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It is shown that, as the complex energy approaches its real physical value, the dominant
part of the amplitude for ionization derived from the Faddeev equations is a product of a known

singular factor and the physical scattering amplitude. This information suggests a method of
calculating ionization amplitudes from the Faddeev equations. Corrections to the dominant
term for this and another amplitude are discussed. Some numerical tests of the method as
applied to a simple model are given.

I. INTRODUCTION

The method of extrapolation from complex en-
ergies' appears to have considerable promise as
a means of computing amplitudes for processes
such as electron-hydrogen- atom elastic scattering
above the ionization threshold. In this paper, we
discuss the modifications required to apply this
method to the calculation of ionization amplitudes.

The essential point of the method is that an am-
plitude f (E) depending on the complex energy E
can be defined that may be calculated in any one of
several straightforward ways for ImE &0. The
physical amplitude is then obtained by extrapolating
f (E) onto the real axis. At the present time a
direct calculation with E held at its real physical
value is often difficult or impossible.

In the case of elastic scattering from, or excita-
tion of, neutral atoms, there is an obvious defini-
tion off (E). However, for processes in which two
separated constituents of the final (or initial) state
each has a net charge —for instance, in e-H ioniza-
tion —complications arise. The natural choice of
amplitude-that satisfying the Faddeev equations—
becomes singular as E approaches the real physical
value. An important result of this paper is that
the most singular part of the Faddeev amplitude
fI;(E) may be written as a product of a known singu-
lar factor with the physical scattering amplitude
fo(E). Thus we can solve the physical problem by
extrapolating from complex E the product of fz(E)
with the inverse of the singular factor. We also
investigate the nature of the corrections to the
most singular part of fz(E), a knowledge of which
should be of assistance in carrying out the extrap-
olation accurately.

Peterkop ' and Rudge and Seaton, 4 realizing
that the analog of the short-range-potential formula
for the breakup matrix element is undefined for
physical energies, have given a well-defined in-

tegral formula for the ionization amplitude. It
should be possible to calculate this arziplitude,

fI,(E), at complex energies and to determine its
physical value by extrapolating without first having
to remove a singular factor. Again it should be
helpful to know the form of the most important
terms in an expansion of f~(E) about Eo.

The amplitude fp(E) is not related in a simple
manner to the solution of the Faddeev equations.
It should be possible, however, to calculate fp(E)
for complex E by a variational method, although
this may be more difficult to do than for fl.(E).
%'hich approach would lead to the most accurate
value of the physical amplitude is difficult to de-
termine.

In Sec. II we derive the behavior of the amplitudes
fz(E) and fp(E) as E approaches its physical value
from the known asymptotic form of the wave func-
tion for the problem. The most singular part of
an amplitude is related to the leading term in the
asymptotic expansion. Section III contains a dis-
cussion of the two-particle problem, where we
have tested several possible methods of performing
the extrapolation.

II. IONIZATION IN e-8 SCATTERING

To illustrate our ideas, we study the case of
e-H scattering, except that to avoid inessential
complications, we disregard the identity of the
electrons. Using units in which h = 2m = 2e = 1,
we first define the Faddeev amplitude f~(E) for E
complex as

f~(E)=(» pal[I'o+ I'o(E-&) &] I» o)

where Ik, &) =e'"'&p (r, ) is a state in which the
first electron has momentum k and the second is
bound in level o.', and [p„po) =i'(2w) e'"i'i"o'"o' is
a plane-wave state for each electron. Also,
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()'3= Ir, —r2 I), and H is the complete Hamiltonian.
It is convenient to introduce a six-dimensional

space in which the coordinates are given by the
6-vector p = (r„r2) and momenta by P = (p» p2).
With this notation we have

Vo -—-2K' (px )/p, (3)

where p= Ip I, K =E, p, = p/p, and q is a function
of p~ defined by (2) and (3).

The differential cross section for ionization may
be written directly in terms of the amplitude

~d(,

fo(P, ), which is defined by means of the asymptotic
form of the scattering wave function 4(p) when p
is large and all three particles are well separated.
This form, given by Peterkop, .is

(4)

We shall show below that, as E approaches
P =p) +p2, fP(E) defined in (1) is singular with
dominant behavior

2(2K)-5/2 P-3/2 &
i /4

f(E) . ;„. „,„(K—P) ~fo(P„),

(6)

with q=q(P, ). This result is the basis for our
method of calculating the ionization cross section
from the Faddeev amplitude, for it enables us to
determine fo by extrapolation of (K- P)'"fP(E).

We relate fP(E) to the wave function 4 by writing

fp(E) = (P(, P2 I
1'o

I
c'&

=(tw&'fd) dre '"''""'
2 2 2

X ———
—,„+— 4 r„r2,

1 2 3

with

As E- p& +p2, 4 becomes the wave function de-
scribing the physical scattering process with ini-
tial state lk, & &.

It is only because of a lack of convergence at
large distances that (6) can be singular. For
ImE &0, the phase of the integrand is not stationary
for large p and fP(E) is nonsingular. However,
when K=P, the phase of the integrand, which may

A

be taken as —P p+Kp for these purposes, is
~d(

stationary along the ray p~=P~. It is therefore
possible that contributions from large values of

p in this direction will give rise to a singular. 'ty of

fp(E) when K=P. For other values of P, a contour
distortion p p+ imp can be found that will give the
phase a positive imaginary part, corresponding
to a decreasing exponential behavior for large p.

To study this region, we change variables to
x= p ~ P/P, the component of p parallel to P, and
the 5-vector y defined in terms of the component
of p perpendicular to P, p, , byy=p„/x. We may
use y in place of p, in (4) to specify directions in
the six-dimensional space. After substituting (3)
into (6) we obtain

fP(E) = 2K(2(-() ')I(P. )fo(Px)

&( J d)t&5d5yp 7/2di-n(PX)ei(KP Px)

where we have replaced the slowly varying factor
q(p, )f, (p, ) by its value in the stationary direction.
The region of interest is x large, y small, so that
we approximate p=x(1+y2)'/2=x+ —,xy in the ex-
ponent and elsewhere replace p by x. The most
important term for K=P is found when q(p, ) inside
the integral in (6) is replaced by q(P, ). With these
approximations, the integrations over y may be
carried out to give, for K=P,

fP(E) = 2K "' (») "'&"")i(P, )fo(P. )

&f dKet(K & KP(xa(P ) ( (9)A

These approximations do violence to the contribu-
tion from finite p, so that we have begun the in-
tegral from a positive value A. , and we should add

an unknown constant to (9).
The above argument has led to the very reason-

able conclusion that the part of coordinate space
which gives rise to the singular part of fP(E) is
that where the electrons would be if they traveled
from the origin with momenta p&, p2. The addition-
al terms in (4) corresponding to two-body channels
with hydrogen in its various excited states do not
affect the argument unless p& =0 or p2=0. For
these values, and also for p, =p2. we expect fF(E)
to be singular, and they are omitted from the dis-
cussion.

The behavior of the integral may be studied by
change of variable x =it/(K P) to yield-

1' d i (K P)xK(x )[ (K -P)] -iq-j df s-t t(x)-
A -i A&X-S)

(10)

A change of the lower limit to zero merely adds
an analytic function of K- P, so thai we have

+ (a function analytic at K =P). (11)
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Assembling these results, we obtain (5), with the
possible addition of an unknown constant.

It can be shown that the constant is zero. One
argument is to use an equation for 4, derived from
('7), that reads, with 7 the kinetic-energy operator,

le&=(E-1") '(E-f'-E. )lk, ~&+(E-1) 'Vol&&

(12)
or

4(p) =x(p)+ (2v) 'fdPe'~'(E —P') ' (P
l
V,

l
4 &.

(13)

Here X represents the inhomogeneous term, not
important to our reasoning.

The asymptotic form (4) must follow from the
integral in (13). An argument similar to that used
above (see Nuttall') shows that it is the region
P =Kp~ that dominates, and the form (5) may be
substituted for (P I Vo I C' &. The singular part of
(5) leads to the required behavior (4), but a. con-
stant term in (5) gives a term 4 -e' 'p ' xconst,
which is unacceptable, and so the constant must
be zero. There is no reason why a term of the form
(K- P)x (function analytic at K=P) cannot be pres-
ent.

The nature of further terms in the expansion
of f);(E) about K = P may be deduced from the form
of the complete expansion for 4'(p), of which (4) is
the leading term. According to Peterkop, ' we have

The integral in (8) leads to
A 2)/3/Q+'ll (P~ ) e ( (tc P)x f doy @

(Kx& /2 exp (iy Vn 1 n) )

(18)
The exponential is expanded as

exp(iy ~ Vn lnx) = 1+iy ~ Vn inx —2(y. Vn) (1nx) . (19)

The first term leads to (5), the second gives zero
after the y integration, and the third results in

~e(&/4(Vn)o 23/o))5/RK-7/2 J d~~(n(P~)-2e((E-P)x(1 )o

(20)
The most singular part of the integral here is
I'(i)) —1)[- i (K —P)] '"' [ln (K- P)] ', so that the
contribution to B,o from source (a) is

e "/ (2)r) '/ K / (Vn) ufo(P )(- i) "' I"(i)) —1).

(21)
Substitution into Schrodinger's equation shows that

A12(p, ) = [(Vn)—'+ (y Vn)']fo(p. )/2if) . (22)

If the A» part of 4' is inserted into (6), it is found
that only the first term in (IS) gives rise to a con-
tribution of the required order, and that this con-
tribution is the negative of (21).

The analysis of the amplitude f),(E) proceeds in
a similar manner. A definition of fp(E) that is
valid for both real and complex values of E is

where

phoo P m=o P=O f,(E) = f dpi'*(p„z), r)) g*(p., »., r.)[Vo V] C'(—p),
(23)

where
Aoo(p. ) =fo(p. )

V=-2&)/&) —2zo/&o (24)
We expect from this to find that

f (E)- (K P)'"""

atll

xZ Z B ~(P„)(K P) [ln(K —-P)]~, (15)
m=0 P 0

where Boo is given by (5).
We shall now show that the coefficient of the

first correction, B)2, is zero, so that after (5),
the most important contribution to f/, (E) has the
form

B»(P„)(K-P) '"(P~)"'ln(K- P) . (16)

The coefficient B»(P„) can be evaluated in terms
of derivatives of fo(P„), but this is not done here.

Contributions to B» come from two sources:
(a) expanding ))(p„) inside the integral in (8) and

(b) including the A)o term in the expansion (14).
To deal with source (a), we think of )) as a function
of y, )) (p„) = n (y ), and expand:

(n)y= (P))„) +yVn . (I'/)

and g(p, z, r) is a Coulomb wave function for charge
~ with ingoing scattered waves. If ImE &0, we
may use the equations satisfied by g and C to re-
write (23) as

fp(E)= (K'-P') f dp(*(p) z) r))g*(po, z2, ro) C'(p),

(25)
since the contribution of the surface term that ap-
pears when the kinetic-energy operator is switched
is zero. Our previous techniques show that the
integral in (25) has a pole at K=P and that the
leading correction term is again zero. As a re-
sutl, we find

(2) &- i tt (&('
)

' '(~p )-
x fo(P„)+C(P~)(K P)[ln(K —P)] + ~ ~ ~-, (26)

provided that a, and z, are chosen so that a, /P,
+z, /pa=)1(P, ). This result agrees with that given
by Rudge for the va.lue of (23) when K=P, after
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inserting an overlooked factor of i. The coeffi-
cient C of the leading correction term in (26) may
be calculated in terms of known quantities.

It may be of interest to point out that (23) may
be rewritten as

f (E)= fdP([ff —I' ]$ (pg, ~g, rg)( (p2 ~Q r2)} C(P),

(27)

which compares with Rudge's formula (2. 42). It
is important to use I' in (27) rather than E, which
would lead to f~(E) = 0 for ImE &0.

III. TWO-PARTICLE COULOMB SCATTERING

A singularity such as that found in f„(E)is pres-
ent whenever the final (or initial) state contains
at least two charged constituents. The simplest
example of this situation is the scattering of two
particles interacting via the Coulomb potential.
Since this problem can be solved in terms of easily
calculated known functions, it provides a testing
ground for methods of performing the extrapola-
tion.

A suitable starting point is the work of Schwinger
on the Coulomb Green's function in momentum
space. Let us define f (E) by

(28)

where 0 is the Hamiltonian for the problem and
V is the Coulomb potential. Using the definition
G(p, p') = (p I (E —H) Ip'&, we can show that (with
Schwinger' s notation)

G(p, p')=6(p-p')(E- T) '+(E T) 'f (E)(E -T') '-
(20)

From E(I. (1') of Schwinger we deduce

f (E) = — z
— 3 dp p

'" [tp —y (1 —p) ]
Ze' Ze kg 2 -1
27t' t 2'tl' 0

(30)
where

f = (p —p'), 7l = Ze /2k,

with
22m go Ze '"o '"'

2'" —1 2m~t e, &O=Ze /2p . (32)

The singular factor (k —p)
~'" is analogous to

that in the three-particle case, except that since
both initial and final states contain charged pairs,
the exponent involves 2g rather than q. The non-
singular factor f, differs from the normal Coulomb
scattering amplitude by a factor independent of
direction. We shall not discuss how this factor
might be determined, for in e-H ionization, this
difficulty, relating to the normalization of the ini-
tial state, disppears.

Corrections to (31) may be determined from the
work of Ford, giving the result that

f(E)=(k —p) ""f.gi( k) +(k —p)g2(k), (33)

where g, (k) and ga(k) are analytic functions near
k=p that are nonzero at k=p, with g, (p) =1.

In a realistic calculation of ionization, we would
determine f at a. number of complex values of
k—say, k =k&, j =1, . . . , N—inevitably introducing
numerical errors, and then attempt to extrapolate
to k =p to find f, .

In the present example we are able to calculate
the values of f at k =k~ (ca,ll them f, , j = I, . . . , N)
with very high precision, but we remember that
this may not be possible in the three-body problem,
and we must be concerned with the effect of errors
in f& on the extrapolation process.

In Fig. 1 we plot the function d(k) =f (E)
&exp[2iq ln(k —P )] against Imk, for Rek =P =3,
Ze'=6, and t= 9. As expected from (33), this
function approaches f, in a, relatively smooth man-
ner. Extrapolation by eye would be possible from
a reasonable distance away from the real axis if
results of high accuracy were not required.

It should be possible to utilize the information
about the nature of the singularity at O' =P that is
contained in (33) to improve the accuracy of the
extrapolation procedure. A way of doing this is
to try to represent g, (k) and g2(k) by rational frac-
tions of the form

(E - T)(E T') 2-
y 4, E-4', 2m —1 ~ (&)= ~ o;()'-()')

i=o

Ford has shown how to write this formula in terms
of hyper geometric functions.

Physical scatterin'g in a nonforward direction is
characterized by

E = T = T' = pp/2m = p' /2m, f & 0 .

However, Schwinger shows that T(E) is singular
at this value. In fact, if we set p =p',
T —T', we find for E near T, t &0, that

f (E)- (k p) ""f., -

Z c, (k —p)'
i=o

with ao= co ——1. If we choose l+m +n =N, then the
coefficients [a&, h&, c&] may be determined from the

f~ by inserting (34) into (33) and evaluating at
k=k&, j =1, . . . , N. The results of such a procedure
are shown in Table I. It is apparent that quite
accurate estimates can be obtained. However, we
find that the method is extremely sensitive to er-
rors in the values of f& used, and in realistic prob-
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lems it may be difficult to obtain f& with sufficient
accuracy.

A more stable method, which we have studied
briefly, is to modify the last approach by taking
l+m+n &N. Suppose that for a given choice of

[a„b„c,] the va, lues of f& and f, given by (33) are
f& and f, . The quantities of interest that measure
the errors in f, and f& are then

(a) k; = 3+i0. 2(0. 025)0. 55 (15 points),

(b) k~ —3+ [0. 3(0.025)0. 475] e "', rl = 1, 2, 3

(24 points).

6.6
~ ~
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If in a realistic calculation we believe that our
calculations of f; might be in error by up to a given
amount, then there is little point in finding values
of [a;, b;, c,] that make 6 significantly less than
some corresponding value 40. %e must consider
as equally possible all values of f, that correspond
to choices of [a&, b&, c&] that give 6& ho.

In the present test case, we have considered, for
P = 3, Ze = 6, and t = 10, two different choices of
the points k&. The two choices were

Ref~ x10

0. 988
0.943
0. 824
1.026
0.864
1.101
1.091
l. 091
l. 073
1.069
l. 099
1.165
1.092
1.094
1.100
1.109
l. 174
1.179
1.065
1.050
l. 077
l. 174
1, 240
1.176
1.065
l. 022
1.032
l. 116
l.413
l. 307
1.113
1.081
1.085
1.139
l. 076
1.089

Imfc x10
—0. 165
—0.403
—0. 262
-0.498
-0.538
—0.401
—0.475
—0. 600
-0.434
-0.416
—0.438
-0.469
-0.444
-0.459
—0.435
-0.396
-0.415
—0.402
-0. 294
-0.419
-0, 365
-0.238
-0.323
—0.441
-0.371
—0. 471
-0.452
—0. 428

0. 175
-0.292
-0.423
—0.400
-0.500
—0. 509
-0.451
-0.433

1
1
1
1
1
2

1
1
2
2

1
1
2
2
3
1

2
2
3
3
1
1
2
2

3
3

1
1
2
2
3
3
4

1
1
2
1
2
2
1
2
2
3
1
2
2
3
3
1

2
3
3

1
2
2
3
3
4
4
1
2
2
3
3
4

5

1
2
1
3
2
1

3
2
1
5

3
2
1
6
5
4
3
2
1
7
6
5

3
2
1
8
7
6
5
4
3
2
1

The smallest values of Imk& are about the same
in each case, so that we expect that the f; could be
calculated with comparable accuracy.

Our results show that, in each of these two cases,
if f& were known to —,'o%, then we could estimate f,
to about 5/o, with choice (b) providing a marginally
superior accuracy.

These studies on the two-particle problem can-
not b6"'used to estimate the accuracy of the results

TABLE I. Estimates off, obtained by the rational
fraction fit described in the text for the case Rek; =p= 3,
Ze2=6, and t =10, using Imk& =0.3(0.025)0. 525. The
integers 1, m, and n relate to the type of rational fractions
used. The correct answer is f,= (1.084 —0. 455i) x10 3.

1.3 — ~

1'2 —11447 10
0

1.1 I

0 .1 .3

Im k

of an ionization calculation but should provide some
guide as to the relative effectiveness of alternative
extrapolation schemes.
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A standard formalism of quantum electrodynamics is used to investigate the interaction be-
tween two neutral atoms. The study is based on an approximate solution of the two-particle
Green's function. The frequency distribution of the photon scattering is obtained. We also
consider the self-stimulation effect when both atoms are in excited states.

I. INTRODUCTION

The two-atom problem has drawn considerable
interest since the advent of lasers and masers.
In fact, by using the Weisskopf-Wigner method,
this problem has been solved exactly by Ernst and
Stehle, ~ who deal with the atoms interacting with
a common radiation field. The purpose of their
work is partly directed toward constructing a rig-
orous description of the behavior of an ensemble
of atoms and using some characteristics of the
two-atom solution as a check for the approximate
solution of the V-atom problem. In the present
work, we shall use a different approach, based on

the approximate solution of the Bethe-Salpeter
equation, to discuss the physical properties of
the tmo-atom interaction. In particular, we shall
pay some attention to the problem of the frequency
shift of the emitted photons due to the resonant in-
teraction; such a shift has been ignored in the
Weisskopf-Wigner method of Ernst and Stehle.
Several other features contained in our solution
mill be discussed in detail.

In Sec. II, we solve the Bethe-Salpeter equation
in the ladder approximation. The approximate
solution for the two-particle Green's function is
then applied in Sec. III to discuss the interaction
between tmo neutral atoms when no external field
exists, and the results are compared with those
obtained by others. In Sec. IV, we consider
low-intensity photon scattering, taking the tmo-
atom interaction into account. We obtain an ex-
pression for the frequency distribution of the
emitted photons. Our result is different from
that derived by Fontana and Hearn when the sepa-

ration of the two atoms is not very small compared
with the wavelength of the emitted light. Finally,
in Sec. V, we study the decay of two excited atoms.
Complete agreement with the work of Ernst and
Stehle' on the tmo-atom problem is obtained. The
extension of the present approach to the N-atom
problem for a laser model is deferred to a future
publication.

Appendixes A and B contain the necessary alge-
bra to complete the derivations omitted in the text.
Finally, a brief derivation of the natural line shape
for a single isolated atom using the standard quan-
tum-electrodynamical (QED) formalism is given
in Appendix C; the result agrees with that of the
Weisskopf-Wigner method. ~

II. SOLUTION FOR THE TW'0-PARTICLE GREEN'S
FUNCTION IN THE LADDER APPROXIMATION

The two-atom problem has been considered ex-
tensively by Ernst and Stehle' using the method of
Weisskopf and Wigner, and by Stephen' and many
others using time-dependent perturbation methods.
We now present a different method based on the
Bethe-Salpeter equation and compare the results
with the previous works. We solve the Bethe-
Salpeter equation for the two-particle Green's
function in the ladder approximation in this section,
and apply the resulting two-particle Green's func-
tion to discuss the nature of interactions of the two
neutral atoms in Sec. III. A further application of
this Green's function to the photon scattering prob-
lem is given in Secs. IV and V.

Consider the integral form of the Bethe-Salpeter
equation


