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The interaction of a bound electron with external radiation fields of finite intensity is treated
with the standard quantum-electrodynamical (QED) formalism of Feynman and Dyson. We
first construct an equation for a bound electron in finite-intensity radiation fields, such as
those encountered in early molecular-beam experiments and in recent masers and lasers.
The Green's function for the equation so obtained enables us to compute the induced transition
probabilities for various systems of interest. In this paper, we carry out the calculations on
the two-level and three-level systems explicitly, where we find that, to order e, the QED
method based on forward scattering and the semiclassical treatment differ. As we consider
only the interaction of electrons with low-energy photons, we may ignore the virtual photon
processes, in accordance with the low-energy theorem. As a result, this treatment contains
only finite calculations. We demonstrate explicitly that our results are in qualitative agree-
ment with the molecular-beam experiments of Kusch, for which the semiclassical treatment
of Salwen fails to predict the results. Consequently, we expect an intensity-dependent effect
which can be properly explained only by QED and not by the semiclassical treatment. We also
include the effect of nonelectromagnetic relaxation on the induced transition probability of a
two-level sy.;tern, for which we obtain an expression slightly different from that used by Ram-
sey for the hydrogen maser. Finally, we derive some expressions which will be of interest
in experiments related to lasers and masers.

I. INTRODUCTION

During the past decade, there has been much
theoretical work on the interaction of atoms with
radiation fields. The typical method used is to
solve the Schrodinger equation by treating the ra-
diation fields as classical electromagnetic fields
satisfying Maxwell's equations. Such an approach
is usually referred to as the semiclassical treat-
ment. It has become apparent that the semiclas-
sical treatment is inadequate to explain the experi-
mental results on the Lamb shift and the anomalous
magnetic moment of the electron. In this connec-
tion, quantum electrodynamics (QED) is needed.
The success of QED in explaining the experiments
on the electromagnetic interactions leads us to
trust its formalism. Nevertheless, the QED for-
malism is not without difficulties; in particular,
the question of renormalization has not yet been
treated quite satisfactorily. However, if we can
overlook this difficulty, the QED formalism should
be excellent with regard to the electromagnetic in-
teractions. Guided by the experimental evidence,
we shall apply the formalism to some problems
which have been treated in the past by the semiclas-
sical method.

In the following, we shall apply the QED formal-
ism to a bound electron interacting with the radia-
tion field. One reason for doing this is the fact
that, in recent years, there has been considerable
controversy over the problem of a free electron
interacting with high-intensity fields. ' The QED

method and the semiclassical treatment give differ-
ent results. It is naturally of great theoretical in-
terest to look at the situation of a bound electron.
We shall demonstrate under what kind of conditions
the two methods give rise to different results, and
to what extent they agree with each other.

Since experiments on a free electron interacting
with high-intensity fields are more difficult to per-
form, a conclusive test of both theories is not yet
available. However, the experimental situation
for bound electrons is quite different. In this re-
spect, one may mention molecular beams. 3 More
recently, work on lasers and masers has also in-
volved high-intensity fields. The theoretical sur-
vey in these areas is almost restricted to the semi-
classical treatments. Moreover, due to the rapid
advancements of the experimental technique, the
need for a more satisfactory treatment is apparent.
We expect that the QED method will give better re-
sults.

It may be worthwhile to point out some important
techniques commonly used to solve the problem of
a bound electron interacting with radiation fields.
There are (a) the method of Weisskopf and Wigner, '
(b) the time-dependent perturbation method of Heitler
and Ma, ' and (c) the QED method of Low. ' All three
methods have been used for the calculation of nat-
ural line shapes. The first two methods have been
generalized to other types of problems involving
the electromagnetic interactions. For example,
the method of Weisskopf and Wigner has been used
by Ernst and Stehle~ and by Scully and Lamb; the
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method of Heitler and Ma, has been used by Hutch-
inson and Hameka and many others. However,
the QED method of Low is not yet widely used.
We briefly outline the approach in the next para-
graph.

Consider the one-electron problem. The inter-
action of an electron and the radiation field can be
analyzed in terms of the photon scattering process
concerned. According to the general formulation
of QED, one can write the equation for the electron
Green's function in the following form:

G (x4 X2) Sp (x4 x2) —4 f Sp (xg X3) M(x4, x4)

x G(x4q x~) d xsd x4 q

where S„(x„x2)is the electron propagator in the
presence of the static fields, and M(x„x4) is the
mass operator taking into account the effect of the
time-dependent fields. ' The first step is to con-
struct the mass operator M(x, x ) from the S ma-
trix by analyzing scattering processes. After
M(x, x ) has been obtained, one can solve the above
integral equation by means of Fourier-series tech-
niques. Once G(x, x ) is determined, one can use
the properties of Green's functions to compute the
physical quantities of interest, such as the transi-
tion probabilities and scattering cross sections.

Following the method outlined above, we shall
consider the effect of high-intensity photon scatter-
ing. Speaking in the language of the semiclassical
treatments, it amounts to the electron interacting
with a time-dependent electromagnetic field. Our
major purpose is to compare our results with those
of the semiclassical treatment. To this end, we
compute the induced transition probabilities. We
first consider a two-level system which, under
certain reasonable assumptions, enables us to ob-
tain simple analytical expressions for the induced
transition probabilities. We then consider a more
complicated three-level system. After some al-
gebraic developments, we find that the above QED
equation to order e with respect to t;he mass opera-
tor M(x, y) reproduces the expression of the induced
transition probabilities obtained by the semiclassi-
cal methods. However, to order e or higher, both
approaches do not yield the same results. Finally,
we demonstrate the theoretical consequences of
such differences. It is hoped that our results for
the multiple-quantum transitions can be used to ex-
plain the experiments of Kusch" and some other
related phenomena.

All the expressions derived for molecular beams
assume that the atomic levels are sharp. When the
levels concerned acquire widths due to some relax-
ation mechanism, it is necessary to average the

induced transition probabilities in certain ways. A

detailed account of this situation is given in Sec. III
where we obtain an expression, Eq. (29), which is

different from that which has been used for the hy-
drogen maser. '

We believe that an extensive study of this type
of problem is appropriate for the present experi-
mental situation, in particular for masers and
lasers, which can be used to test the validity of
high-intesity QED to a very high accuracy.

II. BASIC FORMALISM

As was mentioned in the Introduction, the inves-
tigation of high intensity is very important both
theoretically and experimentally. In the case of a
free electron interacting with high-intensity radia-
tion fields, there arose a considerable controversy
over the merits of the @ED method and the semi-
classical treatment. ' Various arguments have
since been devised to resolve the discrepancy, '
and possible experimental resolutions have been
suggested. However, the problem is not accessible
to experiment as yet. A more hopeful system from
the experimental point of view is provided by bound
systems where energy-level separations can be ac-
curately measured. The high accuracy in molecu-
lar-beam experiments makes it worthwhile to cal-
culate the effect of high-intensity fields on the basis
of QED and to comps. re the results with the semi-
classical calculations.

In the following discussions, the interaction of a
bound electron with the radiation field will be de-
scribed as essentially due to forward scattering.
This is true in the case of free electrons as was
demonstrated by Ehlotzky. ' Since we will restrict
ourselves to the interaction of a bound electron with
low-energy photons and the major purpose is to
compare our results with the semiclassical treat-
ment, the interaction of electrons with virtual pho-
tons will be neglected. This is well justified, since
in the interaction of low-energy photons with the
electrons, the low-energy theorem states that the
only effect of virtual processes is to renormalize
the charge and the mass of the electron, so that
these effects are fully accounted for if the observed
charge and mass are used. ' '" Moreover, there
is a close resemblance between the self-energy of
an electron in a radiative correction and forward
scattering. This can be easily seen by drawing the
Feynman diagrams for the self-field (emission and

absorption of virtual photons) and the external-field
electron self-energy (emission and absorption of
real photons at the same four-momentum k„, or
forward scattering) to each corresponding order
in e . For example, to order ea, one can obtain
the forward-scattering diagrams by simply break-
ing apart the appropriate self-energy loop at mo-
mentum k, . In the same way, in any order all the
external-field self-energy diagrams may be ob-
tained by breaking open the closed photon loops
which occur in QED in the same order. " This
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picture will be very helpful in the discussions to
follow.

According to the above discussion, we have the
following QED equation,

G(Xlt X2) SF (Xlt X2) 1fSF (xlt XS) (X3t X4)

photons out.
Since in the subsequent applications we shall con-

sider the effect of the forward scattering only, we

may write the 8 matrix in the form,

S =+K' ' (»yt «it «st ~ ~ ~ «v)

& G(x4, x2) d'xsd'x4, (1)

which ha. s been given in the Introduction. SF (x» x2)
is the electron propagator in the absence of incom-
ing radiation fields, and takes the form"

SF(xl X)2=+4. ( ir) t))( r)22 .
1''

ei~(t&-t&)

E„ 1 —20 + (d

where g„(r) is the eigenfunctioh of the Dirac equa-
tion in the presence of the static electromagnetic
fields.

In Eq. (1), there are two unknown functions to be
determined, namely, G(x» x2) and M(x„x2). Our
first step is to determine the mass operator
M(xl, x2); this may be obtained from the general
expansion of the S matrix, '

(ff, v) /S —Zl + (xlt X2t ~ ~ ~ ~ xn t yir y2t ~ ~ ~ t yn t « lt «2t
n, v

x: [T))(x,} )T)(x„); q(y, ) ~ ~ ~ q(y„); &(«1) &(«.)]:

(3)
where n is the number of electrons and v is the
number of photons participating the process under
consideration, $(x) is the electron-positron field
operator, and A(«) is the photon field operator, and
the symbol: ~ ~ ~: denotes the normal-ordered prod-
uct. (Units are such that h=c =1 and the metric is
ab =a ~ b =a„b„=aobo —a b if a and b are four-vec-
tors. ) The functions K'"'") may be obtained from
the analysis of certain QED processes by using the
general Feynman rules.

Before writing down the Feynman rules explicitly,
we demonstrate the meaning of the expansion (3}.
First, let us consider the case (n, v) = (1, 0); it cor-
responds to the emission and absorption of a virtual
photon, and yieMs a self-energy correction to the
electron. The case (n, v) = (2, 0) corresponds to the
emission and absorption of virtual photons from dif-
ferent electrons. For (n, v) =(1, 2), one may have
the well-known brompton scattering and the forward
scattering. The latter process corresponds to the
emission and absorption of real photons with the
same energy and polarization for. the incoming and

outgoing photons and thereby leaves the whole sys-
tem unchanged. Similarly, (n, v) = (1,4) includes
forward scattering with two photons in and two

x:[e(x)C(y);&(',,)A(«, ) ~ ~ A(«. )]:, (4)

&4)(«1, «2, . . .«„}d'xd yd'«, ~ d'«„, (5)

where 4 is the symmetrized wave function for the
photons in both the initial and final states,

4 =/a(k ) ~ a(k„)e'

where g denotes the symmetrized sum for the prod-
uct of the photon wave functions a(k, ), a(k2), . . . ,
a(k, ).

From the theory of a free electron interacting
with its self-field, one obtains the following rela-
tion between the mass operator M in Eq. (1) and the
function K"'2' defined in Eq. (3}'2:

M(P) =1@""(f),
and in the case of forward scattering, we may
write'"

M(p) p If(1,2n)(p)
&=& s~ ~ ~ ~ ~

This connection between M and the expansion-co-
efficient functions K""' can be easily generalized
to the corresponding bound-electron case,

M(x, y) =1
&=142s 3s ~ ~ ~

A(1,2v)(x y)

The following rules 0 are to be used in the con-
struction of the S matrix in order to obtain. E""'
by means of the photon-number-state representa-
tion:

(a) For each external vertex, we have a factor

—i exNy„ fd x, (7

where N is the number of photons in the beam.
(b) For a photon of linear polarization which is

emitted from or absorbed by the electron at an ex-
ternal vertex, we have

e„(2ivlt) " e '"'"" and e (2~V) ' e)2' t~'

respectively, where V is the volume of the system,
(&v, k) =k is the photon energy-momentum four-

where v =2/, p being a positive integer. The cor-
responding Feynman diagrams for the lower-lying
values of v or p are illustrated in Figs. 1 and 2.
The matrix element for the total number v of pho-
tons in the initial and final states can be written as

S& & fK——' '"'(x, y; «» «». . . «v)g(x)g(y)
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vector, and e~ is the polarization unit four-vector.
(c) For each internal electron line, we insert a

factor connecting two space-time points x& and x2,

—3 S„(x„x3).
For example, on using the rules (V)-(9), the S

matrices corresponding to Figs. 1(a) and 2(a) are

2

d Xyt %2/ Xg eSP Xg~X2 e

X q(X )e ii((ni-n3)

FIG. 2. Four-photon process.

We have, for the process shown in Fig. 1(a), 3'

S,"'= - ,' e'—fd'x, d'x, Tj: [(C)(x,)A (x,)((x,)]:

X2 X2 X2

e- '—fd'x, d'x, A (x,}S,(X„X3)

N
Sn = —2 d xtd X3d x3d xi $(xt)e

2@a V If one writes
x ~t(x,):[q(x,)q(x,}]: . (12)

x Sit (x( x3)e S3' (x„x4) e Sz (x„x3)e &(x3)

is(x&+x 3) - t u(F2+~4)

respectively. According to Eqs. (3) and (5), we
have

2

M."'(x„x,) = —' pe yt (r, )(T( (r,)e e ""4"'
2+V

&

2m
oo

(lo)
2 2

M."'(x„x,)=,~ b, b „eqt (r,)q„(r ) 3e1.t 2 2 y m mn

ao f
- fk,.(ry-r2} d(d f', co (t j- t2)xe

~oo

x [(E,+v' —e)(E„+&u' —&u) (E +&' —»)] ', (ll)
where

b „=fd34 T() (r)e e '"' q„(r) .
A generalization of Eqs. (10) and (ll) to more than
two emissions and absorptions is apparent.

Note that in the above, one has used the photon
number state to obtain the mass operator. Alter-
natively, one may also use a coherent state to rep-
resent the external radiation fieM. To this end,
consider the second-order 8 matrix

S"'= .' fd'x, d'x-, T [U(x,) V(x,)],
where T denotes the time-ordered product, and

V(x) =-f„(x}A.(x) = —ie: [P(x}A(x)q(x)]:

A„(x) =A,"(x)+A„' '(x),
where A,"(x) is the absorption operator, then the
eigenstate la} of An" (x).with eigenvalue a, (x) is the
coherent state in the usual definition

A„"(x)~a} =a„(x)~a} .
We may also have

&a~A,' '(x)=-a,"(x) (a~ .
For the free fields, we write2'

a(x) (2~ P)-1/2 e (k) e (k) e-i&t+i)trt
(13)

Similarly, one may also construct M' ' of order e
by using the coherent-state representation. On

taking the matrix elements of Eqs. (10) and (14) be-
tween two electron states, one can demonstrate the
equivalence of the two representations of radiation
fields for our purpose.

After the mass operator has been obtained in ac-
cordance with the above procedure, we find that
M(x„x3)=M(r„r3, f( —t3). Using this property and
Eq. (2), the solution of Eq. (1) can be found from
the expansion

~(x(t X3}= + (n(ri)(n(r3)J d(()fn, n(("} e
27i .

+ . Qq (r,)q„(r3) I d(df„„((u) e'""& "'
7l )|' m

/fan

a()(x) = 0,
where e), (k) are the transverse polarization vectors,
and summation over 'A is implied.

By taking the matrix element of Eq. (12) between
two coherent states defined above, and on using
Eqs. (5} and (5), we find.

M,' '(x„x ) = —i e a (x,) S (x„x,) a(x ) . (14)

ntM4n k, lU

FIG. 1. Lowest-order forward
scattering.

From Eqs. (1) and (15), we have

t„„((u)=
( ) (( —n„„(-w)i , ()„„1

n
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—Zof..(- to)f. , „( )),
Eb

Eb Ea
Ea

FIG. 3. Two level system.

H„(&d) =f H„(t) e' 'dt,

II„„(t)=fd'r& d'r2 (C)„(r))~(r„r» t) $~(r2) .
(17)

Equations (10), (11), and (15)-(17)will be used for
the determination of the electron Green's function

G(x„xa} and to deduce some physical quantities of
interest in the subsequent discussions.

lt may be noted that the form of Eq. (4) ignores
the interaction of electrons with virtual photons.
This may lead one to believe that the present re-
sults should be the same as those of the semiclas-
sical treatments. However, by explicit calcula-
tions which we will do very soon, this equivalence
can only extend to the order e . It will be seen that
the higher-order effects will give some interesting
results.

We note that the above determination of the mass
operator M(x, y) depends on perturbation theory
The validity of such a procedure certainly depends
on the convergence of the perturbation series. We
shall not investigate the question of convergence
here. Nevertheless, it may be pointed out ' that
if the photon density is less than m &decor (xpI(, 5) ',
where xo is the classical radius of the electron, k,
is its Compton wavelength, and I( is the wavelength
of the photon, then the perturbation procedure of
constructing the mass operator is plausible. We
shall assume that it is justified in the following ap-
plications.

III. APPLICATIONS TO THE TWO-LEVEL SYSTEM

Following the general discussion of Sec. II, it is
not difficult to solve the system of algebraic Eqs.
(16) when the atomic levels are finite in number.
In particular, if there are only two levels, the
solution is easy to obtain. We consider this case
first.

Our purpose is to compute the probability ampli-
tudes for the system concerned. To this end, we
have to obtain the Green's function G(x„xp) for the
generalized Dirac equation (1). Before doing this,
we make some general remarks.

We depict our two-level system as shown in Fig.
3. The matrix elements for the mass operator de-
fined in Eq. (17) will simplify in the nonrelativistic
limit and the dipole approximation, which are valid
for the atomic system and long-wavelength photons.
With these approximations, we write

f ( )=
( )

(-H ( )f„-( ),1
E 1 —z0 +os

—ZH. , (- )fo, ( )), (16)
P&m

where (is)

where d is the dipole operator, and (a ld I b) is
taken to be real.

Since we are considering a two-level system in
the present section, it is sufficient to take the ef-
fect of forward scattering to the order e, because
by starting with any level at time t =0, an emission
or absorption of one photon connects the initial level
with the other level.

According to the discussion of the last two para-
graphs, we may write

H„(- n) = — „, H„(- n) =—

H„(- n}=H,.(-n) =o,
(19)

1

E„(i fo)+n-+H»( n) '- (2o)

Suppose that at k =0 the system is in the level a,
described by the wave function (t), (r), then the prob-
ability amplitude for the system to be in level a at
time t is given by '

C, (t) = (1/2vi) f f, , (n) e'""dn .

Using Eqs. (19) and (20), and evaluating the integral
of Eq. (21) by the theorem of residues by closing the
contour in the upper half-plane, we have

C(O) = (sosSO ~
' ' s,isSO) o " ' '"", (66)

where

&(!p Ep Es6 g = 2 [(&6) &()p) +4& ]

The induced transition probability out of the level
a is then

P. , (t) =1- ~C. (f)~'=(~'/q') sin'qf . (26)

It is seen that the phase factor of the induced tran-

from Eqs. (10) a.nd (17) in the rota, ting wave approx-
imations. Using Eqs. (16) and (19), we have

1
E.(1 —fo)+n+H. , (-n) ', , (n) =
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sition amplitude is not determined. This is due to
the fact that the Green's function obtained in this
way involves only the correction to the electrcn
part, which does not include the external radiation
field as a whole. It is of great interest both theo-
retically and experimentally to determine this
phase factor. In this connection, consider the
photon to be absorbed at the space-time point (r, f)
as shown in Fig. 4. The transition matrix element
T; &

is defined by

T, ,= i&+ I, f ~s-- I~+, a&

=-i(x-l, f ~s~x, a) .

Taking the effect of high-intensity forward scatter-
ing into account as shown in Fig. 4, and using the
rules of Eqs. (7)-(9), the amplitude for this
transition is found to be

C»(f) =i e fd3xdsx 8(t )iTi, (r)G(r, r, f —f )e

state relaxed is described by a simple exponential
distribution function of the type I e "', '~ and its
power spectrum is a Lorentzian distribution. Let
the full widths of the atomic levels and the photon
mode be 6 and y, respectively. The effect can be
taken into account by smearing out each level and
mode by some relevant Lorentzian distributions in
Eq. (23). This amounts to replacing E, , E„and &u

by E~+x» E, +x» and co+x„respectively, and then
integrating over x„x2, and x, with the following
Lorentzian distributions as weighting functions:

~x', +-,'~' ' 2~x', +-', S'' 2~x', +-,'y' '

in each integration variable. We end up with the
following expression:

( )
((2(+ r)

(i,~ —(o,)'+ (2( + I)'

, (28)
2~'r - cos[f (x'+4g')'"]dx

m (x'+4(') [(x+(u- i~,)'+ r'] '

where 6(t) is the unit-step function. Carrying out
the integration, we have

where

C, (f) =i ((/ii)siniife " " ' '"'. (25)
Using the method of stationary phase, '~ it can be

shown28

Comparing Eq. (25) with Eq. (23), it is easily seen
that

P. , (f) = ~c, (f) i', then

)r8
m [r'+ ((u —(uo)3]'

(27)

as it should. Equations (22) and (25) a.re in agree-
ment with the semiclassical treatments. '

Note that Eq. (23) assumes that the energy levels
are sharp. If this is not the case, then an average
must be taken, depending on the nature of relaxation
mechanism. For example, in the hydrogen maser, '
besides the level width there also exists mode damp-
ing inside the maser cavity. Generally speaking,
there are two different types of relaxation mecha-
nism; one is due to the electromagnetic interac-
tion, and the other arises from nonelectromagnetic
interaction. In the former case, it can be included
in the fundamental equation (I). In the latter case,
one cannot do so. In order to deal with the latter
type of relaxation in the hydrogen maser, we as-
sume that the level spreading and mode damping
are Lorentzian. This assumption reflects the fact
that the probability that an atom ceases to radiate
by leaving the field region or by having its radiation

2$'r
I

" cos[f (x'+4&')"']dx
m J (x'+4(') [(x+& &

—cu, )'+r']
and thus

$(2)+ I')
(~- (uo)'+(2&+ r)' (28)

2P, Ihcu2(' ' 2g+r ( — ~ )' (2~+ r)'

Note that Eq. (28) represents the fraction of
atoms in the lower level if initially they are in the
upper level and vice versa. Since the relaxation
processes involving l" do not involve the emission
of radiation, in order to get the power delivered by

the atomic beam to the cavity, one must multiply
Eq. (28) by the factor 2$/(2)+ I"). which is the
branching ratio for the radiative transtion; the
result is

fb(r, t)
k, &u ~ (r, t)

i G(r', r, t-t )
FIG. 4. Graphical illustration

for the calculations of the induced
transition amplitude.

where I is the beam intensity. From Eq. (29), we
see that the power spectrum is Lorentzian with the
half-width 2)+ I', and is proportional to the field
intensity in agreement with the correspondence
principle. Our result in Eq. (29) indicates that the
broadenings due to the radiation field and to non-
electromagnetic relaxations are independent of each
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other as they should be. However, instead of
smearing the levels in this way, Kleppner et al. '
averages the transition probability including the
electromagnetic width over the time with a weight-
ing factor depending on the nonelectromagnetic re-
laxtion, e ', obtaining in this way an expression
similar to Eq. (29) but with a width

(4).2 I;2)1/2

instead of the sum appearing in Eq. (29). This non-
additivity of the width indicates that the relaxation
processes involved are not independent, but a dy-
namical basis for their mutual dependence is not
at all obvious.

We may give a numerical example to demonstrate
the validity of Eq. (29) for the hydrogen maser.
Typical operating data are 2( = 10 cps, ' & = 300
cps, ~~p —t=80 cps, ' y=Q; thus we have

~r'
( ),), =10 sec .

Since the storage time, which is the time available
for the interaction between the hydrogen atoms and
the radiation field, is of the order of one second, "
it is seen that Eq. (27) is satisfied. This justifies
dropping the second term in Eq. (26) for the hydro-
gen maser.

IV. EFFECTS OF MULTIPLE MODES ON TWO-LEVEL
SYSTEM

In Sec. III, we considered a two-level system in-
teracting with a single mode. It is easy to general-
ize to multiple modes. In this case, the matrix
element of the mass operator becomes

H..(- n) = -5—
y Eb —(P3~ + 0

&, =(e'&, ~, /2&)'" (a~d ~f &,

j =1, 2, . . . , n, $& real. (30)

Computing C, (t) as before, we have the following
expression for the induced transition probability in
the presence of n photon modes:

~2
f(z)=z Z-' -=0

~ y 8 +(dpi'
(33)

are all real and different. Let the n+1 different
real roots be o.„n» n». . ., a.„. It can further
be shown that [see Appendix B(i)]

E [f'(u, )] '=I,
j=p

where

(34)

( ) p csin [ t(Qg —Qi)]
,)~-p f'(c, )f'(~, )

It must be noted that Eq. (35} is not convenient
in analytical discussion. The difficulty consists in
obtaining the roots ot Eq. (33). In the following
paragraphs, we derive some analytical expressions
suitable for certain limiting cases. In this connec-
tion, we may simplify our presentation in the two-
mode case. Then Eq. (30) may be written

p2 ( 2

e„(-n)=-
Eh+A —QJ Eb+0 —Q)

where the primed term is due to the presence of
the extraneous mode. In the absence of the reso-
nance mode +, we have

r.', )p=(c son'(+i ', sinn't) e "

in accordance with Eq. (22), wh4re

q'=-,' [(&up —h')'+4) "]"'.
If I(&p —() I »2$, we have

p
2

C, (t)=exp —t E,—,t .
Mp —Q3

This .'indicates that in the presence of the extraneous
mode w, the level is modified to E„where

E, = E, —$ /(&up —&u ) .
A similar treatment can be applied to level B:

E, is modified to Eb, where

f'(z) =
.

' = I+Kdz, , (z+~p )

Evaluating the integral of Eq. (32}by the theorem
of residues and making use of Eq. (34), we have

P, (t) =1 —~C, (t)
~

where

(31) Ep =Ep+ $ /(h)p —h) )

and the level separation becomes

C, (t) = . e '"' z-Q ' e'"dz,
27F2

~ y8 +(dp~

(dpi' = h&p —&dz ~ (32)

It can be shown~' that the roots of the equation

lg I
Q&p =Ep —Ea = Q)p+ 2$ /(Q)p —(d ) ~ (35)

because of the presence of the extraneous mode u,
whenever the condition

lppp —~
l

~~2~

is satisfied. Applying the results of Sec. III, it is
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easy to establish the induced transition probability,

4$P. -s(&}=( )a
a»n'f2t((~o-~)'+4k']"'].

(37)

Therefore, one finds a shift of the central maximum

by an amount

2a(- $ —aa +a )+$ (-a+2a ) =0 .

Neglecting cubic terms, we get

f)~ =a = [2("/(2('+ (")]a' .
If $ =(, then the above expression reduces to

2 I
f)Q,) = 3 ((dO —4& ) (4s)

5(d = 4)„—(do = 2$ /((do —(d ) (38)

C, (f) = . z — —,e"'dz, (39)
2mi „a+a a+a'

where

a =(do
1

a =no —(d, z =z —i0 .

Looking at the function in the denominator, which

is of the form

g 2 +g a 2 (40)

we seek its zeros which approach n, as $ —0.
Here n, are roots of

z +a@ —( =0.
The zeros are

If () = —(~„one obtains the Bloch-Siegert shift. "
Equation (38) is in agreement with the semiclassical
treatments.

We now consider the situation when I ~o —w t
» 2$

is not true. In that case, the above approximation
clearly breaks down. The following simple calcula-
tion will show that, instead of Eq. (38), we have

5~ —0 when () -+0.
Consider the following integral for the a-a tran-

sition:

Hence, we see that if co - ~o, then 5~- 0. The re-
sult is in qualitative agreement with the experi-
ments of Lewis et al.

V. INDUCED TRANSITION PROBABILITIES FOR
THREE-LEVEL SYSTEM

We now investigate the QED formalism for the
three-level system. What we are going to calculate
is essentially the same as for the two-level system.
The explicit computations made here are restricted
to order e only. Our purpose is to compare the
QED method and the semiclassical treatments, and

reinterpret the semiclassical results whenever pos-
sible.

Let F =I+J be the total angular momentum of the
system, where I is the nuclear spin, and J is the
total angular momentum for the electron. In the
case of an atomic S state, we have J = 2 0, where 0
is the Pauli spin operator. We shall consider the
transition with hF =0 and the dipole selection rules
~w =+ 1 as usual. Further, in order to facilitate
the presentation, we consider the normal Zeeman
splitting for the spin-1 system. The level scheme
is shown in Fig. 5.

First, the matrix elements of the mass operator
can be found easily in the nonrelativistic limit and
the dipole approximation. They are

a +— a+ +4(
1/2 2 1 1

IIis = &s~ = &ii = Hss = - & +
Ez + co + 0 Ez —cu + 0

(4l)

Thus if in the integrand of (39) the denominator is
replaced by (40), we get

1 1 1
II22 = —bz + +Es+(d++ Es —(d++ E, +() ++, (44)

1

Ey —Q) +0

and IIiz -II2~ =IIzs =IIs2= 0 ~

to order e, where

4(&, +a)(& +a)
4()), +a) () +a) —(),+ x + 2a )'

x sin [2 ()),—)) )f ]

and

h =(e'er~/2V)'" (i: )d ) q), ), , q = l, 2, S,

(45}

The central maximum for lC, (f)l is at

h, +& +2a =0 . (42}

Using Eq. (41), and assuming that the square roots
in &, nearly cancel, we have

It has been shown that, in the normal Zeeman
effect, the matrix elements of a dipole operator
for general spin can be constructed from the ele-
ments of a spin-& system. This construction fol-
lows from the fact that a general n-level system
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can be obtained from the symmetric state of n two-
level systems. A simple calculation for the three-
level 3ystem gives

r
F=i

Ey m=+1
FIG. 5. Three-level system in

the normal Zeeman effect.fYl=-$

b=v2( (46)

where $ is defined in (18). Using Eq. (46), a com-
parison of the following results with the Majorana
formula, which is obtained from the semiclassical
theory, can be made.

Note that the expressions (44) are written in
terms of the photon-number-state representation;
one can also write them in terms of coherent states.
Then the formulas corresponding to (44) are

2

nn 2

1 1

(X +E~+(d+0 Eg —%+0

1
fp, 2(Q) =

E2 + Q + Hq2 (- Q)

Et + Q+ H33 (- Q)

(E, + Q) (E, + Q) + (E, +E, + 2Q) H„(- Q)

(«)
ft, s(Q) =f~, ~(Q)

—H„(- Q)

(E, + Q)(E, + Q) + (E, +Es + 2Q) H„(- Q)

f, ,(Q) =f, ,(Q) =f, ,(Q) =f, ,(Q) =O.

2(dV
&

Computing the probability amplitude C2, (t) for the
2- 2 transition from

1 1
X +E)+(d+0 E) —()+0 (47)

C, ,(t}= . I f, ,(Q) e'"'dQ,2' s (4O)

In these formulas, it is apparent thai le, z}, l~ takes
the place of N, as was shown in Ref. 23.

We now compute the Green's function for the
three-level system. It can be easily computed
from Eq. (16). The result is

and using (44) to order e in the rotating wave ap-
proximation, we get

F', ,(t) =
~
C, ,(t)~'

( )
Es+Q+H„(- Q)

(E +Q)(E +Q)+(E +E +2Q)H (- Q)
1 —

q 4&sin' 2ta+4~" . 50

Further, using the argument leading to Eq. (25), one can compute C2, (t) and C2„~(t) for the 2- 1 and 2- 3
transitions, respectively; the results are

P. ,(t) = (C, ,(t) I'=P, ,(t) = ~C, ,(t) ['

— 2sin"'[ —,
' t(a +4) )'~2](cos [—,

' t(a +4) )'t ]+ 2 &sin [—
' t(a +48, }"')'I, (51)

where

a = (d- ~0, (t~o
——E3 —E2 =E& —E& .

Equations (50) and (51}are in agreement with the semiclassical treatments. '~

Similarly, one may compute C.: 2(t) and C~ t(t) for the 3-2 and 3-1 transitions, assuming that at t=0
the third level is occupied. Following the arguments leading to (24) and restricting ourselves here again
to order e' in H„, we get the following expressions for C, ,(t) and C, ,(t):

C,'~ 2(t) =te fd'rd r dt 8(t )&2(r)G(r, r'; t —t')e (Ã&'2t~V)" e'"' '"'
ttt, (r }e ' &' (52a)

C, &(t) =(te)'fd'rd'r d'r dt dt 8(t )ttt, (r)G(r, r'; t —t )e (tF/2t&V)"

t(gt&-tt. t G(~t &&. t.~ 'ttt
) (FF/2 y)t/2 taut"- tE r"

q (
t ~

) e "izst"
(52b)
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Equation (52a) can be evaluated very easily; we
have

v2 t'
" (a+a) e'"

s-a{ ) -2 . —,[,a ( a 4(a)) ~

In order to evaluate (52b), we first carry out the
integration over r, r, and r . In the nonrelativistic
limit Rnd the dipole approxlmatlony Rnd uslDg the
dipole selection rules, we find four terms of the
following type contributing to the integral in (52b):

f1.1fa, a i f1,afs. a ~ f1,sfa, a ~ .f1,sfa, s

since the Green's function contains the diagonal and

off-diagonal sums. According to (48), the terms
involving f, a and fa s van1sh. Upon using (48), we
are left with the following sum of two terms:

t', , (&)f, (&')+f, (&)fas (&')

(z, + a)fa a(A')

(z, + fl)(z, + fl)+ (z, +z, + 2fl) a„(-6)

The above term is to be integrated over 0 and 0
with other factors deliberately omitted. Including
the omitted factors and carrying out the integration
of (52b) over f and f, we get

C, I(f) =(2t'/2vs} fdndn'5(n- n'+ ~) e'"'

x[z, +n+11„(-n)] '(z, +&'+a„(-n')

+ [a„(-n') /(z, + n') ] (z, + n') j '(z, —~+ n) -' .

The integration over 0 can be done immediately:

plicated. This complication is closely related to
the renormalization principle to be discussed
briefly below. However, if we require that

then it is easy to compute Ps s(t) from (53a) and
(53b). The result is again the same as in the semi-
classical theory.

The results of the calculations made so far are
the same as those of the semiclassical theory.
This ls not su1pl lslng becRuse we hRve CRlculRted

only the effects which are proportional to the in-
tensity in the low-frequency (dipole) limit and this
is exactly where contact between quantum and clas-
sical electrodynamics is made. ~ It is in this limit
that, for example, the Klein-Nishi. na formula in-
cluding radiative corrections becomes the Thomson
formula and thus provides a way of measuring e
directly. The semiclassical theory does not go
beyond these effects, while in the quantum theory
one can include in a systematic way the contribu-
tion of any number of forward scatterings and so
can evaluate the dependence on intensity beyond
the first linear term. This is done in Sec. VI for
the special case of a two-level atom. The calcula-
tion on the multiple-leve1. system and quantitative
comparison with Kuseh's experiments" are now in
px'epRr Rti On.

In concluding this section, we discuss the prob-
lem of renormalization when higher-order effects
are included. In the pr evious calculations, we
have ignored such problems in order to get the
results quickly. However, from a rigorous theo-
retical point of view, the problems must be care-
fully examined. First, let us consider the order
8 effect. It is seen that the validity in the inter-
pretation of (22) and (50) requires that G(xI, xa)
obtR1Ded Inust sRt1sfy

G(r„r„o)= 5(r, —ra),

Expanding the factor

1- 2$ —+
1 1 1
z 8+2{d 8+0

as a power series in $~, the second term is of
order t, thus contributing a $ term to Cs„I(t);
we then get

2$ 1~1 e dg 4Cs-I(f)=2 .e ] [ a ( a 4(a))+o(()

{53b)

Apart from the term O($4), the results of (53a) and

{53b) are in exact agreement with the semiclassical
treatment, "as ean be easily seen by comparing
(53a) and (53b) with Eqs. (AI6) of Appendix

In computing Cs s(t), the matter becomes com-

y(r, f) =f G(r, r'; f)y(r', 0) dsr'

To order e, condition (54) can be verified explicit-
ly. Hence, no problem arises in the interpretation
of (22) and (50). Alternatively, the validity of (54)
to order 82 can be seen oy examining the equal-
time anticommutation relation for the electron
field operator to order e, and it is not difficult to
demonstrate this fact. However, to higher order
than e, one must introduce a wave function re-
normalization constant Z~ and subtract a mass
collI1'tel' teI'111 5m 111 ills QED tel'111111ology ill ordeI'
to presexve the form of the equal-time commuta-
tion relation. A general survey of the theory of
forward scattering is deferx'ed to a future publica-
tion. In Sec. VI, we are not interested in the in-
terpretation of the expressions like (22) and {50),
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because the experimental quantities are the in-
duced transition probabilities which can be com-
puted in a way similar to (24).

VI. FINITE INTENSITY EFFECTS IN MOLECULAR AND
ATOMIC BEAM EXPERIMENTS

In Sec. V, we have shown how the semiclassical
results arise. The formulas for the induced tran-
sition probabilities obtained there indicate that the
semiclassical theory does not take the true fourth-
order process into account. This appears to be
unsatisfactory from the theoretical viewpoint of
QED, though it is sometimes claimed by those who
use the semiclassical theory that their results are
"exact. " From the experimental point of view,
Kusch" has pointed out that the semiclassical re-
sults' show a clear discrepancy with experimental
observations when the field intensity increases.
This situation seems to indicate that the semiclas-
sical theory cannot properly take care of the mul-
tiple quantum transition, which should be important
in the region of high-intensity fields. In the follow-
ing calculations, we shall explicitly demonstrate
the anomalous behavior of the width of the induced
transition probabilities in two-level atoms which
is very like that observed by Kusch" in five-level
atoms.

For the sake of simplicity, let us return to the
two-level system treated in Sec. III. %e shall use
E(I. (24) to compute the induced transition probabil-
ity, but, in contrast with Sec. III, the correction of
the Green's function due to forward scattering is
taken to all orders in ez. Looking at (11) for the
fourth-order process, it is not difficult to general-
ize it to the process of g incoming followed by g
outgoing photons. By using (17), the matrix ele-
ment corresponding to this process is

H(2n) ( II)

(- ()"(r ~)l 1t e ~ ~ t l2n~1

x f (Er + n - (d) (Er + n - (d) ~ ~ ~

x [Er + g —(n —I) ur] (E, , + 0 —n&@)]-r, (58)

for n & 2, and H~r, '(- 0) is given by (19), where d
is the dipole operator defined in (18). It is easily
seen that for

we get

e,","r(E,—x) =(- I)"('"

x [(x+ ar) ~ ~ ~ (x+ a„)(x+ t,) ~ ~ ~ (x+ (rr„r) ] r, (57)

where

X= Zb+n MP = Eb —Eg & 0

Qj= cop+jco, bj-—jM, j = 1, 2, . . .
(58)

and $ is defined in (18). Thus the matrix element
for the mass operator taking the higher-order for-
ward scattering into account can be written in the
form

e,„=Ze,","'=- +Z (- 1)"('"
X+Q1 „„2

x [(x+a,)" (x+a„)(x+5,)" (x+f„,)]-'. (59)

Similarly, an expression for H„ to all orders can
be found. Now because

H =e =Ra(2"'=Z e,"."'=0
n=l n=1

&+ Qj = X+ Q1 X+ Q2 ~ ~ ~ X+Q„~
j"-1

A partial-fraction decomposition of (5V) can be
achieved by putting

n n-1 n-1

rr rr[( +;)( +5 )]'=~
j=1 l-"1 j=1 ~+Qj "g&g" 8+ bj

where Aj and Bj for eachj are clearly dependent
on yg, and are given by

it is readily seen that the form (20) remains un-
changed. Using (15), (20), (24), and (59), we get
an expression for the induced transition probability
taking the effect of one extra photon absorption into
account,

e'"dz 2I, , (t) = C, (t) '=
4rr' J „(z+a,)[z —g(z)]

(eo)
where g(z) is defined by

(2 00 n n "1 -1
g(z) = — +2 (-1)"&'" Q(z+a, ) g(z+frr)8+Q1 n 2 l=1

(51)
and the following notation has been introduced:

p=a, q=b, or p=- b, q=a,
we have, for all n,

~(2n) ~(2n) Oab bc

due to the dipole selection rule. For

n n-1

-a& r=r r-r -(z+ar)(z+frr )

n n-1

B, =lim g grr=r (r=r (z+ar -)(z+~r()

Thus
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(t ~ a,)g(s) = —(t' —2 (- ()" ('"A,
) (z

n~2

n-1

x Z, tz"(-I)" Z ' .Z ', (63}
g P 8+ Qy g-18+ 5y

where A, can be easily computed from (62) to get
n 2 -1

A1= n —1 1 Vn VP+jCO
$=p

(64)

If the system is tuned near resonance for a single
quantum transition where ~= cop, we may approxi-
mate (64) by

A, =([(.—1).]' '"'] ',
and ignore the last sum in (63) by writing

(65)

p- (t)= ~ e'"dz
41(2 „z(z+a) —tz Jp(s)

where

(67)

0=01= MP —('d ~

Let s, be the smallest root of Jp(x), which is
given by37

S1-2, 40 .
It is known that

Jp(x) &0 for 0& x& sl .
Thus, if

0 & s = 2( /(t)p & 2. 40, (66)

we may evaluate (67) by theorem of residues to
get

2

P, b(t) = 2 4 2, sinz( —,
' t[a +4& Jp(s)] / ],

(69a)
and the amplitude is

Cb(t) =i, 2 4(2J (
]1/2»n(2 t[a 4k +Jp(s)1

t(z +Rb+(t)t/2 -(69b)
Note that Eq. (69a) attains a maximum for a= 0

with l sin(t$ [Jp(s)]" j I
= 1 for some t. The maxi-

mum for P, , (t) is [Jp(s) ] ', which is clearly
greater than unity. Such a, pathological situation

(*,)t(d =-(('-Z (- ()" ('"n) -=-('z(s),
n-2

(66)

where

s:2$/(()p

and Jp(x} is the ordinary Bessel function of zeroth
order. 22 With this approximation, Eq. (60) be-
comes

xfd'r d't", ~ d't zn„~ dt, ~ dtz„,l 8(tl}

x p (r) G(r r t t ) e e'"'—1 "'1

1 r2 tl tz) ' ' G(r2 r2 +1 t2 t2 +1}e

t~tzn+1 tK rzn+1 p (r ) e tentzn+-1 . (70}

Carrying out the integration over space-time co-
ordinates, we get

C."","'(t) =[(- 1}n/2vi]gz"'fdQ, dQ

x 6(Q2 —Q, + p)) 6(Qz —Qz + p)) ~ ~ ~

x i)(Q2, —Qz„„+(o) [(Eb + Q, + H„)

X (E, + Qz+ H«) ~ ~ ~ (E, + Qz„+ H«)

x(Eb+ Qz„,l+Hbb)(E, + Qz„„l+(())] (71)

where Il» in E, +Q, +II» is a function of Q„and a
similar remark is true for other factors. For
n=0, the above expression reduces to Eq. (69b).
Because of the presence of the 5 function, we may
first perform the Q„Q3, . . . , Qa„ integrations; with-
out difficulty we get

"' '(t) =[(- I)"/2 i]tv"' f2" ldz[(z+al) ~ ~ ~

x(z+az„„)(z+bz) ~ ~ ~ (z+ bz„)] '[z -g(z)] '

x exp[- -,' i (E, + E,+ (o) t+ ', i a,„„t ], (72)-

where a/ and b/ are defined in (58), and g(z) in
(61). Note that H„, Hbb occurring in (71) under
the Q1, .. . , Q2„ integrations have been ignored as
they give rise to only inessential corrections.

We may sum (72) over n to get C, , (t) by re-
stricting our attention to a term involving @+a1

arises from the fact that, to obtain C, (t), we only
include one extra line for the absorption of an ex-
ternal photon. In fact, to compute the a- b tran-
sition, there are two, three, etc. extra absorptions
of the external photon lines. Moreover, the con-
tributions due to an even number of extra absorp-
tions vanish as can be easily seen from (52b) in
accordance with the dipole selection rule; this
fact has been noted by Winter. Thus one only
needs to evaluate the contribution due to odd num-
bers of extra absorptions in order to get the cor-
rect formula for P,„,(t). In this connection, we
may calculate the amplitude due to the (2n+1) ex-
tra absorptions of the external photons. It is given
by

C(2n+1) (t) ( )2n+1 [(~/2&I/) 1/2]2n+1
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P, , (t) = 1-
i C,., (t)

i
', (75)

4$2g

(76)

a:a1 = ('dp - R

which never exceeds unity and which gives the
same width as Eq. (69a). Thus, the width d, for
the 81ngle quantum trRn81tion ls given by

d, =2( [Z,(s)]'".
In order to study the behavior of the width d1 as

a function of the power level, we define the function

f(s) =-d, /(oo=s[Jo(s)P" .
The maximum of f(s) is determined from that value
of' g satisfying

uo(s) = su, (s),
where Z, (s) is the Bessel function of the first or-
der. ' The root can be approximated very accu-
rately by the value

in the integral as in the evaluation of the integral
in (60). The result is simply to modify (69a) by
an extra factor [Zo(—,

' s)]2 in the numerator; the
peak value of P, o (f) is still greater than unity
due to the fact that we have omitted the iterated
graph in '.he construction of the mass operator.
However the approximation of Eq. (66), which is

g(z) = —('Zo(s) /(z+ a),
can be used to justify Eq. (54) if (66) is satisfied.
Thus one may use (55) to compute the amplitude
fox the a-a transition. It is

() 1, 8 dz
2' J „z—t'Zo(s)/(z+a)

where the irrelevant phase factor has been omitted.
Computing the induced transition probability P,„,(f)
from

for l. 60 & s & 2. 4, we get a power narrowing, in
contrast with the semiclassical theory where one
always has power broadening. Such anomalous
behavior as demonstrated above is in qualitative
agreement with Kusch's experiments. " A quanti-
tative comparison 1 equlre8 the RppllcRtlon of th18
method to an atom with five unequally spaced levels.
This is now in preparation.

In closing this section, let us calculate the shift
in the resonant frequency for the single-quantum
transition. The calculation can be easily done us-
ing the consideration of Sec. IV for the evaluation
of the Bloeh-Siegert shift. In the beginning of this
section, we were primarily interested in the width,
and thus the part of the contribution due to the op-
posite rotating waves has been ignored. As we
remarked earlier in Sec. IV, the shift is essen-
tially a result of the antiresonant terms; therefore,
we must add this type of terms to (56) with &u re-
placed by —co. To obtain the shift, we proceed in
the same way as we have done in Sec. IV. Consider
the amplitude for the a-a transition,

where f(z) is similar to g(g) defined in (61):
00 n-1

f(s) =2(-1)"g'" Q(s+a, ) g(s+5,), (60)
tf-1 Jf-1

and we have neglected the resonant term of the
form

t'/(z+ a,),
as it only contributes to the width and not to the
shift.

Now assuming that the cont11bQtlon to the 1ntegrRl
is near the pole g =0, we may approximate

(61)

under the integral sign of (79). Further, assuming
that (d = (dp, as before for the evaluations of the
single-quantum width, we get

f(0) =~ (- 1)"-'g'" [(n —1) j (~+ 1) t ~'" '] '

For s-1.60, f(s) decreases to zero at s=2. 40.
The width f(s) is plotted in Fig. 6, for 0 &s & 2. 40.

The mathematical discussion of the function f(s)
related to the width d, clearly indicates that for
0& a&1.60, we have a power broadening, while

where

= (ooZ,(s),

FEG. 6. Anomalous behavior
of width for the single-quantum

/

f(s) sg~ (s) transition in a two-level system.
The function is defined in Eq. (77).
The dashed line is the semiclassi-=S
cal theory for the width.

and Jo(s) is the Bessel function of order 2. Thus
the integral (79) becomes

c, (t) = dec
2v~d „z+~or, (s)

8-5 E&+"Cop JgtS) 3t
0



C. S. CHANG AND P. STEHLE

From (84), we see that the level a is shifted by the
following amount:

—Q)p clz(s)

Similarly, we can calculate the shift to the level 5

by computing C„(t), assuming at t=0, the system
is at the level b; we find

(f) t [EP+(dP Jz(s) ]t

This expression implies that the level b is modified
by the following shift:

+ I'dp aT,(S)

Hence by using the following notations for the two
levels in the presence of the high-intensity field,

E, =E, —&up Jz(s), E, =E,+~p Jp(s), (85)

and computing the Eqs. (21) and (23), we find

where, according to (30) and (32),

)p )p
F(z) =Z ' +Z

&18+ (up (dg )=18+ COP+ (d
(90)

with the antiresonant terms added. If one includes
the term arising from the contribution of the vac-
uum field, we must add one more term to (90}:

calculation for the physical quantities of interests.
Ne wish to make a further theoretical application
of Sec. IV to include the effect of the blackbody ra-
diation field which always exists when the experi-
ment is performed at temperature T. Ne shall
derive the line shapes, frequency shift, and width
due to the additional radiation fields.

Vfe begin with the following expression for the
5- 5 transition in a two-level system:

Cp(t) =(I/2@i) e ' &'f [z —F(z)] e'"dz, (89)

P, , (t) = (t'/ri') sin'rit,

where

ri= 2[((d (dp) +4( ] &
(dp=Ep E+ ~

(88)

~„1g+ COP —(d~

where

Thus we find the following shift of the central max-
imum of (88):

,=2,d, ( ) .
For the case of a weak field, (87) reduces to

First, let us make a simple calculation of the nat-
ural line shape by assuming N&= 0 for all j. In this
case F(z) is simply

5M = 2$ /2(op = t /I'dp,
8

F(z) =Z
) 1g+ Q)p —(d)

(92)

in agreement with (38) by taking v = —vp

In order to study (87) as a, function of the field
amplitude, we define

F(s) -=5(u/2 (op = d, (s) . (88)

In the for cgoing sections, attention is restricted
to experiments on molecular atomic beams. %'e

should also consider the situations related to laser
experiments. As far as the effect to order e is
concerned, the present approach offers a simple

The function F(s) is plotted in Fig. 7. It is seen
that F(s) & 2, and oscillates with decreasing ampli-
tudes. This result is again in qualitative agree-
ment with Kusch's experiments. "

VII. FURTHER APPLICATIONS TO EXPERIMENTS ON

LASERS AND MASERS

Since the vacuum field possesses modes of all fre-
quencies, we may convert

1 1 " 1

(2 )p)
d k=(2 )p

N dcodQ

to get
2

«1&.le'rl»l' d~~'(z+~o-~) '
2 27I' J

(93)

Now, the major contribution of the integral (89)
arises from a pole around g =0, we further ignore
the principal value of (93), and approximate

2

E(z) =F(0) = ',
J

dQ (ale„r lb)l'

x d Fi6 M —Mp (94}

iiF($)
i.oo-

I S {Bloch- Siegert Shift )
I

I

0.50- J (S) [OED Theory]

I
I I ~ i II I I I I l~

4 6 I 8~ i0 i2 I l4~
I

0.25

-0.25-
-0.50-

FIG. 7. Shift in the resonance frequency for a two-level
system as function of field strength.

Here we write

1 1
lim . = P —iv5(x)—

p X+16 X
(95)

F( ) =chirp

and ignore the term P/x in (93). Thus we may ap-
proximate \
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under the integral sign of (89), where

ge 47
~p="('2,)3 ) d&I&ale, 'I»l'

Thus we find

I
c,(f) I'= e "o' .

(96)

For the b-a transition, we use a formula simi-
lar to (24). Using the same approximation of (94),
we get

1/2

c, .(t) = —e(— (a~a~ 1 )e-" o E(~) = V(e) + B(z), (lo2)

+3 (eps&P 1)

For low temperature, it is proportional to (dp e
while for high temperature, to (()p(kT). At room
temperature, the magnitude of this contribution to
the optical transition width is much less than the
spontaneous width yp.

Finally, let us consider the situation when both
the external monochromatic radiation field and the
vacuum field act on the system simultaneously.
We shall evaluate (89) with E(z) written in the form

~-(yp/2)t e+t(alp"a))t

(dp- CO —2gyp
(98)

where V(z) is the contribution due to the vacuum
field (absorption and emission of virtual photons),

Equations (S6) and (97) are in agreement with the
Weisskopf-%igner theory. 4'7

Next consider the system interacting with a black-
body radiation field at temperature T; then we can
take

V(e) =Z ' —.O(e'),
y 1 8+ (dp —(0~

(Ios)

and B(z) is the contribution arising from the for-
ward scattering of the photon beam (absorption
and emission of real photons at the same four-mo-
mentum k„, with 4~=0= pP —k ),

X((p) = 1/(e' —1),
where

P =AT.

The E(z) in this case can be written as

(99)
(lo4)

Thus the denominator of the integrand in (89) can
be approximated by

[z- E(e)] '= f~-[V(e)+B(e)]1'

1 + X((d, ) X((p,.)
Z+ Vp —&dg g+ (dp+

Since the continuous distribution of the modes is
applicable in this case, we can apply (95) and ig-
nore the functional dependence of E(z) on z by taking
g =0; we get

E(o) = 5z,'- —,'fy,'

where

Vz Bg

Vz Bz

The term omitted in the approximation of (105) in-
volved the product of V(z) B(z) which is of order e4.
We write the approximate expression (105) in the
following alternative form:

[ —E( )1'= ([ —V( )1[ —B( )]1' (lo6)

Thus the integral to be computed in (89) becomes

j.+N co~
+

47p —40~ (dp+ CO ~

(100) C, (f) = (I/2~i) e-"P'

Myt)=, ' dQ
I

&al e, r
I
f))l'[1+x((pp)].

(101)

Here 5Ep can be related to the level shift in the
presence of the thermal field before mass renor-
malization. The effect of (100) on the hydrogen
atom will be given elsewhere. yp in (101) is ob-
viously the width of the emission line [cf. Eq. (98)].
The temperature-dependent width is proportional
to the factor

~f"„~(Ie «e)][e——B(e)]] 'e'"de (1o7)

v(z) =-,'fy„ (lo8)

where yp is the spontaneous decay width given in
(S6). The integral in (107) can be calculated easily
to get

In order to evaluate (IOV), we use the approxima-
tion developed earlier in this section for V(z);
namely, we set
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C, (t) = e 'zp'[/i, e "P'"+A,e'~'+/1 e'~-'] (109)

where
—,
'

iyp(-,
'

iy p+ a)

(2 irp —n.) (2 irp —n-}
(")

I

'= (e2~A'/2p}
I &51 dl a &

I
'f(x) (116)

where

intensity field, we are left with the following ex-
pression for I C, (~) I

n, (n, +a)
(n, ——,

'
iran(n, —n, )

a=arO- CO,

are o., are the roots of the equation

z(z+ a) —t' = 0,

(110)

and

+Q
(x'+4t')(x'+ p') '

x=—a= vo —(d,

(117)

and are given by

n, =-,' [- a+(a2+4t') "2] .
Expression (109) indicates that I C, (~) I

2x0 because
of the existence of the external radiation field which

acts on the atom at all times and which can induce
transitions from the ground state a, thus preventing
the decay of the excited state to some extent.

%e now evaluate the induced transition probabil-
ity for the system in level a at time t. Using (24)
and the above approximation, we get

2~+ 1/2

2V
' 2m''

&f g ~ftz
' (z+a) [z- &'/(2+a}](z- —,

'
imp}

. (112)

Computing this integral by theorem of residues,
we obtain

x x x
x +n2 x +p x2+4$'

The roots are

(118)

x=o,
2

x = —
2 (t' +-yp) + 2 h(h +4yp) (4rp2 t 2 1 2 ~2 2 1 2 1/2 1 2 2

Vo lo

n'= (8&'/yp)(&'+ 4 yp),

p'= (4/y'. ) (&"-,' y', )' .

Equation (117) determines the probability distribu-
tion as a function of frequency detuning for the
laser field. The detailed structure of the function

f(x) depends on $ and yp, the field amplitude and

the spontaneous decay width of the excited state,
respectively. The extrema, of f(x) are determined
from the following algebraic equation:

c, (t) =(e'~x/21/}"'(&ldl a) e ' "
x(B e "p'/'+B e' +B4e™') (113)

where

y &2(2+ ~5)u2 t 4 116$

then Eq. (118) has three real roots,

x=0,
x=+(2/y, ) [2&'(t' —,

'
y,')]"'

(119)

1 ~

2 &VO'
—,
' iyp(-', iyp+a) —t2

' (n, -piyp)(n, -n, )
'

(114)

2$ f(l 2 2i
(1 2 (2)2 1 2 ( 2 4(2} 114 yp

xcos[(a +4k') t] —'
yp(a +4k }'

x sin[(a +4)')'/ ]}. (115)

For very high intensity (that is, $ -~), the
above term is rapidly oscillating, and thus can be

averaged out. Hence, for large times and high-

As t- ~, the terms in I C, (t) I involving Bp van-
ish as can be easily seen from (113). Further-
more, the oscillating terms in I C, (t) I can be
easily calculated to be

X[1 2 —t2 —t(2t2+ 1 2)1/2]1/2 (120)

The results of (119) and (120) for the behavior of

f(x) are plotted in Fig. 8. From the figure we see
that there is a dip when the laser frequency is
tuned at the atomic frequency. This result can be
understood by regarding the combined effect of

spontaneous and stimulated emission. The proper
description of such a combined effect given here
indicates that the spontaneous and stimulated emis-
sions are not taking place independently. The in-
terference between these two processes gives rise
to an apparent modification of the induced transi-
tion probability. If one takes two modes (e.g. , a
moving atom in a standing wave field}, one would

expect the occurrence of two dips. The calcula-
tion is straightforward. We hope that the calcula-
tion explicitly performed here will lead to further
understanding of the detailed dynamics of an atom
interacting with radiation field.
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VIII. CONCLUSION

Most of the calculations given in this paper re-
fer to some particular process. In spite of this,
it appears that some general conclusions can be
inferred from the results.

One would expect, from the most elementary
form of the correspondence principle, that the
method of QED and of the semiclassical treatment
should have some region of agreement, in particu-
lar for situations mhere weak low-frequency fieMs
are involved. This is indeed the case. In those
systems where transitions involve the emission
or absorption of a single photon, the results of the
two methods coincide when the @ED calculation is
made to oxder e~. When many-level atoms are
present and transitions between nonadjacent levels
are induced by many-photon absorption ol emis-
sion, then there appear to be differences between
the @ED and the semiclassical methods of calcula-
tions. The one explicitly shown here is the depen-
dence of line width on incident power. In the semi-
classical theory of Salwen38 this is a linear depen-
dence, whQe in the QED description given here the
line width reaches a maximum and then decreases
with increasing incident power. This is in qualita-
tive agreement with experiment. ~ These differ-
ences do not arise from x adiative corrections.
These have been accounted for by using the ob-
served (renormalized) charge and mass of the
electron, and then invoking the low-energy theo-
rem of I.owns and of Gell-Mann and Goldberger. ~7

This theorem asserts that in the lom-frequency
limit the scattering amplitude and its first deriva-
tive are completely renormalized by using the ob-
served charge and mass of the electron. Thus
radlatlve corx'ectlons to microwave ox' rf px'ocesses
are negligible. The differences are caused simply
by the fact that QED and the semiclassical treat-
ments are two different theories in general.

While the formalism of @ED in this context is
no harder to use than the semiclassical treatment,
and indeed may be easier when attention is re-
stricted to order ea, the calculations become rap-
idly more tedious as the order increases. They
are all finite calculations, however, and are there-
fore accessible to numerical computation, unlike
those coming from radiative corrections.

It is sometimes asserted that the results of the
semiclassical treatment are "exact. " By this it
is meant that the solution of the equations of mo-
tion for some simple systems resulting from using
a classical electromagnetic field can be solved
without mathematical approximations. In this
paper perturbation theory has been used consis-
tently, and no "exact" solutions have been ob-
tained. In one case an approximate theory is
solved exactly and in the other an accurate theory

has been solved approximately. Only the latter
process leads in practice to a sequence of more
and more accurate calculations of physical effects.

APPENDIX A: TIME-DEPENDENT PERTURBATION
METHOD OF HEITLER AND MA

The purpose of this Appendix is to solve the
problems similar to Secs. V and III using another
approach. Since the resulting expressions from
the present Appendix are in many ways similax to
the QED results, the comparison can be easQy
done. It mill be seen below, that the method of
the present Appendix is equivalent to the semiclas-
sical treatment.

Consider the Schrodinger equation

. 8$
=Hip (A2)

ef HotII 8 "EHot

The exact solution of Eg. (A2) can be expanded in
the form

g (t) =Zb„(t)g„.

ib„(t) =EH„~.e" ~ -"b.(t), (A4)

where H„~ are the matrix elements in the intex-
action representation, and are independent of time„'

E„are the eigenvalues for Ho. The functions b„(t)
repx esent the probability amplitudes at time f.
Note that the label g includes the electron and the
radiation field.

The solution of Eg. (A4) is to be subject to the
following initial conditions:

b,(+ o) = l, b„(+o) = o .
We further impose the following conditions for
analytical reasons:

b„(t) =bo(t) =O for t&O.

Then Eq. (A4) reduces to

ib„=EH„,.b„e" -"+ib„,-b(t) . (A5)

b„(t) =- (l/2vi) f "dZG„)0(Z) e"

H= Ho+HI =Hg+Hg+HI, '

H~ is the Hamiltonian for the electron, H~ for the
radiation field, and Hz the interaction between them.

In the interaction representation, we have
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we have

(E E )G I (E) —riP
I

G
I (E) (AV)

and put

+112 +211 (All)

The system of algebraic equations (AV) determines
G„lo(E).

Since the solution of (AV) involves a denominator
of the type

E-En-Known ~

we may take

E=E+i0,
so that we can avoid a zero denominator when
E —E„—K„~„becomes small. The limiting case
is defined in the following way:

C(~) =»m . =S --iv5(x) .1 1

p X+'lE X

In order to apply the above formalism to the
system we are going to consider, we use the fol-
lowing notation. Since E„occurring in Eq. (A4)-
(A7) is the energy for the whole system, namely,
the sum of energy for the electron and radiation
field, we shall use the notation E„ to denote the
eigenvalues of EIp = K~+ K~, while E„ is the eigen-
value of K~, where n = 1, 2 for the two-level sys-
tem and n = 1, 2, 3 for the three-level system and

so on, and can be regarded as the label for the
atomic levels under consideration.

For the two-level system, suppose at t =0, the
system is in the lower level 1, no photon present;
at time t, the system is in the level 2, a photon
of frequency ~ is emitted. Then

e '"dz
c, 2(t) = I 2(f) =-

2711 2(g + R —(do) —$

(A12)

where the contour of the integrations is to be car-
ried out in the lower half-plane. It is easily seen
that Eqs. (A12) are in agreement with Sec. III.

Next consider the three-level system in the nor-
mal Zeeman effect. Suppose that the system at
t =0 is at level 2 and no photon is present. We
may put

I I
E, =E,+ ~ E, =E2 E,=E, —~.

Ignoring the self-energy corrections as before,

K1 I 1 K2 l 2 K3 I 3

and using the dipole selection rules Any = + 1,

K1)3=K3(1=0

Ifi I 2 Ifi I2 +213 H3 I 2

as in Sec. V, then the solutions of Eq. (AV) for
Gala(E), G, la(E), and G, la(E) are the following:

Gala(y) = (I«) [y'- (~o - ~)'],

for the allowed transitions. It turns out that $ in

Eq. (All) is the same as the $ defined in Eq. (18).
From Eq. (A5) we find the following expressions

for the probability amplitudes:

1
00 (2 -1

c, ,(f) = f,(f) = 8 dz~
2Ãgg g + co —cop

I
E1 —E1, E2 ——E2 —(a) . (Aa)

with the following solutions:

The system of algebraic equations (A7) can be
written out explicitly,

(~ —&1)Gili(&) = I+&1liG1 li(&) + &1laGali(@ ~

(A9)
E2) G211(E) +2 llG1li(E) + Isa laGall(E)

G„,(y) = (I/A) (y+ (do —Id),

Gila(y) = (I/&) (y —Ido+ oI)

where

ii = y [y' —((do —(d)
' —4&2],

y=E

~p=E3- E2=E2- E1 .

(AI2)

~ttlI@) (@ @t +tl l g g )
K1 I2K2] 1,

2 2)2

Z-E '-"a
2 2)2

(A10)

K1 ]2K2 I 1X
2 2)2

As was discussed in detail by Heitler, the diagonal
matrix elements of K represent the self-energy
correction to the atomic level; we may ignore
them,

0111 K2 I 2

We end up with the following probability amplitudes:

(,) 1 t" [y'- (~o- ~)2] e '~'

27fi) y [y —((do —(d) —4$

( )
@2 ' " (y+Ido-Id)e '"
27Iiy [y'—((do —&d) —4$ ]

(A14)

(,) ~~&
"" (y- ~o+~)e "'

2vi „„y[y'- ((do —Id)'- 4(2]

where the contour integration is carried out in the
lower half-plane. It is not difficult to see that
Eqs. (A14) are in agreement with Eqs. (50) and

(51).
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Similarly, if we start at level 3 at t= 0, then we

may take
I I lE3=E3, Ez =Ez+ v, Ej =E3+2&,

and using the same arguments as before, we have

( )
z(z+ a) —2]2

313
& [&2 (&2+4~2)]

From E(I. (A15), we deduce the following prob-
ability amplitudes:

1 "[z(z+a) —2(2] e '"
2 [2'- (a'+4~')]

W2g (2+ a)
G2]3(2) [ 2 (

2 4)2) ]
(A15)

W2t "" (2+a)e '"
J [2 (2 4(2)] (A16)

2(2
G (z)=l]3 [ 2

(
2 4g2)]

where $ is the same as before and

z=E- Ea, a= uo —u.

2~2 t'~ -Its

2[ '-( 2+4~2)] "
By closing the contour of integration in the lower
half-plane, we find

C3 3(t) =
2 2+ 2 2cos[t(g2+4$2)'~2]+ 2 2, &2

sin[t(a +4(2)3~2] e-I"()'

Ct s(') =44 4(- 4
*+ « '"['("+44')"']+;

44 )tt sin[t(a +4( )' ]),a+4 a+4/ (a +4) (Alv)

2

C, ,(t) = ——, ,sin'[-,' t (a2+ 4(2) "']eI"',
a +4/

and the probabilities for each transition can be found easily;

a, ,(t) =[c,.,(t)1'=(4 — . «, s n'[It( '+«')"'I

2
P .s(t) =1&,.,(t) ~'=[, 4, si [ t(a +44')tt'] 4 —, sin'[-', t(a' 4(t)ttt])a+4' a'+ 4 (A18)

4

a3. ,(t) =
~
C, ,(t) ~'=( 2 4,), sin'[-', t(~2+4t2)'~2] .

The results of E(ls. (A18) reproduce the Majorana
formula for spin-1 system.

Similarly, one can derive the expressions for
various transitions starting with the level 1; we
omit it. It may be stated that the present approach
can be applied to a system with a general spin, for
the normal and anomalous Zeeman effects.

APPENMX 8: PROOFS OF SOME MATHEMATICAL
ASSERTIONS

then
u = (a2+ x') "' .

) | (34 —tP+ 5 + f ) cosutd34
~(3l2 ~2)"' [(u2+ 52 g2+ a2)'+ 4(2g2]

(B2)

" f(x)

(i) In the following paragraphs, we will inves-
tigate the asymptotic expansion of Eq. (26). Define

)
t"" cos[t (a'+ x') "']dx

J (a2+x2) [5'+(x- g)2] '

where a, 5, f are real. Let
FIG. 8. Induced transition probability for a tv'-). evel

atom in a laser field of single mode.
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The integral

(u'- a'+ 6'+ g') du
u(u'- a')"'[(u'+ 6'- g'+ a')'+ 46'g']

du
a+u 6+ &-u

v(a+ 6)
a 6 [g'+ (6+ a) ']

is absolutely convergent; by the Riemann-Lebesgue
lemma, 4' we have

Vle find

(2v) "'
E(8') =( ) ( )

s( t+ )+O(1/t) .
(86)

(ii) In the following paragraphs, we prove the
algebraic assertions made in Sec. IV. To prove that

n

f(.)=z-Z ' =O (86)
~ lg+Qg

can have only real roots for real b~, a&, let

z= a+iP

limE(t, i) =0 .
g~ co

(88) be one of the roots where ()., P are real; then
z = o( iP is a-lso one of the root; thus

This proves the existence of the asymptotic expan-
sion for Eq. (Bl).

In order to estimate the leading term of E(t, r )
when t is large, we make the following changes of
integration variables in Eq. (82):

u=asece, z =tan-,'6 .
Then

1 pl
E(t, g) =2 K(z) e' "dz+2Ji K(z) e ' "'dz.

(84)

az'(1- z')'+a, (1-z')'
Kg (1+zg) [a&(I —z ) +agz (1—z ) +a3g ]

f (z) =ia(1+z') (1 —z') ',

n
b

Q+ip —Z . =0,
Z la+a;+iP

n b2
o. —iP —Z ' . =-0.|oa+;-ip

Subtracting the last two equations, we have

2ip &+ -- -', =0

but

b2
I+K

(
~) )0,

Let

a, = (6'+ g')', a, = 8a'(6'- g'),

a, = 16a', a, =a '(6'+ g') .

so we get

P=0.

To show that

(87)

f(z) = p(x, y ) + i P(x, y ), z = x+ iy .
Since the integral of Eq. (84) is along the real

axis in which y = 0, y = 0, we may write

E(t, &) = 2 f0 K(x) e""" dx+ 2fa K(x) e """ dx .

2 [f'(n, )]-' = I,
j=p

where f(z) is defined in Eq. (86), and

,
( )

df(z)
dz

(88)

Let &0 be the saddle point, i.e. ,

y'(x, ) =0;

In order to prove Eq. (88), we a,ssume n = 2 in Eq.
(86). Let the roots of Eq. (86) be given by n„ng,
o)„all are rea. l according to Eq. (87); then

we find

X0=0 .
f (n, )=iim f(z) (n, —a, ) (n, n,)—

, z —o., (a, +a, ) (n, +a, )

The method of the stationary phase gives, for
large g,

1/2

z(~, ))=(,
,

„'( ), z(x, )

Similarly one can compute f (ug), f (n, ).
Utilizing the explicit expressions for f (n&), a

straightforward algebra gives

Z [f'(n, )] '=1.
j=l

x exp[it)I)(xo ) + @ 7fi itl (x() )]+ O(l/t) + C. C.
One can generalize Eq. (89) to an arbitrary natu-
ral number n.
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