~or 'Yoo(r) e" sin(kr+5) p, (ro),

where k = &&""'—E, ~
' We see here the justifica-

tion for our previous statement that resonance in-

formation is obtained from the addition of type-1
functions to the basis set, for otherwise in this ap-
proximation (g~,~4", &

= 0. If one writes

IN+1 [uu+1(r)l'r] Yoo(r) Ws (ro) ~

where N=M+ g&=o M, , then after some simple alge-
bra one may express ~e '"" in terms of the three
resonance parameters E„, I", and 6~:

(Here, we write e for e,'.""in all relevant sub-
scripts. ) It should be emphasized that Eoi. (2. 3) is
valid only in the inner region where y~ is signifi-
cantly different from zero. For l=0 scattering,
o.' is the so-called potential phase shift &~. Details
of the derivation and the generalization to l WO scat-
tering are given in Appendix B. Thus, we can write
for E=e,'. "' near E„,

he'"+"= ' "" (-'kI') ' ' [(e' "—E )(S„„cos5,+C„„sin5,)+-,I'(S„., sin5, -C„., cos5,)],
(& X, &

where

S„„=f dr sinkru &( u), r

Cu~g = f dr coskr uu~g(r ) .
By use of the eigenvectors for several stable roots,

the values of ~&'"'" are fitted against the function

in (2. 5) to produce approximate values for E„, I',

and 6~. The reader is reminded that this method

can be expected to give good results only when X;
is a good approximation to the exact resonance



ALC U LA TION 0 F E NE RGIE S AND WIDTHS 0 F COMPOUND - STATE ' {)65

lp
a(E) = 8,(E) + tan '

r
(2. 7)

yields an expression for de&"'/dr„ in terms of E„
and r":

d6(N) 4',= —2e r~+ 4(E ')2, . (2. 8)

As before, H=M+g, 2M, ; and we have simply
written 6 for 6g in the right-hand side of the last
equation. Here the potential phase shift is assumed
constant over the energy range considered; if we
wish to relax this restriction, the expression in
Eq. (2. 8) becomes altered by adding dip/dE to
21/[4(E„—e) + I' ], the latter being d5„,/dE The.
criteria for the validity of this expression are dis-
cussed in I, and may be summarized in the state-
ment:

range of potential &r~«4 &k/I' .
In order to convert Eq. (2. 8) into an expression

for de&"'/dM, one must know the relationship be-
tween r„and M for a given basis set (u ). The
explicit expression for de&"'/dM applicable to the
harmonic-oscillator basis set, which we use in
the treatment of the model problem in Sec. III, is
presented in Appendix C. After calculating the
slope dt&"'/dM of the stable roots resulting from
the diagonalization of K, approximations to E„and
I' (and, if desired, de/dE) are calculated by fit-
ting the slopes of c&"' with the function in Eq. (Cl).

In Sec. III, after discussing the model problem
and its exact solution, we shall use the two methods
described here to find approximate values of the
resonance parameters.

III. MODEL PROBLEM

The model problem to be examined consists of a
target with two bound states and an incoming parti-
cle with insufficient energy to excite the target out
of its ground state. The target states y, (y) and

y2 (y) are eigenstates of H2, with eigenenergies,
respectively, E, and E3. For this fictitious problem

eigenfunction in the inner region (we shall see
better what is meant by this during the calculation),
and when g„„does contribute only in the asymptotic
region.

The second method expresses de&"'/dM as a func-
tion of E„and 1. Its derivation is essentially the
same as the derivation of Eq. (31) in I, so our dis-
cussion here mill be brief. If we assume that the
point r„at which the Mth function u& becomes neg-
ligible coincides with a node in the exact eigenfunc-
tion for 0& = &&

' —E„ then the boundary condition

k,. ra+ 8(eq") = nm (2. 6)

(n is some integer) together with the Breit-Wigner
form for the phase shift

in which there exist no additional eigenstates of Ko,
the eigenfunction of the complete K at some energy
E may be written

x+(x,y) =F, (x) p, (y)+F2(x) y2(y) (3. 1)

The equation (E —H) 4 = 0 may be equivalently writ-
ten as two coupled equations,

d'
~

E- E, + 2
—V»(x) ~, (x) = V»(x) F2(x), (3. 2a)

t' d'
E2+ 2 V22(x)~ F2 (x) V2l (x) F1 (x) (3 ~ 2b)

dx

where

V;& (x) = J dy V; (y) & (x, y) V& (y)
d2

for H = H2 —
d 2 + '0 (x, y)dx

We consider the region x &0 and solutions for which

F, (0) =F2(0) =0. The potentials V,& (x) are taken to
be square wells:

V() (x) = X)

V2, (x) = V2, (x) = q

v„(x)=0

for x&a,
for x&a,

for x &a, i,j=1,2.

(3. 3)

(where k, =E —E; for i =1, 2) and their derivatives,
the four unknowns a„a~, n„and n2 are determined.
This, of course, is valid for all E. For E, &E&E2
when only elastic scattering is energetically allowed, .
F2 is a square-integrable function (i. e. , ik2-=-X2

In addition, the energy E satisfies E, &E&E~. By
taking V22(x) to be sufficiently deep to hold a bound

state, resonances associated with the second target
state occur.

These equations call to mind the radial equations
for / = 0 resulting from truncation of the close-cou-
pling expansion in Eq. (1.1) after the first two

terms. Thus, we may hope that observations made
concerning the various approximation methods for
this specific model might be applicable to more
realistic situations.

The exact solution of the model problem is easily
found. Briefly, by eliminating F2 (x) from Eqs.
(3. 2) for x & a we obtain a fourth-order equation for
F, (x) whose solution is of the form

F, (x) =a, sin (p x)+a2sin(p. x)

Here P, depend explicitly on the parameters of the
problem: E„E&, X„X~, g, and a. The function
F2 is immediately determined from F, by Eq. (3. 2b).
By connecting I', and I'~ and their first derivatives
at x =a to the asymptotic solutions
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is real). From the conservation relation l&'I
the phase shift 0 is given by

tan6=- Imn, (1 —Ben, )
'

Our procedure was to choose a set of parameters
(E„X„g,and a) and calculate the phase shift 6 for
a range of E values sufficient to exhibit resonance
behavior. We fitted the resulting values of 5 (E)
against the Brett-Wigner form in Eq. (2. V), where
6~ was taken to be a second-degree polynomial in
E, and thus computed the resonance parameters
E„, I', and D~ at E=E„.

To obtain resonances of varying widths, we re-
peated this procedure for several values of the cou-
pling g, holding the other parameters fixed. In
particular, we chose the following parameters for
the problem: A. , =5, A2-——16(whichhas a bound
state at E'= —9. 8765), E, =0, and E2= 100 for wells
of width a = 1. The values of coupling considered
were &= 1.0, 10, and 20„ It may be noted that
equivalent results are obtained for a well of width
a 41, if the energy and potential parameters are
reduced by a factor a .

To be free from all approximations (even that in-
troduced by the fitting of 5 with the Breit-Wigner
form), the T matrix, as defined in F, -sink, x
—Te "~", was calculated in the complex-energy
plane. One can define the position of the pole as
E„—2il in absolute terms, without reference to
the potential or resonant part of T. The pole posi-
tion calculated for g =10 agreed to better than 0. 1/q

with the result found from the Breit-Wigner fit.
We thus refer to the resonance parameters obtained
from the Breit-Wigner fit of the exact phase shifts
as the "correct results" —these results are pre-
sented in the first column of Table I, for the three
couplings considered. To faciIitate comparison
among the various approximation methods studied
throughout the paper, representative results of

each method will be included in Table I along with
the exact results.

With the correct results available for comparison,
we are now ready to apply the stabilization method
to the model problem. For our basis we choose
functions of the form p;(y)u (x) (i=1, 2), where
the functions u (x) are the odd (i. e. , zero atx=0)
harmonic-oscillator functions, normalized on an
interval [0, "j. In terms of the Hermite polyno-
mialsk (nx), wehave

s/2
x„(x)=((,„„(,, A,', (x*) e'"x'*

~ p

where n = 2~. It is useful to write the matrix
representation of H in four blocks

(tl(( H12)
H21 H22

where

(~~d) = x (x) -d~e„+V„()) „(x)dx

Here, of course, Vz'(x) are the square wells given
in Eq. (3.3). These matrix elements are easily
evaluated with the aid of recursion relations for
u . The dimensionality of HII is Mr&Mr, so that
complete H is NxN where N=M, +M~.

Before proceeding, we seek a frequency v for
which a reasonable number (say, 20 to 40) of func-
tions u spans the entire range of the potential.
Diagonalizing H22 (i. e. , a square well of depth X,)
in a basis of M~ functions, we obtained the best re-
sults with co = 30: The lowest root gave the bound-
state energy to five places of accuracy, whereas
the corresponding eigenvector represented the
exact eigenfunction to better than four figures.
Hence, for the diagonalization of complete H, we
used basis functions with co = 30.

TABLE I. Comparison of the exact and approximate resonance parameters. Columns A. and B: stabilization method
with Eqs. (2. 5) and (2. 8), respectively. Column C: Feshbach's method neglecting the continuum of QIIQ. Column D:
Feshbach's method with PC 0 [Eq. {4.8}]. Column 8: Muckerman's adiabatic method. Column F: Miller's method.

Exact
results

Approximate results
CR D

1 ~ 0

10~ 0

20. 0

90. 1346
0. 001472

—0. 2718

91~ 216 1
0 ~ 172 0

—0 ~ 185 4

94. 383 6
0. 7912
0. 0507

90 ~ 134 7
0. 001484

—0. 3012

91~ 216 1
0. 1711

—0. 1802

94 ~ 386 9
0. 7869
0. 0775

90. 134 7
0. 001591

91~ 215 5
0 ~ 1666

94.381 8
0 ~ 7883

90. 1346
0 ~ 001470

—0 ~ 272 7

91~ 218 5
0 ~ 153 7

—0 ~ 2694

94 ~ 3875
0. 6633

—0 ~ 2600

0 ~ 001 473
—0 ~ 271 8

0 ~ 173 7
—0 ~ 183 2

0 ~ 806 3
0. 1336

90 ~ 134 6
0 ~ 001 473

—0 ~ 2719

91.215 1
0. 1713

—0 ~ 2001

94. 359 2

0. 8185
—0 ~ 0113

0 ~ 001 494

0. 174 7

0 ~ 772 1
~ ~ ~

Unshifted energy: S'„=90.1235 for each q.
"Unshifted energy: W„'=90.1350 for q=l, W„=91.2483 for p=10, and 8'„=94.3444 for q=20.
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TABLE II. Dependence of the approximate resonance parameters on the number of points used in the fitting of Eq.
{2.5) with approximation A and Eq. {2.8) with approximation B.

Number of
Method points~:

g =10
5

q =20
6 10

g
r
6p

90. 1347
0. 001 484

—0. 3012

90. 134 7
0. 001 371

—0. 213 8

90. 1347
0. 001459

—0. 2543

91.2161 91.2182 91.2183 94. 3869 94.3547
0. 1711 0. 1599 0. 1730 0.7869 0. 8346

—0. 1802 —0. 1783 —0. 1603 0. 0775 0. 0020

94. 4236
0. 8059
0. 1506

90. 1347
0. 001262

90. 1347
0. 001 591

90. 1347
0. 001 200

91.2149
0. 1658

91.2155
0. 1666

91.2162 94. 3749 94.3818
0. 1656 0. 8221 0. 7883

94. 3771
0. 8172

The number of points 1isted refers to the number && va1ues used in approximation A, and to the number of (dE&/dig
values in approximation B.

and gave the results shown in column A of Table I.
The resonance parameters calculated with the

second method, or approximation B, are also pre-
sented in Table II. The three sets of results (E„, I')
for each coupling show the variation observed from
the use of different sets of points. In the use of
Eq. (2. 8), de/dE was included as a third param-
eter, since for the problem at hand we found that
its inclusion, in general, gave values of E„and X'

which were less dependent on the number of points
used in the fit. However, the resulting de/dE was
neither independent of the number of points nor a
good approximation to the known value. Using this
method, we obtained the best results, shown in

column B of Table I, with a relatively small number
of points: five or six for the harmonic-oscillator
basis with a frequency of ~ =30.

For the three values of g investigated, the first
method gives the somewhat better results. The
fact that we have obtained reasonable results from
A is encouraging, since its use requires only infor-
mation readily available from the stabilization pro-
cedure. In contrast, approximation B demands a
knowledge of the functional dependence of the "wall"
x& on the basis size, which for some bases will not
be available. In their requirement of a fitting pro-
cedure, both methods suffer from a certain ambi-
guity of the results. But if it turns out that the
range of values obtained from a reasonable set of
roots is more accurate than a unique result from
another approximation method, then the ambiguity
may well be a price worth paying.

Up until now, we have discussed only those roots
which are below the excitation threshold. For
E &E&, the function F3 as well as F& is nonzero in
the asymptotic region. For scattering in which two

channels are open, there exist two linearly indepen-
dent regular solutions of which some linear combin-
ation yields the desired boundary conditions. By
analogy with roots below threshold, we postulate
that the eigenvector Cz"' produced by the diagonal-
ization represents some eigensolution of H at energy
c&"'& E&. In particular, the root &&"' and the corre-
sponding solution 4» ' which appear are determined

cf
El 2 + Vll(x)

dx

Vq2 x

v„(x)
d2

E2 —
~ + V22(x))dx

we may choose
(4. I)

Thus solving

(W, —qHq) ~, =0, (4. 2)

for $, bounded, becomes equivalent to finding the
bound states of the attractive well V2~(x) at ener-
gies W, —E2. Assuming only one bound state $„,
the width and resonance energy require the solu-
tion of

(E —PH P) P40 0. ——

Her e PH P = PHP + PHOP with

H)) = JdW, HQ), )(E —W,) '(),QH .

(4. 3)

The functions $, are the continuum solutions of Eq.
(4. 2) at energy W, , and PC o is the solution of Eq.
(4. 3) at E„which takes on the asymptotic behavior

P@0-(kv) '"e")'sin(kx+ 5~). (4.4)

If G(x, x ) is the standing-wave Green's function for
Eq. (4. 3) at E=E„ then the width and resonance
energy are given by

by the two requirements that S& go to zero at a node
in F, and 8, go to zero at a node in E, . (This was
verified numerically by finding the particular solu-
tion which some 4& represented. ) A more detailed
discussion will be deferred to a future paper on in-
elastic scattering.

IV. ADDITIONAL APPROXIMATIONS

Feshbach's method of projection operators4 for
finding resonance parameters is easily formulated
for the two-dimensional model. Writing H in the
matrix representation of target states, i. e. ,
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I"= 2vi(t„V„PC,) i',

E„=H„+S„,

&„=((„V)2G(x,x ) V)2 $„),
where

(4. 6a)

(4. 6b)

(4. 6c)

PHQ = QHP = V)a.
Since the exact solution of Eq. (4. 3) is very dif-
ficult even for the simple problem at hand, one
is led naturally to performing various approxima-
tions on the so-called optical potential PH P, which
connects $„ to the continuum of the attractive well,
via V». We do this now for the model problem.

The first, and simplest, approximation we can
make is to neglect completely the continuum of V~2,

giving the solution PC,'0' of (E —PHP)PC00'=0;
we call this approximation C. For the model prob-
lem, PC p

' is the scattering solution of V» at E„.
Taking

we may write

Go(x, x') = —(I /k) v)(x()v,(x)), (4. 6)

where x( (x&) is the lesser (greater) of the two quan-
tities x and x', and v; are solutions of (E —PHP)v;
= 0. Specifically, v; is the regular solution at the
origin with asymptotic behavior sin(kx+ &0) while

v2 is the irregular solution which connects asymp-
totically to cos(kx+ 60). Because of the simple na-
ture of the solutions of the square well, &„and I'
can be expressed in closed form. The resulting
values of E„, I', and 6~ (i. e. , &,) are shown in
column C of Table I.

Higher-order approximations to I' may be made
by calculating a better solution PC 0 of Eq. (4. 3).
We do this by treating PHDP as a perturbation, so
that P@p becomes a solution of the integral equation

(P

E —PHP '

PC'o = PC o + Go PHo PC o

By iteration we get

(4. 7)

PC)')"'(x) = PCO '(x) + J dW(E —W) ' Jdx' Go(x, x') V„( (xl)fdx I ( (x«)V ~C(n-1)( ii ) (4. 6)

TABLE III. Convergence of the iterative procedure used
in approximation D to obtain improved values of I' and 0&

in Feshbach's formalism.

@=10 q= 20
r

1 0.001 473 —0.2718 0.1775 —0.1381 1.0902 —1.0357

2 0.001 473 —0.2718 0.1736 —0.1850 0.7778 0.4335

3 0.001 473 —0.2718 0.1737 —0.1832 0.8063 0.1336

where the continuum solutions $, of V22 are normal-
ized to give sin(k, x+6,) ())k,) 'i for x&a. Using
Eq. (4. 6) for Go(x, x'), we numerically integrated
over x" and W, in Eq. (4. 8) to obtain PC 0 and I
in successive approximations (i. e. , PC)~0" from
PC,'0), etc. ). In Table III we show the improved
values of I', and those of 5~, as approximated by
the phase shift of P4o"' for n=1, 2, 3. It is ap-
parent that for g = 1 and 10 the first iteration com-
pensates for most of the contribution from the con-
tinuum of V22. For comparison with the other
methods we include the results obtained from the
third iteration in column D of Table I.

Is it feasible to carry out a similar iterative pro-
cedure for ~„? Since in theory P4o may be cal-
culated to arbitrary accuracy, one might wonder
whether the full G in A„could be constructed from
two homogeneous solutions of Eq. (4. 3), similar
in form to Go in Eq. (4. 6). The resulting (numeri-
cal) Green's function would yield 6„ to arbitrary

accuracy. Unfortunately, the nonlocality of PH'P
prohibits such a product construction of G. In
fact, it appears that one is left with the unwieldy
task of expressing G in terms of a complete set of
solutions of Eq. (4. 3); a task far too costly even
for the simple problem at hand. In view of'the re-
sult that approximation C, which neglects the con-
tinuum of V», yields a far better shift than width,
at least for this model problem, it is fortunate
that by improving Pco, I" is the quantity which
benefits.

In a recent paper, 6 Muckerman applied the so-
called adiabatic method for calculating the width
to the problem of scattering by a rigid rotor. Since
his results were encouraging, we have applied the
technique, or approximation E, to our model prob-
lem. Essentially this method differs from the
Feshbach approach described in approximation C
in that it uses a basis, given by X; = C,,q, + C;&p&,
in which the Hamiltonian minus the kinetic-energy
term is diagonal, rather than the basis q; in which
the kinetic energy is diagonal, This approach gives
two coupled equations, like Eqs. (3.2), where V»
and V2a are replaced by new square wells 8)(x)
and h2(x), and the equations are now coupled by the
kinetic-energy operator. If R)(x) is the scattering
solution for the potential $)(x) at energy Z„and if
Aa(x) is the bound-state solution of $2(x) at energy
TV„, then the expressions for the width and shift
resemble those used in approximation C. For our
model problem
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I" = (2/I ) rI.'„lf'ff, (x)a,(x) dxl'

Rlld
a „=F.„—W„

(4. 9a) , 200-

.190—

= q.'« f dx ft, (x)f, dx' G,(x, x')It, (x')+ ST,

(4. 9b)

where ri,f, is a constant equal to (Bp —$,)C,p/C»
for x &a. Here Gp(x, x') is the Green's function
for the potential 8,(x), and ST is the surface term
resulting from an integration by parts. The result-
ing values of E„, I', and 5& [where 5& is taken as
the phase shift of R, (x)], which are presented in
column E of Table I, give a marked improvement
over the results of approximation C, In both
approximation C and 8 the continuum of the attrac-
tive well was neglected; however, in the adiabatic
approximation the continuum is coupled to J'40
only through the kinetic energy —apparently a
weaker coupling than the potential V,p(x). In addi-
tion, this method assumes that the kinetic energy
commutes with (C,p/C»), an assumption which
is rigorously, rather than approximately, valid
between zero and a for the square-well problem.
Therefore, although one might expect to see im-
proved results from working in the adiabatic basis,
the extremely good accuracy of the results may
indeed be an artifact of the model problem.

As the final method, or approximation I', we
shall discuss a calculation of the width proposed by
Miller. Using as a guide Feshbach's formula
[Eg. (4. 5a)], Miller calculates the width from

I'=(2/&)lf f( ) xis(&nx5+.)(H-E)C, d l'x, (4. 10)

where 4„ is a good (bound) approximation to the
exact wave function at F.„ in the nonasymptotic re-
gion and 50 is the exact potential phase shift. If
4„ is such a function, then (H E)4„ is appro-ximate-
ly zero in the inner region and the only contribution
to the integral in Eq. (4. 5a) is from the region in
which Pep has the asymptotic behavior in (4. 4)—
thus the raison d' etre of Eq. (4. 10). [The opera-
tor (H —E) instead of H appears in order to ortho-
gonalize C„and P4p. ] The function f(x) in Eq.
(4. 10) did not appear in Miller's original expres-
sion for I', in which case a surface term results
for 5040. Recently; Miller has suggested' the
use of some function f(x) for which f(0) = 0 and

f- 1 as x-~, so that PC p is approximated by a
function which is zero at x=0. For the model prob-
lem, we have calculated I" using

(i) f(x) =1 for all x
and

(ii) f(x)=1 —e

.I 80—

r
. I 70-

.I60-

FIG. 4. Dependence of I' on
~p, in method (ii) of Miller, for
three eigenvalues near E„
(g=-10 and m, =50): ~,","
=91.2162 (solid line); &~~

= 91.2485 (dotted line)
= 91.1840 (dashed line}. Arrows
indicate the exact values of I'
and 6&.

.I50—

I I I I I

-.30 -.25 -'.20 —.I5 —,IQ —.05 0
30

TABLE IV. Depe~jdence of the calculated widths on the
assumed values of the potential phase shift &p in methods
(i) and (ii) of Miller.

q=1.p 7/= 10
(i) 60

g= 20
(i) 6i)

exact 0.001 372 0. 001 494 0.1722 0.1747 0.7226 0.7721

0.0 0, 001 304 0.001 326 0.1635 0.1689 0.74Pg P. 7734

From the application of the stabilization pro-
cedure, we have available eigenvectors which
satisfy Miller's requirement for 4„. Taking the
eigenvector associated with the root closest to the
resonance energy found by the stabilization method,
we have computed I' for various "guesses" of 50.
Specifically, for each coupling, we have tried
5p = 0 5p = 0 ~ 27 (approximately the phase shift
due to scattering from V»), and the correct value
of 5&. The results from both methods (i) and (ii),
presented in Table Pf, show the. sensitivity of I'
to the choice of 5p. For method (ii), the best re-
sults are obtained from the correct value of 5& and
they become more reliable as the coupling is de-
creased; neither of these trends appear for method
(i). In addition it turns out that I' is sensitive to
the choice of stable eigenvector used. In Fig. 4
we show the values of I" as a function of 60, computed
by method (ii) (for 7I = 10) from three eigenvectors
associated with the roots nearest F.„. Fach of the
4& is a good approximation to C~ at F. =- Z„and thus
satisfies Miller's criterion. It is evident that the
dependence of I' on the choice of the stable eigen-
vector used disappears in the neighborhood of

We have found the same behavior for all
values of g. These results suggest that if in a

In particular, X = 5 was chosen so that f-1 at a
value of g not too close to zero but less than x&.

—0.27 0.001 372 0.001 494 0.1724 0.1734

The values of the exact 6& for each g are

0.7727 0, 7152

given in Table I.
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problem the correct 5~ is not known, Miller's for-
mula should be computed for a number of stable
roots (if available) and then 50 should be varied un-
til all the roots yield essentially the same F. The
validity of this procedure for the calculation of I'
and 5& will be examined in a future paper. " For
comparison with the other approximations, we list
the widths calculated with method (ii) for SO=5~ in
column E of Table I.

y. CONCLUSIONS

We have completed the discussion of all results
presented in Table I. What, if any, conclusions
are we able to draw concerning the comparative
validity of the approximation methods tried'? For
small coupling, for which a small width is expected,
a Feshba, ch calculation which neglects the continu-
um of QHQ (i. e. , the potential giving rise to the
resonance) gives satisfactory resonance param-
eters. Qn the other hand, as the coupling increases,
additional work is necessary to obtain accurate val-
ues of Z„and I'. The adiabatic method (approxi-
mation E), when feasible, seems (from Mucker-
man's work and the work here) to give better re-
sults than other approximation methods which in-
volve the same amount of effort (e. g. , approxima-
tion C here). The two methods described in Sec.
II, which use information from the stabilization
procedure, give reliable values for 8„. For the
problem considered here, approximation A, in-
volving explicit use of the square-integrable eigen-
vectors, gives more accurate widths; obviously,
we are not in a position to generalize this conclusion
to more complicated systems.

We conclude with final rema, rks about the stabil-
ization procedure. The observations made in I for
single-particle resonances in potential scattering
are found to be valid for compound-state reso-
nances occurring in elastic scattering as well. In
particular, when the exact H is diagonalized in a
large enough set of square-integrable basis func-
tions, those eigenenergies below excitation thres-
hold appear for which the exact open-channel func-
tion has a node at the "wall" defined by the basis
set. Furthermore, the square-integrable eigen-
functions are good approximations, apart from a
normalization factor, to the inner parts of the ex-
act scattering wave function at energies equal to the
corresponding eigenvalues in both the. resonant and
nonresonant energy regions. Boots occurring near
the exact resonance energy are stable; the corre-
sponding eigenfunctions represent the quasibound
or resonance state. Since for sufficiently large
basis sets the addition of type-1 (open-channel) ba-
sis functions affects only the asymptotic region, we

were able to derive expressions relating the reso-
nance parameters, E„and I", to the variation in the
stable root with increasing basis sets. The coinci-

dence of a node in the exact open-channel function
with the wall defined by the basis set will hopefully
enable us to extend the formalism to resonances oc-
curring in inelastic scattering.

APPENDIX A

In order to derive Eq. (2. 2), let (4;}and {e;}be
the N eigenvectors and eigenvalues resulting from
the diagonalization of 0 in the orthonormal basis
set (g;}i=1, N, and let (y, }and (W, }be the cor-
responding quantities from the diagonalization in
the set f(;}i= 1, N+ 1. If we define the projec-
tion operator

for any M, then Q~ is equivalent to g, , IC «) (C, l and

Q~.i= @~+I &~.i& &k~, il . (Al)

The eigenvectors y; satisfy

(II, —e.„He...)X,= o . (A2)

By taking the scalar product of C
&

with Eq. (A2) and

then using Eq. (Al) with the relationships (4;H4~&
= 6;;c;, and (4; 4; ) = &;;, i, j ~ N, we obtain

&;&4' X;& —;(@X &
—&@;H0 . ) &0 . X ) = 0 . (A3)

If we define Ae'"" =- TV; —&;, then the rearranging
of Eq. (AS) for i =j yields Eq. (2. 2).

APPENDIX B

In the usual Feshbach formalism, if we define

Q = lg„&( X„ l and P = 1 —Q, then the solution of

(Z -H)e,'=0

gives

(y ) (y QHPC' )
8 —W'„—&„+p

iI"

As usual,
r = 2n

l
(q„qHP c,'& l

'

&„= X„&P &0 X, ,
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where I'C ~ is the solution of

(E-sm)~e,'=0.
For elastic scattering from a spherically symmet-
rical potential, we expand

+,' =(~u) -"'r-'Z, ft, (r) I'„(r),

- i'e"~ sin(kr+5, --', lm) .
For a resonance with angular momentum I. we take

&r ~x, &=i 'x(i)&~0(i),

&rig. i) =~ '8~. i(i) Fi. (~) .
(82)

I = f dr sin(kr+5i, -~2») 4N i(i'),

and o~ is the phase of &y„QHP4s&. Agai~ evoking
the 81'eit-Wlgnel' expression 111 EQ. (2. V)~ we take
&q = +p +&„, where

E-E„+—,'fF, = -e"'~ '~'[{E-E,)'+(k Fi)']"'.
(»)

To ensure reality of &(„,i g„&, we take ni, = 5p for
L even and Qy = +p -p%' for L odd. Then substituting
Eg. {85)together with the definitions

S„=Jd~sinnry„(r'), C„=J drcos&~(, (~)

into the expression in (84), we obtain, for I. even,

If we assume that („., contributes only in the asymp-
totic region, then using Eqs. (2. 3), (81), (82), and
(83) we obtain

&g„„y„)=(2/kI'i)'~'(E -E„+-,'il~)i 8"'& '&'Ii, .
(84)

&4z.i X,& =(2/&I"r, )' f(E —E„)(S„.i cos5~ +C„„sin5~ )

+g I'g (S„,i sin5~ —C„,i cos5~)]
and ) fol L odd~

&4&.i X,& =(2/», )"' [(E -E„)(C„„cos5,' -S„., sin5,')
+ 2 I'g (C„,i sin 5q + S„,i cos 5q~ )] .

A remark should be made concerning the sign of
y . The eigenvectors produced from a diagoNaliza-
tion of H are unique only within a sign. It is evident
from Eq. (2. 2) that ne'"" is independent of the
sign of X„or C„; this must also be true for Eq. (2. 5).
In theory, the proportionality factor between X„and
QC&, whose sign is affected by the choice of e~,
determines the over-all sign of the eigenvectors to
be used in Eq. (2. 5). For the model problem, con-
sistency between Eqs. (2. 2) and (2. 5) was main-
tained by choosing the signs of X„and C„such that
&c, x& o.

APPENMX C

For an harmonic oscillator of mass p, centered
around x=@0, the relationship between the classical
turning point x and m for the mth harmonic-oscil-
lator function is given by

kp& (& -no) =(~ --, )I&a.
in this case, an expl'essioil for dc&/de is obtained
from Eq. (2.8)

p~(2m —1) '"
Qo +(2m -1)

+4z ~ )2 F2 [2e&@~(2m —I)]i" . (Cl)

Here the criterion of validity is generalized to

2@ 2z„range of potential & x «—
p,

In the model problem, where M odd harmonic-os-
cillator functions comprised the basis, the number
m in Eq. {Cl) is replaced by 2M.
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This expression differs from Eq. (20) in I, because
here ere use Bydberg instead of atomic units.

"3In the diagonalization of H for a potential-scattering
problem, the orthogonality of the eigenvectors is accom-
plished by each possessing a different number of nodea.
Here the disappearance of nodes described can occur
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because

&~,.~,) = &s,*'s,") &s,'*'s,'» =0, j
may hold even when S~' and S&~ have the same number

of nodes.
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