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The Euler-Lagrange variational method is applied to plane-wave factors as they appear in
the parametric time-dependent Schrodinger-equation model for atom-atom scattering. The
resulting Euler-Lagrange equations provide a prescription for determining a general plane-
wave-factor function of the electron coordinates and time.

I. INTRODUCTION

Plane-wave factors arise in scattering theory
for two related reasons: (i) Channel states should
be described in an asymptotically separable co-
ordinate system to facilitate construction of the
S matrix, and (ii) a finite basis used in the ex-
pansion of internal degrees of freedom may be
greatly improved by a proper inclusion of terms
which build in linear momentum. The analysis
presented here is in the parametric time-dependent
Schrodinger-equation approximation, which itself
must be obtained from a more general description
of the collision problem.

The physical system used in discussion might be
Hz' or HeH", both of which are three-body prob-
lems with greatly varying masses, possessing
excitation, rearrangement, and ionization channels.
We shall take the two nuclei to beA and B with
masses m& and m~ and the electron e with mass
m. Consider a space-referenced coordinate sys-
tem with R measured from A to B and electron
coordinate r measured from the center of mass of
A. and J3. The Schrodinger equation in the bary-
centric subspace with the kinetic energy written
in the above coordinates is

2 x +R —
2 e V„+ Vox+ Vea

2p~ 2p»

Equation (2) and its many-electron generaliza-
tions have been extensively used in the literatures'~;
we adopt it as an adequate equation of motion for
the electrons which describes them as responding
to an imposed classical motion of the nuclei, this
being either an averaged, " an elastic, or a
rectilinear' ' trajectory. The solution of (2)
is a well defined but difficult problem of its own
right, this alone being the concern of the present
paper. The general approach to (2) is to make an
expansion

t)1'(r, t) = Q„C„~(t)X,(r, t) (3)

and obtain a coupled set of first-order differential
equations in time by projecting with members of
the set g„. Bates and Bates and McCarroll
noted that, if the g„are atomic orbitals centered on
A or 8, or if they are Born-Qppenheimer states
of the electronic Hamiltonian (perturbed station-
ary states), the differential equations do not de-
eouple at Itl-~. To remedy this situation in the
context of Eq. (2) with rectilinear trajectories,
the plane-wave-factor concept was introduced,
whereupon expansion (3) is rewritten as

P'(r, t) =Q„C"„,(t) P(r, t) exp[- iy„s(m/5) vs]

+Z„C„,(t)y, „(r, t) exp[iygs(m/I) vz],

+P~~ —g r R =0, 1

iJ,, =m, m, /(m;+m, ),i

which we assume corresponds to the parametric
equation

V„+ V,„+V,s + V„e —ih ((r, t) = 0, (2)—
with an imposed classical motion of the nuclei A
and B. The relation of (2) to (l) has been studied
in several contexts, most of which include the
three-dimensional semiclas ical approximation
as an intermediate step.

where y&„=m, /(m&+m~), positive z lies along the
relative collision-velocity vector, and v is the
relative constant collision velocity. The X„are
either atomic basis functions on nucleus j, or com-
binations of Born-Oppenheimer states chosen such
that they localize into an atomic state on nucleus
j at large separation. This ensures decoupling
as It] -~ and a unique determination of the ampli-
tudes for excitation and rearrangement. The
atomic-state-expansion version of Eq. (4) has been
successfully applied to one- and two-electron
systems at energies above several keV and an
equivalence to the Born approximation has also
been shown in the weak-coupling limit. The
molecular-state-expansion version of Eq. (4) has
not yet received extensive investigation.
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A different plane-wave factor has been developed

by Schneiderman and Russek" and by Levy and

Thorson in which the expansion

investigating here. This will now be done, leaving
the discussion of choice aside until the equations
are evident. We write (2) as

g'(r, t) = [Z„C„;(t)X„(r, t)]

xexp[if(r, t)(m/h)v —,'r] (5)

is used with certain conditions placed on f(r, t)."
For the Ha' system, for example, f(r, t)-+ 1 as It I-~, depending on whether the electron is nearer
8 or A. References 15 and 16 discuss particular
functional forms of f(r, t) in detail and explain the
motivations for expansion (5) as opposed to (4)—
primarily orthogonality and flexibility. The im-
portant difference between (4) and (5) is that form
(5) involves a single flexible factor for the whole

wave function while (4) associates a different plane-
wave factor with each atomic center. A probable
serious defect of form (5) is that it may not agree
with the Born exchange cross section in a weak-
coupling approximation at high energy. However,
the use of (5) is only proposed for the low-energy
region16 where one must calculate a solution of
the Schrodinger equation rather than use low-

order perturbation theory.
It is characteristic of expansions (4) and (5) that

the plane-wave factors are chosen 0 Priori; they
must satisfy certain conditions, primarily to en-
sure decoupling at large separation, but are not
determined in any other way. Nevertheless, it
is known that their form influences calculations
considerably. 16 The purpose of the present paper
is to search for optimum choices of plane-wave
factors using the Euler-Lagrange variational
method. The investigation is not exhaustive, but
the results illuminate the nature of the problem
and should provide guidance for further work.

Section II outlines the Euler-Lagrange method

for the optimization of three forms of plane-wave
factors, concentrating mainly on the mathematics
of the procedure. Section III is devoted to dis-
cussion and interpretation.

II. EULER-LAGRANGE METHOD

Cheshire17 and McCarroll, Piancentini, and
Salin" have used the Euler-Lagrange variational
method to optimize the effective nuclear charge
(exponential screening parameter) in an atomic-
orbital-expansion basis of form (4). This seems
to be a very powerful technique for introducing
nonlinear variations into the usual set of coupled
differential equations obtained by basis projection
or, equivalently, by varying only the linear ex-
pansion coefficients C„;(t).

After considering several forms of plane-wave
factors and the resulting relations derived by op-
timization, only a few cases seem (to us) worth

and know R= R(t) as the imposed nuclear motion.
The Lagrange density for this Schrodinger equation
~s19

52f (r, t)= — vtlt" vg -—. (p g y+ g) y+ I'y .
2m 2i

(7)

The Euler-Lagrange equations are determined
from the requirement that the integral

I=f dt f dxl. (r, t)

(10)

we find that the Euler-Lagrange equations are

=0, i=1, . . . , 5

where ~; denotes the set of three vector components
of 7 and N and N*. Equation (11) may be replaced
by

d
v, & —

dt (v„Z) = 0, (12)

(13)

with no loss of information. Introducing (9) into

(7) and evaluating (10), one can show that (13) im-

plies, up to a multiplicative constant,

From (12) one will arrive at

(14)

be stationary with respect to arbitrary variations
in the functions of time and/or coordinates which
are to be optimized. In this analysis we assume
that there are no variations on the boundaries,
which allows a simplification in the derivation of
the Euler-Lagrange equations by means of an in-
tegration of parts. "'"

The first trial form we investigate contains only
time-dependent functions to be optimized, N(t) and

X(t); we write

P(r, t) = N(t) y(r, t) e' "' = N(t)$(r, t);

X(r, t) is given, either as a fixed linear approxima-
tion like (3) or a single basis member of that set;
y and Q are each normed to unity for all time;
&(t) is real, but N(t) is complex. Introducing



(23)

which allows the interpretation of (h/m) X(t): It is
the time derivative of the expectation of electron
position relative to the center of mass of A. , B less
the expectation of electron velocity relative to the
center of mass of A, B. These results will be dis-
cussed in the following section.

We now develop the equations for optimization of
a coordinate-dependent general plane-wave factor
of the form indicated in (5). Our trial form is

|t'(r, t) =N(t) X(r, t) e' ""=N(t) P(r, t) .

N is complex, a is real, and X and p are both
normed for all time. As before, the Euler-La-
grange equation for N(t) is

BN dt BP,

giving, up to a constant, the same result as (14),
with p(r, t) now Xe' . The Euler-Lagrange equation
for n(r, t) is

eQ ~I' 8A ~x 8Q„

9 (SI )
8 (91.

) (

written in Cartesian coordinates with o.„=Bn/Br.
This will lead to

8—(X+ X)+ V X* X
—Vn+f

Bf m

wh~re, again, f = (&/2m)(X V X* —X" V X). Letting
p= X* X=A, p= (h/m)n, and y=Ap, one easily
arrives at

p+ V (pVB+f)=0
—V y+ (V A/A)y = 2A. + V f/A .

(21)

(22)

The solution of the fluid continuity equation (21)
for the vector field V p is unique up to V8 = (1/p)
&&V'xV, where Vis arbitrary since V' ~ V~ V—= Q.
However, the vector fieM Va is a gradient, which
restricts this nonuniqueness in a complicated
manner. Equation (22) is more lucid: y =A is the
only homogeneous solution (V A/A has the spatial
character of an eigenvalue problem) and we note
that

where f = (ia/2m)(X VX* —
X,*v X) is the flux density of

Equation (15) may be written as

—X(t) =—(X(r ( X&-(X( -t—V( X&,
d ~ I

m m since f vanishes at large r. Knowing that the
homogeneous solution is orthogonal to the right-
hand side of (22), we can construct the general so-
lution of (22) in terms of the eigenfunctions of

(-V'+V'A/A —E„)g„=0, s= 0, . .. (2S)

with SO=A, Eo —-0, as

(Z„i 2A+ V f/A&
y r, t =COA+ g„

n-"I n

with Co= Co(t) arbitrary. We find

(Z„i 2A+ V f/A &g(r, t)=—o =C, +—Z Z„

g(r, t) = N(t) X(r, t) exp[to. (r, t, (A„(t)))],

n=1, ..., N

with g given, n real, and N complex, we want the
Euler-Lagrange equations for N(t) and the A;(t),
i= 1, . . . , ¹ Note that z itself is not being varied,
only the (A„(t)), but with the functional dependence
of o. on the fA„) left unspecified, we set

9
— n(r, t, fA„}), n„= —n(r, t, {A„)),

p=X*X, f=(N/2~)(XVX*- X*VX) .
(29)

The time-dependent energy factor N will'again be
of form (14), and for simplicity we drop it from
consideration and have the Lagrangian density

pg, e2
1-(r, t)=-—VX* VX-@Va f-- Vo, Vo, p2@i 2m

( X* X —X* X) -@pa -@p & A. a~ (20)2i n-"i

(27)
Without any attempt at rigor, we take this to be
the most general possible solution for the deter-
mination of a plane-wave factor of unspecified func-
tional dependence. However, it is of such com-
plexity as to be unsuited for practical calculation,
and, moreover, the next paragraph gives an op-
timum means of approximating the solution of Eq.
(20).

The third and last derivation treats the optimiz-
ation of a factor containing a set of time-dependent
variational parameters (A„(t)); letting
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The Euler-Lagrange equations are in terms of
8L/BA„and SL/SA„.They reduce to

Jd~r(Vn„[(K/m) p vn+f ]—nz„p)=0,

C= f(c, A, A)

Equation (32) may be sojved for A,

A =a(c, c) .

(35)

(36)

m=1, . . . , Ã (31)

or, integrating by parts,

J d'r n„„(v [(0/m)pvn+f] ip)=0

m=1, . . . , N. (32)

Suppose that a had been developed in a linear ex-
pansion:

n(r, t, (A ))=2 A;(t)(p;(r, t),

9m~ ++A. +9m (33)

it is then evident that the NxN system of linear
algebraic equations, (31) or (32), is exactly that
obtained by inserting the expansion for n into (20)
or (21) and projecting with members of the basis,
allowing an explicit solution for the A„ in terms of

p and p.
Thus far the function X appearing in Eqs. (9),

(17), and (28) has been fixed; that is to say, no
allowance has been made for it to be optimized
during the collision. If we are seeking an optimum
plane-wave factor to associate with an individual
basis function X„, solutions (15), (27), and (32)
(with a linear expansion for n) are complete as they
stand. The general case, however, is that g itself
will be a linear superposition with time-dependent
coefficients to be optimized. In particular, this is
necessitated by the form of Eq. (5) and produces
a couPled relation between the equations determin-
ing the plane-wave factor, i.e. , Eqs. (15), (27),
and (32), and those determining the coefficients in

The mechanics of solving the total problem of

a linear expansion for o. used in conjunction with

one for g will now be outlined. ~ The wave function
for initial state i is expanded as

(34)

We let C denote the matrix of C„,(N&xN~) and A
denote the matrix of A„,(NaxN2). Variation of C
leads to the coupled set of differential equations
obtained Qy projection with X e" on the Schrodinger
equation. We express this functional relation as

Together, (35) and (36) constitute a set of implicit
nonlinear differential equations for A and C . We
can base an integration method on the following.
Suppose C, C, A, and Aare known for a series of
time intervals up to and including tp. A high-order
integration method will give C, at t&= tp+ ~t; then
essentially we guess (extrapolate) c~ and calculate
A~ by (36) and A~ by backward difference from A~
and Ap' these are then used to evaluate anew C,
by (35) and the cycle is repeated until C ~, Az,
and A, stabilize. Convergence may require some
averaging between cycles. None of this iterative
process necessitates new evaluation of the inte-
grals involved in state projection or in (32).

In general, one can say that the solution of Eq.
(2) by a trial wave function containing time-depen-
dent variational functions C„will necessitate com-
puting all of them throughout the collision and that
all will be coupled to one another. ~ We are not
obligated to carry out the full variation of all the

C„ together though, and we can obtain meaningful
equations by approximations to the stationarity
requirements.

IH. DISCUSSION

The main limitation of the preceding results is
that they are based on trial solutions of the form
ge' . This is consistent with the structure ex-
pressed in Eq. (5), but not with that in Eq. (4).
We are obviously most able to treat form (5) and

do so now.
To a certain extent there is a compensatory re-

lation between pand & which is, of course, re-
flected in the coupling between them as illustrated
in Eqs. (35) and (36). Since n is real, we cannot
set X= 1, say, and expect e" to reproduce g; how-

ever, we could set n = 0 and expect a complete
basis for X to reproduce (I( precisely. This com-
plete set for g would make the a. solution indeterm-
inate, but with any particular approximations to p

and e, the Euler-Lagrange equations are just
coupled. Knowing the states one wishes to use as
a basis for X, and the character of n, one may
augment the g basis with a group of pseudostates'~
which have the ability to efficiently describe
"moving" states. By this we mean that, for ex-
ample, the expansion of the moving hydrogenic ls
orbital, m' e "e'"', in the hydrogenic basis set
is not complete in the first power of & until the
continuum is included. However, a basis consist-
ing of an increasing degree set multiplying e "will
progressively include more powers of v as it in-
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0

o.(r, t, A(t)) =A(t)R r r" ft, (37)

creases in size. Thus one can hope that a suf-
ficiently flexible linear expansion in p might
eliminate the necessity of varying parameters in
the plane-wave factors.

A general scheme for optimizing linear expan-
sions for X and for o. was described in Eqs. (35)
and (36) of the previous section. A one-term ex-
pansion for n for the H2' system could be that of
Schneiderman and Russek, '

X" and X, but, as far as we have seen, the simul-
taneous solution of these and the time-dependent
equations for the linear coefficients in p" and p

would be laborious. Consequently we propose the
following for the treatment of form (4): If the plane-
wave factors are to be inserted into the individual
terms of an expansion of g, they can be optimized
for each term alone rather than in the whole coupled
problem. As an example of this approximation,
we take a two-center atomic-basis expansion with
factors

where our A(t) replaces their 1/(1+a/R~). From
Eq. (32) one has the equation determining the op-
timum A(t),

A(t)(if/m) fd'rD(Vp VD+ pV'D)

= —fd~r D(V f'+ p), (38)

Z C~, (t)X~(r, t) exp[i&~(t) ~ r]
P=A, 8 ff

We determine all &~(t) from the trial forms

g~ = X~(r, t) exp[ix„(t) ~ r ]

and obtain from (16), (2V), or (32)

(41)

(42)

A

where D=R ~ rr ~ R. Although Eq. (36) is readily
solved for A(t), the solution retains the complex-
ity explained in Eqs. (35) and (36). A simplification
which might be valuable in eases of weak coupling
would be to determine A(t) from the part of x which
describes the initial state rather than the whole

This A(t) would be used in Eq. (35) with no
further improvement. If one considers the velocity
field (5/m) Vn as a reasonable picture of the elec-
tron motion, the high-energy limit indicates that
we need an additional degree of freedom in n that
will allow the electron to move with the incident
velocity whether it is near the incident nucleus or
not. In addition, the heteronuclear system HeH"
necessitates a generalization that allows different
large-B velocities for the two centers. The next
step beyond (3V) could be

n(r, t, A, (t), A,(t)) =A, (t)R rd~ ~A, (t)R rds

(e/m) &„"(t)= -y„', R(t),
(43)

(a/m) X„'(t)=y„",R(t)

With R = e, v this optimization procedure leads
directly to the plan&-wave factors chosen for the
atomic basis by Bates.

One cannot use this approximation approach to
form (4) with a molecular-state expansion with-
out caution; several difficulties arise. First, in
homonuclear systems such as Hz' the association
of a plane-wave factor of form e' ""with an in-
dividual eigenstate immediately gives &= 0 because
the electron is equally dense around both centers.
Second, again in H2', the grouping of gerade and
ungerade states into g+u combinations makes pos-
sible a meaningful use of Bates's plane-wave
factors as written in (4), but optimization of the
corresponding trial form

(3O) 0=(1/~2)(x, +x„)exp[tx'(t) r] (44)

where d& and d~ are weight functions centered on
A and B d„and ds. could be ra/(rz+rs) and r„/
(rz+ rs), giving a generalization of I.evy and Thor-
son's plane-wave factor. The two coefficients
are found for every t by solving a pair of coupled
algebraic equations derived from Eq. (32).

We now consider expansions of the form of Eq.
(4) where the plane-wave factors are inserted into
the terms of the expansion. A potential generaliza-
tion of (4) is

y'(r, t) = X", exp[tx"(t) r]+ X;exp[tx (t) r ]

(4O)

where y is a linear superposition of atomic, mo-
lecular, or pseudostates that localizes on center j.
One can derive the Euler-Lagrange equations for

P

gives

1 d—&'=2 «&X,+X.~r~X, +X„&, (45)

which has a 1/R singularity at the united-atom
limit due to the rotation of the asymmetrical charge
density I &~a y„l2 about the nuclear center of mass.
Third and last, many-electron systems satisfying
the Pauli principle in the molecular basis allow
the electrons on both centers, which can result
in the first and second difficulties above on a
grander scale. Evidently, much more work is
required on these problems. To end on a positive
observation, it should be mentioned that a system
like HeH", because of localization at large R and
an expectation of electron position that vanishes
like 8 as 8- 0, has a well defined and perhaps
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useful factor of form exp[if(t) r] for each molec-
ular eigenstate.

IV. CONCLUDING REMARKS

The utility of the ideas presented remains to
be tested in actual impact-parameter calculations.
We feel that at present any new criterion for the
choice of a plane-wave factor is of interest.

Note added in Proof. C. F. Lebeda, W. R. Thor-

sen, and H. Levy II have recently investigated a
means of choosing plane-wave factors for the H'
on H ionization problem [Phys. Rev. A (to be pub-
lished)].
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