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A standard formalism of quantum electrodynamics is used to investigate the interaction be-
tween two neutral atoms. The study is based on an approximate solution of the two-particle
Green's function. The frequency distribution of the photon scattering is obtained. We also
consider the self-stimulation effect when both atoms are in excited states.

I. INTRODUCTION

The two-atom problem has drawn considerable
interest since the advent of lasers and masers.
In fact, by using the Weisskopf-Wigner method,
this problem has been solved exactly by Ernst and
Stehle, ~ who deal with the atoms interacting with
a common radiation field. The purpose of their
work is partly directed toward constructing a rig-
orous description of the behavior of an ensemble
of atoms and using some characteristics of the
two-atom solution as a check for the approximate
solution of the V-atom problem. In the present
work, we shall use a different approach, based on

the approximate solution of the Bethe-Salpeter
equation, to discuss the physical properties of
the tmo-atom interaction. In particular, we shall
pay some attention to the problem of the frequency
shift of the emitted photons due to the resonant in-
teraction; such a shift has been ignored in the
Weisskopf-Wigner method of Ernst and Stehle.
Several other features contained in our solution
mill be discussed in detail.

In Sec. II, we solve the Bethe-Salpeter equation
in the ladder approximation. The approximate
solution for the two-particle Green's function is
then applied in Sec. III to discuss the interaction
between tmo neutral atoms when no external field
exists, and the results are compared with those
obtained by others. In Sec. IV, we consider
low-intensity photon scattering, taking the tmo-
atom interaction into account. We obtain an ex-
pression for the frequency distribution of the
emitted photons. Our result is different from
that derived by Fontana and Hearn when the sepa-

ration of the two atoms is not very small compared
with the wavelength of the emitted light. Finally,
in Sec. V, we study the decay of two excited atoms.
Complete agreement with the work of Ernst and
Stehle' on the tmo-atom problem is obtained. The
extension of the present approach to the N-atom
problem for a laser model is deferred to a future
publication.

Appendixes A and B contain the necessary alge-
bra to complete the derivations omitted in the text.
Finally, a brief derivation of the natural line shape
for a single isolated atom using the standard quan-
tum-electrodynamical (QED) formalism is given
in Appendix C; the result agrees with that of the
Weisskopf-Wigner method. ~

II. SOLUTION FOR THE TW'0-PARTICLE GREEN'S
FUNCTION IN THE LADDER APPROXIMATION

The two-atom problem has been considered ex-
tensively by Ernst and Stehle' using the method of
Weisskopf and Wigner, and by Stephen' and many
others using time-dependent perturbation methods.
We now present a different method based on the
Bethe-Salpeter equation and compare the results
with the previous works. We solve the Bethe-
Salpeter equation for the two-particle Green's
function in the ladder approximation in this section,
and apply the resulting two-particle Green's func-
tion to discuss the nature of interactions of the two
neutral atoms in Sec. III. A further application of
this Green's function to the photon scattering prob-
lem is given in Secs. IV and V.

Consider the integral form of the Bethe-Salpeter
equation



G„s(x„x„x„x4)= G(x„x,)G(x„x,) —G(x„x,)

x G{x„x,) +fd4x, d'x, d'x, d'x, G(x„x,) G(x„x,)

x I~e (x4, x4, x7, x4)c~~ (x~, x4, x3, x4), (l)

where G(x&, x~) is the one-particle Green's function.
We have

G(x4, x, ) =Sr(x„x,) —iJSr(x„x,)M(x3 x4)

x G(x„x,) d'x, d4x4,

in which Sr (x„x2) is the Green's function of the
single electron in the prescribed static field and
M(x„x4) is the mass operator. The mass operator
includes the self-energy of the electron arising
from its interaction with the electromagnetic field
in the vacuum state, and when intense radiation
fields are present, it includes contributions from
the forward scattering of these fields. Here we
are concerned only with low-intensity radiation
fields. Writing

and the metric is such that the scalar product of
two four-vectors a„and 5 is given by

g b=g„b~=gobo —a b .
The indices A and B are used to distinguish the
particles under consideration.

If we neglect the overlap of the wave functions
between the particles, then the solution of the
equation

G„,(x„x,; x„x,}= G(x„x,) G(x„x,)

—je'f d'x, d'x, G(x„x,) G(x, , x, )

&& y"„y'„D„(x„x,)G~ {x„x„x„x,)

corresponds to the solution including the Feynman
diagrams of the ladder type shown in Fig. 1, in
which the interaction due to the crossed photon
graph of Fig. 2, corresponding to a term

H„„(~)=f"H„„(t)e'"dt,

H„„(t)=J y„(r,)M(r„r„ t)y„(r, ) d'r, d'r,

—te4y "„yeG(x„x,) G(x„x,)y„"ye

x Dr (x„x4)D~ (x„x,)

we may use the known results, that„ to order e~,

ReH„„(-E„) is the Lamb shift of level n a.nd
—lmH„„(- E„)= —,

'
yo is the natural width of the level.

For the ground state, H„„(-E„) is, of course, real.
Thus to order e we have

in I~, is not taken into account.
We note that the exact solution of Eq. (7) for G„e

depends on three different time arguments. We
now make the assumption that the initial- and final-
time coordinates of the two particles are the same,
namely,

G(x„x,) = .Z Tt„(F,)y„(r, )
t= tj = t2,' (8)

The I„e in Eq. (l) is called the interaction operator,
and in the first approximation, with respect to e,
takes the form

I~ (x4, x2, x„x4)

=- te'y"„y'„D„(x„x,) [~(x,—x, ) ~(x, —x, )

—n(x, -x, )~(x, -x,)], (5)

where Dz(x„xa) is the photon propagator,

Since we are interested in the nonrelativistic limit
in the subsequent discussions, the above assump-
tion is consistent with applications.

Equation (V) can be solved by the method of suc-
cessive approximations if the second term in (7)
satisfies the condition of the principle of contrac-
tion mapping. 'o In the first iteration, we have

G„,(x„x„x„x,) = G(x„x,)G(x„x,)

—te' J d4x, d'x, G(x„x,)G(x„x,)

&y"„y', D~ (x„x,)G(x„x,)G(x„x,) . {9)

On using Eqs. (4) and (8) to carry out the integra. —

tion of Eq. (9), and neglecting the terms of the type

Z y„(r,)g (r, )y„,{r,)y, (r4) Jd(o ~ ~ ~,

& ~0(t q-~2)8
dko

~00

which arise from part of the last term of Eq. (9),
we obtain

Throughout the paper, we use units such that
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where

E„'=E„+H„„(-E„),(p„= iE„—E i,
((u) =f„"dte'"'I„(t),

I„, (t) =fd'r1 d'r2 p„(r, ) p (F2) I e y"„y„Dz (F„F2;t )

x t. (F2)C„(F,) .

Here E„ is real, but H„„(-E„) is complex.
In obtaining Eq. (10), we have used the following

approximation:

i- x= I/(I+~)
which is consistent with the condition for the ap-
plicability of contraction mapping,

We now evaluate I„, (&pp) defined in Eq. (11).
Going to the nonrelativistic limit and the dipole
approximation, ' it is easy to see that

FIG. 2. Crossed photon graph.

By knowing P» (r„r2;0), one can compute

(AB (r1, r2,. t) with the aid of Eq. (10). Once

p» (r„r2, t) is known, then by taking the inner
product with (AB (r„F2,0), one can calculate the
probability amplitude of the system as a function
of time. In order to do this, it is convenient to
assume that each atom has only two levels between
which a spectroscopic transition is allowed. The
subscripts 0 and 1 will be used to denote the two
levels of concern, where 0 is the ground state and
1 is the excited state. We also assume that the
two atoms have the same structure.

As was pointed out above, ReH„„(-E„) is the
Lamb shift, and —ImH»(- E,) = —,

'
yp & 0 is the natu-

ral width of the excited state; if we neglect the
Lamb shift, we may write

I„„(0)= 0, (12)
/ I

Eo=Eo &i=EL ~ 8'o ~ (16)

and by straightforward calculations we find'

1 (qA R)(qB R)
3 M'Qa

o

(q„R)(q, R)
+ ~22 + 3R3 q~A qB 3 'R2(epR Q)pR

(Is)
where R= R„-R~, R„ is the radius vector for the
position of atom A. q~ is dipole moment for the
atom A, 8 = ) R] is the internuclear separation of
the two atoms, and coo = ) E E I.

III. INTERACTION BETWEEN TWO NEUTRAL ATOMS

PAB( 1 2 ) fGAB( 1 r2 1 2 t)

.x t/iAB (F,', r,'; 0)d'r,'d'r2 (14)

$ hA~4+ ~i~ + +
I ~~2

FIG. 1. Ladder diagram in the two-body interaction.

In this section we shall apply expression (10) to
discuss the interactions between two neutral atoms.
This study is based on the following property of the
Green's function. Suppose the system is initially
described by the wave function JAB (r„r2,.0); then
at a. later time t, the wave function p» (r1, r2, t)
will be

since the energy of the ground state, by definition,
is sharp. Further, in carrying out the computation
for the probability amplitude, the nonrelativistic
limit and dipole approximation are used.

For the present two-level atoms, there are
three different initial states of interest, namely,
both atoms in the ground state, both atoms in the
excited state, and one atom in the ground while
the other in the excited state. In the first two
cases, the system is nondegenerate, and accord-
ing to Eq. (12), the interaction will be at least of,
order e'. If we apply Eq. (10) to the case when

both atoms are initially in the excited state,

4AB (r1 2 ) 41A ( 1)418 ( 2) (16)

then using Eqs. (10) and (14)-(16), carrying out the
integration over ~ by the theorem of residues, and

taking the inner product of the resulting expression
with (16), one finds the following expression for the
probability amplitude:

(t) e 2&z13 e 1'p1 (17)

In arriving at Eq. (17), we have made use of (12).
From (17), it follows that

~
Q1 1(t)

~

= e (i6)

This result coincides with that of Ernst and Stehle.
Equation (18) indicates that the system decays twice
as fast as that for the single isolated atom. Since
in our development the terms of order e or higher
have been neglected, it is clear that to the order

the two atoms under consideration are indepen-
dent of each other. Therefore, the probability for
the system not to decay is the product of the prob-
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abilities of each atom not decaying.
On the other hand, if initially one atom is in the

ground state while the other in the excited state,
then the system is degenerate. Let

4A (rl r2 ) 41A ( 1)SOB (

On using Eqs. (14) and (10) to compute JAB (F„rp, f),
it is easily seen that the following Schrodinger
equation holds:

2 sf JAB (r, r2,' f) = (HOA+ HOB + IAB) JAB (Fl r2' f)

where

HQA 4(Fl F2, 0) = EA l'AB (rl, r2' 0)

and similarly for atom B, and IAB is defined by

10.1(o)0) = &1A0. I I.B I
IB 0A) Io, l

(t)o
——Ej —E(),

as in Eq. (13), in the nonrelativistic limit and

the dipole approximation.
Applying first-orde~ degenerate perturbation

theory, we find that the two states, symmetric
and antisymmetric, in the atoms,

JAB 2 (4(A POB + 41B 40A )

at t &0, have the following energies":
1 1 1

Eo+ Es + Io r = Eo+ Es + Io, s ~

with the notation of Eq. (15). It is evident that the
probability amplitudes for $(AB) are given by

(t) (f) -i(Ep+ Eit Io 1)t

Let

Ip g
——X+iY;

we have

(y) (t& "i(EO+ Bg +X)t e- (yp/2+ Y)t
&p, y xf I —e

According to Eq. (13), it is seen that X and Y are
functions of R, the internuclear separation between
the two atoms.

We now investigate the following two limiting
cases. First, if (d@ «1, then from Eq. (13) we
have

t (i)„R)(iI, R)
)AB 3 qA qB 2R R

Y —-', (do (q„= q, )(1-+o)2ft2)

= —-'ro(1-+0 (oo~'»

where

ro =+ O)0(1',

have been used. Accordingly, we find

(1(")(f)-e-«Ep'El' AB te 0'

( )(f )
1 (Ep + El FAB )1 ()0/20)alp E2 2

(30)

2 yo~ »o
Since yo and Y are both of the order e, and yp

involves a single atom while Y requires the pres-
ence of the other atom, one would therefore expect
the above inequality to hold. The decay law for a
general separation R is given by

")($)
l

= (to' "&'

where Y is a function of R.
The width for the symmetric and antisymmetric

state is given by

d"' = r, + 2Y(It),

respectively. One can plot d"' as functions of R.
This is in agreement with Hutchinson and Hameka'
and with Power. 4

IV. LOW-INTENSITY PHOTON SCATTERING FROM TWO

INTERACTING ATOMS

As a further application of the two-particle
Green's function given in Eq. (10), we shall derive
an expression for the frequency distribution of
scattered photons taking the effect of the interac-
tion between the two atoms on the scattering into
account.

We assume that both atoms are initially in the
ground state. We shall consider their interaction
to order e2. In the final result, we shall specialize
to two-level atoms. The frequency of the photon is
taken to be near the Bohr frequency of the single
atom, i. e. , ~=E&-Eo.

We follow the general QED formalism. In the
presence of the external radiation field, the two-
particle Green's function Q~ satisfies the follow-

We see that the symmetric state g'A'B) decays with
a rate twice that of a single isolated atom, and the
energy of the system for t«yo' is Ep+Ej+ VAB.
The antisymmetric state $(AB) is approximately sta-
tionary, and for f «(ro(d02R2) ', the energy of the
system is given by Eo+E~ —V~. It is clear that
only in the latter case is it appropriate to talk
about the interaction energy between them. 3 This
interaction is called the resonant interaction or
the transfer of excitation energy.

For ~pR»1 it is easily seen that

r 0 o~
l Il, o I

and we have, according to Eq. (19),

g t)($) e E()+ El t (70/2)t

i. e. , both states are damped with the width yp,
which is the same as for a single isolated atom.

For a general separation R, it can be shown
that
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ing integral equation:

G~ (12; 34) = G„B(12; 34) —e fd5d6GA (12; 56)

x [A(5) + A(6) ] GAB (56; 34),

A(5) =y.A„(5), (22)

(12; 34)

GAB (rl 2 r3 4 tl t3) 6(t1 t2) 6(t3 t4)

Vfe further write

A ( ) (2 ) 1/2 (()(('t-utt)

where G» is the two-particle Green's function
satisfying Eq. (1). A„ is the potential of the ex-
ternal radiation field.

The second-order scattering matrix element
S,'„f is given by

S(2/) ——e J dl d2d3d4:(g/(1, 2) fA/(1) +A/(2)]

x G ~ (12; 34) [A ( (3) +A, (4) ] (t)( (3, 4)}:,(23)

where: ~ ~ ~: denotes the normal-ordered product.
In order to use the approximate solution of the two-
particle Green's function given in Eq. (10), we as-
sume

( ) (2~ )-1/2 -((k/ t -~/t)f f f

A (r» r2 t) = )))( (r1 r2) e

6(r1, r2; t) =C, (.„., ) e-"/t,

E] =E +E Ef ——Ef +Ef .A B A B

Integrating Eq. (23) with respect to t„ t2, t„and
t4 we have

(2)
&1-/ ——22/2 f/t /6(E/+ (d/ —Et —(d(),

where

(f I e/(e '"/'1+e ' /'2) lnm ) (nml e, (e'"t'1+e'"2'2) li)
U]„f=

((t)t (d/) „E„+E +I„—Et —(()(
(25)

In order to carry out the summation over the
intermediate states, we use the interpretation of
Sec. III. The condition for resonant scattering
gives two terms in the sum of Eq. (25). These
two terms are due to the two intermediate states

where

rp

r2- X' 1A=

8= —2 --z-, C =1+/XF 2

ro

associated with the energy denominators
I IEj+Ep+Ij p .

Going to the nonrelativistic limit and the dipole
approximation, and using the notation of Sec. III,
we have

U(./=42( ((d( p)/)' '(q et)(q e/)(1+e""( '&' )

(() p
—(d t

—
2 (y p

—(X+ 2 F)r/

((d p (()1 2 (yp) —(X+i P)

D=4& , E=—(1+0) 2 +— +2&—,(28)
X X+V 1

ro
'

ro 4 ro
'

3(sin(dp R —p)p R cos(dp R)
(p)p R) 3

In the limiting case when ~pQ (& 1, we have

1X= ~AB ~= —2 &ro

since in this limit we have

g = 1 —~p (dpR, Y = —
2 yp(1 —~p (()QR )

j. 2 2 1 2 2

Cx +Dx+E
t-f

I ( 2 A)2 ( g)2 (27)

where q is the transition dipole moment for either
atom, and

cosk] ' R+ coskf ' R
1+cos(k, —k/) ~ R

Computing i U,. f ), and averaging over the ori-
entations and polarizations of the incoming and out-
going photons, we get the frequency distribution

From Eqs. (27) and (29), we see that our result is
the same as that obtained by Fontana and Hearn. 6

For p)p R» 1, Eq. (27) reduces to the Kramers-
Heisenberg dispersion formula as it should.

However, when (()pR=1, Eq. (27) differs from
the expression derived by Fontina and Hearn.
This c',iscrepancy arises from the fact that they
assume the interaction between the excited- and
the ground-state atoms as the static dipole-dipole
interaction a priori. In our treatment, such a
static interaction appears as a consequence of the
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TABLE I. Positions of maxima of Eq. (27) in units of

pp, the natural linewidth.

(A) pg

This amplitude is given by

~t„-&(f) =-;&f;klsli;0&

1.5
1.0
0.7
0. 5
0. 3
0. 1
0. 08
0. 06

—0. 696 583
—2. 072 525
—5.316 544

—13.407 516
—57. 999 802

—1507.481 003
—2939. 047 607
—6956. 933 167

= ie(2@V)-"'fd'r, d'r4dt'8 (t') p,
'" (r„r2)

x GAB (F„F„F„F4,f I') (-e e '"""'2

tkt'+tk r4) q (r r ) e tett

4 ( 1 2) 01( 1) 41( 2)

transfer of the excitation due to the external radia-
tion field when both atoms are sufficiently close so
that they can exchange virtual photons many times.

In Table I, we show the positions of the maxima
of Eq. (27) for various values of to, R. It is seen
that when ~pg «0. 1, the peak value is very close
to those estimated by Fontana and Hearn. For
(Jop P + 0. 1, we f ind that the positions of the maxima
are different.

V. FURTHER INVESTIGATION OF THE PROBABILITY
DISTRIBUTIONS OF THE EMITTED PHOTONS

In the previous sections, we have investigated
the problem of resonance scattering when the
atomic system is in the ground state. We now
turn our attention to the situation when both atoms
are in the excited state and no field is present.
This problem has been done partly in Sec. III. We
carry out the detail calculations here. Our purpose
is to compare our results with the results of Ernst
and Stehle' obtained by using the 'Qfeisskopf-Wigner
method.

We shall use the same notations for the ampli-
tudes n, ,(f), o.'k k (f), etc. , as were given in the
paper of Ernst and Stehle. The level scheme of
the two-atom system is shown in Fig. 3.

Assume that at t = 0, the state of the system is

JAB (r„r2;0) =
l 1„,lit;0) =

l
i; 0) =g; (r„r2) .

The amplitude

o.',(t) =&&(f)
l 1„,la;0&=e rote "ek'et"

has been evaluated in Sec. III. We now evaluate the
amplitude for the system to be in the state with one
photon k present,

1.0.&~
I
1.0.&)l»-=P'"(F1, F2) .

yq" (r„F,) =2 "'[y,(F, ) yo(F2)+go(F, ) q, (F2)],

I(1& I(2)E] = E] + F.(
——2E~ —z yp .

Carrying out the integration over r, and r„we get

ef A(t-t'& dg
2tti Ez+ Et'+ Iz 1(- 0) + 0

xetkt' 2iett' r2-t' 2-1-/2(&p I ee-tk ~ r4 I 1g lee

+&1„lee "' lo„&), (31)

where we have used the explicit form of G„a (r„F2,
r2, r4; f f) as gi-ven in Eq. (10), with the observa, —

tion that + I2 1(- 0) in the energy denominator of
Eq. (31) is to be associated with the symmetric
state and —I2,(- 0) with the antisymmetric state,
as was explained in Sec. III. Let

fd2t y,=(F R, ) e e—'"'y2(F —R,),

where the subscript j can be A or 8; then Eq. (32)
can be put into the form

(4) I
(2uV)"' ~2

x(C,*e-tk'2+C„e t"'A)f,'"(I) (33)

where

liA is&

~ (~iA~OB&+~iB~OA&]
kp

)OA, OB&

~~ (I iA OB& —
I 1 B,OA&)

FIG. 3. Transition scheme for
two- atom system.
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fz (t) =f iI dt 8(t ) . i) dA
27t'i g

f,"(-)=o,

Ifz '(")I'=((&- ~0- I'AB) + Yol
'. (36)

et &(t - t') et (&- 2E1)t' "&pt
x—, . (34)

E&+Ep zaY-O+Ip 1(- 0)+0

Now write

Io, &(-@=I'A —-'2'Y&a

Yo&r&z&0 r12 2y(R),

and assume that V» and y,2 are real constants in-
dependent of 0, the integration variable in Eq. (34).
We car. then carry out the integration in (34) to get

- f', (281-k)t
f„"'(f)=

&dp + I AB + 2 t (Yp + Y12)

x [8 "ot 1 «ap ztvAB)t 1
( + ) f] (35)

since y12 varies between 0 and yp and y12=yp when
copg«1. Thus, in this case we get

Note that (36) holds only in the limiting case
&00 A « l. In reality, f "2'(f) both go to 0 with in-
creasing time as indicated by the exponential fac-
tor e '"0'"12" in (35). Due to the appearance of
f,' '(~) in (36), the antisymmetric state may be
regarded as a metastable state, in agreement with
Sec. III.

Finally, we evaluate the amplitude for both atoms
to be in the ground state and two photons of momen-
ta k, and k2 to be present. This amplitude can be
written in the form

n„-„; (t) = (f;k, kzI S(t)
I
2; 0&, (37)

where

If&= Io„,o, &,

The amplitude defined in (37) can be rewritten in
the following form with the aid of the two-particle
Green's function:

~ 2 2 f

(2y I/) 1/2 (2y I/)1/2 J
d'V, ~ d'ra df df 8(t ) p/ (r„rz) GAB (r„rz, r3 r4 f f )

~ ~

x e, (e"1'" '"1'3+8"1'" ' 1'0) p,. (r„rp) +(term with k1 —kz, It& —kz), (38)

where gt (r11 rz) has been given already, and g/(r„rz) =$0 (r, ) (0 (rz). The symbol (k1 —kz, k, —kz) in (38)
12means a term must be added such that &z&,22 (f) is symmetric in k, and kz, and in k, and kz.

To carry out the integrations in (38), two situations occur due to the presence of two different intermedi-
ate states which are implicit in G„B as was noted before. With this interpretation, (38) can be written in

the form

(38)

where
~ 2 2 i A(t-t')

7TZ + p

x(e'"2' '"2'1+e'"a' '"2'a) [$0(r, )g,(rz) a $1(r, )go(rz)]P 1

f n'(t'- t")dn', , ~8 fgo( )g ( ) P ( )0o( )]
2gg. gp+E,'~I, o+ n

xez(e'z&t" '"1 "3ye"1t" '"1''4) y (r )y, (r4) e 'B1'" +(term with k, —kz, k, —kz) . (40)

The amPIitude &az 2 (t) can be understood by considering the following transition scheme:
k1 k2

(I IA, OB;k1&+
I
lB, 0„;k,&) &rz, -& I0„,0„k„kz&

and
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I IA, Ia'0& &g, o, &
2 (l l~, 02;k2&+14, 0A'ko&) &2,.2, &10~ 02 'k& k2& ~

(-)
Similarly, one can explain the form for o&2 2 (f) given in (40).

We may carry out the integrations of (40 as follows:

(~) 2 8
' 2 2 1

&&122( )
(2k v)1/2(2k v)1/2 2

(&ol e« '"2'2
l

1&a+&0l e&e'"2'1
l
1)„)

x((0l eoe '"1'2
l
1) +(0l eoe '" '4

l
1&,) EI&", , (t), (41)

where

F,"'2 (f) =e ' 0'([&oo —k2+ V» —-', i(y 0+y12)] '(&op —k1+ &oo —k2 —iyo) —e " 1' o '2" ' '"o'"»"
1

x[+0 k2+ V/&B 2 i(yp y12)] [+0 kl+ VAB 2 i(yo+ Y12)] +e

X(~0 -k&+&0-k2- iyd '[~0-k1+ V»-oi(yolky»)1'] +(k, -k, , k, -k, ) . (42)

In obtaining (42), E1= E, —,'iyp h—as been used. We
now examine the behavior of the function EO"2 (f)
when i is large. We see from (42) that there is
one term with a long lifetime (yp- y») which is
related to the trapping effect discussed before. If
we ignore the trapping effect, then we get

E.".(-)=([,-k, V --.' (y. y.)l
1 2

X (&dp —k1+ &op —k2 —iyp)]' +(k1 —k2), (43)

where we have set EO=0. (43) can be rewritten in
the form

( N 1/2

e(k, ~ k„) =l Q(12&I)
1

and I c2t (~) I

2 is the probability distribution for a
photon emitted by a single isolated excited atom.
Its derivation is given in Appendix C. The physical
meaning of the form (45) given by Ernst and Stehle"
is that R„-,...g is a measure for a "self-stimulation"
effect occurring in the real physical system. Using
(32), (39), (41), (42) and I n„(~)12 given in Appen-
dix C, we find that

R» --[1+cos(k,—k2) ~ R] —1}(cosk, R+cosk2 R)
1 2

E&+) (~} 1» 2y12
k k +0 —k1+ +0- k2 —

kayo
xRe . I,~

yo +0 k2 2 &yo

No k1+ +0 k2 —
kayo ( &0- k1- 2 ~yo

xi[~0-k&+ v»- l i(yo+y»)1

X [&Op —k2 + V» —2 i (yp+ y&2) ]j . (44)
where

—k ——'' I

0 1 22yp 0( 2)
0 k2 a Zyo

(46)

By setting V» =0, (44) is identical with the function

P» obtained by Ernst and Stehle. '4 The function
defined in (44) determines the line shape of the two
emitted photons through the decay of the symmetric
states of the two-atom system.

Finally, we discuss the spatial correlation of
the emitted photons. We are interested in the case
when the atoms are far apart, and thus y,2 will be
small compared with yo, and we can ignore V~
completely. In order to study the physical content
of such a correlation, we shall evaluate the quantity

y12/yp ~~ 1, R RA RB

It is seen that (46) is exactly the same as that ob-
tained by Ernst and Stehle. ' Note that the first
bracket in (46) is not just the product of the prob-
abilities of emitting photons of momenta k, and k2
separately. For the physical interpretation of
(46), we refer to the paper by Ernst and Stehle. '
It appears worthwhile to extend the present ap-
proach to the N-atom problem. This will be done
in the near future.

where

e (k1 ~ ~ kN) I

+12' ~ ~ //

"1'"br
N 1
II I&2„" ( )I'

v~1 v

(45)
APPENDIX A: CALCULATIONS OF THE FIRST-ORDER

DISPERSION FORCES

Consider the two-level atoms, E1 —Eo= coo. We
evaluate
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Ii, p((()0)
4 J~ 2 2 d rd r ())I(r )y„e

x fk dk sine d8 d()) cos8, cos82

x e (2B qos8 (k2 (d2 0) 1-0+g (A3)

x())0(r)T()0(r+r')y„())I(r+r')(k' —(q)'0+i0) ' . (Al)

Going to the nonrelativistic limit and making the
dipole approximation we have

I1 0((s)0) = (qA qB) (pp e ' o"R ' — — -2 ~t d'k(k qA)

x(k. q ) e '"'"(k —(d,'+)0) ' (A2)

where R=R& —R» A= IRI, k= Ikl. The magnetic
dipole term has been ignored. By choosing R along
the polar axis, as shown in Fig. 4, we have

Let the angular coordinates of q~, q~ be O, q „
0,8„respectively. Then we have

cos8, = cos8 cos8, + sing sin8, cos(()) —0);),

where i = 1, 2. Integrating (A3) over 0), we have

I, 0((dp) = (q„qB) (QQ k ' e '"0 —(qA(IB /271)

xf k'(k' —(do'-i0) 'dkf, d8sin8

x e '2B "'0 [2 cos 8 cos8,' cos82

+ sin 8 sin8, sin82 cos(yI —0)z) ]. (A4)

Il, p(+0) Q(qA qB ) e R ((IAMB/2~ Integrating (A4) over 8, we obtain

i, ,(,)=(q„.q )',R 's ""~ ' il '(q' — ,''0) 'q'sis(q}})(q„.q — ",q )qq
0

sinkR
2

coskR
2

sinkR - -
3 (q„H)(qB R)

(00+ I ) kR k2R2
(A5)

Using the formula

f k sin(kR) (k —p)0+ iO) ' dk = —,
'

)I e ' "0

and differentiating the above expression on both
sides with respect to R once and twice, respec-
tively,

f, k'cos(kR) (k'- (00+)0) 'dk= ——,'i)1(doe ' 0

f k'sin(kR) (k —(do+iO) 'dk= —,')1(poe '~QB,

we obtain from (A5),

Ig o COO = COoe o —qg'qg( ) 2,„1 (qA R)(qB R)
0

x[G(1, 3)G(2, 4)y„"y, Dz(3, 4)]& (Bl)

and the condition

e'/If/ &1

is fulfilled, then the iteration method can be applied
to Eq. (7) to yield a unique solution for G„B(x„x2,
x„x,) eI, 2(- ~, ~).

To see whether (B2) is satisfied, consider the
two-level system for simplicity, and evaluate (Bl)
in the nonrelativistic limit and in the dipole ap-
proximation; we find

& =
l
II, Q(~0) I'/e' ~0,

where (QQ=E, —Eo, and I1 p((dp) is given in Eq. (13).
Thus, we have

e ~K~ = ~II p((s)p)~/(s)p (B3)

(A6)

APPENDIX 8 t RIGOROUS DERIVATION OF THE TWO-
PARTICLE GREEN'S FUNCTION

(i) We apply the principle of contraction mapping'
to the integral equation (I). This principle asserts
that if we have

qa
k

qA

G (x„x,) G(x„x,)e I.,(- ~, ~)

K =fdl d2 d3d4 [G(1, 3)G(2, 4)y„y„D& (3, 4)]
FIG, 4. Geometrical relations for the computations

of the first-order dispersion forces.



As discussed in Sec. III, I II
~
0(100) I is always less

than (do for reasonable internuclear separation R
between the two atoms. In particular, for (do&=1,

lt Icttt (rl r2 t) t (rcc)tt' (rl)

I„(ro) = Jdtet"tI„„(t),

where yo is the natural linewidth for the atomic ex-
cited state, In the hydrogen atom, yo-10~ cps,
and ~0-10' cps for the transition between the first
excited state and the ground state; we thus see

e'I I@I« I,

and the first iteration of Eti. (7) gives a good re-
sult.

(ii) In order to justify the result of EII. (10), we
expand the two-particle Green's function as follows:

C„tt (x„x„x„x,) = 2 g„(rl)y„(r, )y„(r,) y (r, )

Rlld slmllR1' exPressions fol' hncmc „m, I„cmc „m(t), Rlld

I„„,„„(~).
In order to solve (85) Rnd (86), we introduce

the following notation:

Q„=(E„'+ (0, )(E' + (o, )

x 1-h„
Pt nptft m

Ifnnc, mm' hnn', mtn' ~ hnp, mct Epnccctm'
pttn ~ Qt m

{87)

+ + tt„(rl)g (r2)Tt„(rt)g (r4)
n An ttnttm

Assuming that h.„,are small, and using the
method of the successive approximations, we have,

Y (
1 2 F (te to ) elec&I(tl ts) 1m'(ta t41dco dc'

J 2&
~

2
~ nn', mm'

(84)

with the same assumption as Sec. II on the time co-
ol'dillRtes. Substltutlng (84) Into Etl. (V) Rlld tRklllg
the inner product with

tt. (rie (ra)P" P tl" ti ttt. (rg)tt' {r4),
we have

q„=(E„'+~1) (E' + td, )

~n, m+ ~np mq ~pn pm+
tf t ppmt

R„„.„„.=- h„„.„.— Z h„p ~hpn. . .—
p tt n', q tt m'

Consequently, we get

+ Z h„, , Zp„„(~I, ~2) . (85)
p 0ntg P tn

F„(&o„td,) =[(E„'+(01)(E„'+(u, )(I —h„+ ~ ~ )] ',
(~I, ~2) = (- h„„.. .) [(E„'+tdl)(E„'+ ~2)

x(I- h„+ ~ )] ' . (89)

Similarly, taking the inner product with

g„(rl )4.(r2) t3"il' ~ tt" tt' 0„~.(r, )p..(r,),
From (89), we see that

(810)

we have

Enn' mm' (+I& ~2) = hnn' mm' Fn m{

Therefore, the nondiagonal term in the expansion
(84) can be neglected. Note that (810) is also con-
sistellt wltll collditloll {82) for tile atomic systelYl.

+ ~ hnp, mn &pn', nm (~lc ada) c

p ttn', g tom'

(86)

1 3
d I„. (&2 —&)

2ttt J (E„+(d)(Em+ (OI+ (02+ (0)

APPENDIX C: THE EMISSION LINE SHAPE OF A
SINGLE ISOLATED ATOM

The Green s function in the presence of radiative
correction can be approximated by

C(x„x,) =- . Z ttt„(rl) tt„(r, )

I„,„(t)=Jtd'tld'p. , g„(rl)tTt (r, )
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as was derived by Low. We can approximate
H„„( (u-) by

H„„( (d-) =5E„——,iy„,

E&
—- Ej —2 iyo .

Carrying out the integratione in (C2), we obtain

where 5E„and y„are real constants, and y„o 0,
We wish to calculate the amplitude for the emis-

sion of one photon k. It is given by where

(t)
e

(O~ee (k'
~

i)e ( o-li)tp (t)

got/2 f (c00 0)0

p„ (t) =
~o- k- 2 iyo

For t-~, we have

where

~e eiN'-ik r'y (Pl) iE(i ~ (c2)
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