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Analogies between Coulomb excitations of nuclei and ionic molecules by charged projectiles
areutilized to calculate vibrorotational excitations of H2+ molecular ions by e+ impact by a
semiclassical method developed in the nuclear case. The coupling between vibrational-rota-
tional states of target molecules can very significantly affect the scattering cross sections for
either kind of excitation on the other. In this paper we have shown that the effect of such cou-
pling may be included very conveniently, under the present model, whenever applicable. In
a subsequent paper we intend to publish results for the experimentally more accessible sys-
tems, including the H'+ H&' system.

I. INTRODUCTION

Recently there has been a considerable upsurge
of interest in the study of rotational and vibrational
energy-loss processes in diatomic molecules by
electron impact. They are of much importance
not only for understanding the fundamental energy
exchange processes involved, but also for their ap-
plications in such allied fields as astrophysics and
atmospheric physics.

In the present work we shall investigate the
coupled excitation of vibrorotational states of hy-
drogen molecular ions H&' by collision with posi-

trons e'. The study of such excitations with e' is
not only important for its intrinsic significance
but also for the mathematical simplicity it intro-
duces in the formulation of the complex excitation
process itself. This is due to the fact that the
Pauli exchange does not enter directly into the
problem.

In this work we shall adopt a semiclassical view
and make use of the analogy of Coulomb excitations
of nuclei, which has been studied extensively in the
past. ' The present method is semiclassical in that
we shall treat the target system quantum mechan-
ically while the motion of the projectile would be
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incident positron moves essentially along a Ruther-
ford trajectory around the effective positive charge
of Ha', situated at the c.m. of the molecule. Thus,
while the positron moves along its trajectory it is
allowed to induce transltlons 1n the molecular mo-
tion thxough the electric coupling with the vaxious
molecular charges. The transition probability b&&

for the initial state i going to the final state f may
then be given by the first-order time-dependent
scattering theory of Dirac. Thus we write

b,~= —i J"e'"'(f
I v„, (t)li)dt,

FIG. 1. Trajectoxy describing the colbsion of e' vrith

H2+ ion. 5 is impact parameter, 8 is angle of devia-
tion.

assumed to be along a classical Coulomb trajec-
tory. In the end, however, we shall attempt to
modify the classical nature of the projectile mo-
tion, which does not distinguish between the initial
and final states, by demanding that the principle of
reciprocity be satisfied by the cross-sectional ex-
pressions and invoking the correspondence principle
to be applied to such quantities as the classical ve-
locity of the projectile.

II. THEORY

Let N, n, andj denote, respectively, the electronic,
vibrational, and rotational quantum numbers of the
target molecule. In this paper we shaQ confine our-
selves to t e ground electronic state of the target
and mostly disxegard the quantum number ¹ One
of the basic assumptions of our semiclassical ap-
pxoximation is that in the first approximation the

where ~ =E& —E& is the energy difference between
the states i and f and V„, (f) is the interaction po-
tential between the incident positron and the H~'

target. It can easily be seen (Fig. 1) that

1 1 1 1
Vjgg (f) — 1 ~ +

) ~R- r) 1 2R+r) I r —r, l

(the last term is subtracted to compensate for the
inclusion of the leading Coulomb potential in the
evaluation of the projectile trajectory), where
r = r(f) ls the trajectory of the positron and rg is
the position vector of the target electro~, measured
from the c.m. of the molecule. The vector R
stands for the separation between the two nuclei
of the target.

%'e shall describe the target molecule in terms
of simple product of normalized wave functions
4„(r,), X„(R), and I;"&(R) corresponding to the
electronic, vibrational, and rotational motions.
Thus the total target wave function becomes

lxnq&=e„(r, ) x„(z) I", (A) . (3)

In view of the fact that the incident positron re-
pels itself from the positively charged target, we
may, for sufficiently low enexgies, simplify the
potential interaction (2) by expanding it for essen-
tially nonpenetrating projectile orbits. Thus we find

Taking the matrix elements between the initial state tN;n;j, & and the final state lX&n&jz&, we find from
(3) and (4)

%e find that in the present approximation the above
equation (5) controls the entire process of transi-
tions among the various states and the various
modes of motion of the target molecule, It can

easily be seen that the perturbation of the electron-
ic motion, represented by the first sum ln (5) ls
independent of the nuclear perturbation, represented
by the second sum in (5). This is, of course, a
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consequence of the Born-Oppenheimer separation
already assumed in the product wave function (3).
We note however that the transitions among any two
vibrational states In;& and In&& (n, ant }, or any two
rotational states I j;) and I jt& (j;Oj t), or both, lead
to a. vanishing of the first sum in (5). Thus the vi-
brational-rotational transition probabilities in the
ground electronic state is found to be given by

mz may therefore be written as

dO ), 2j]+1 ~ Ib'. I'

1 p~, p . . df(, ($, 8)
p rp + 4By((» j»»tjt) ', (ll)

'Vp

df;(~, 8) 4~ '&' [ Y:(-' v, 0)f,.(~, 8}l'
dn (2&+1)', , (sino 8)'

b;f ——4'
p=+A, 1

~
~) 24 o p &„2'A+1

The total cross section is obtained by integrating
(11) over all scattering angles. Thus we have

x 2 &n,f, I(-.'R)'Y", (R)In,.j,.&d...
(6)d„=f e'"'[r(t)] ' ' Y„'(r(t))dt,

(o)„= (1/((o) ro'" 4B, ((»» j» -ntjr)f„(& ),
with

(13)

I"j&= Ix. (R) Y7(R)&.

We note that all information regarding the trajec-
tory of the incident positron is contained in the
orbit integrals J». We shall note here that the
Coulomb trajectory of e' can most conveniently be
given by the parametric equations

f, (~)=(2, 1}, E IY,"(l,o)I'

1

x~( If,„((,8)I' . ,',d8 (i4)

r(t) =rp(ecoshv+1), x(t) =ro(cosh~+e),

y(t) =ro(e —1)" sinhr, z(t) =0,

t = (ro/((o) (e sinh r + ~),

2& + 1 "' [(z —
»» )! (& + p, )!]"'

4»( (!(»»)I I (y+ t») I (

=0,

&+@ even

where e is the eccentricity, v is the eccentric
anomaly, ~0 is half the distance of closest approach,
vo is the projectile velocity, and t is the time pa-
rameter. Substituting (7) in (6) and choosing the
quantization axis along the angular momentum of
the molecular rotation, it can be shown' that

~x(( =ro (((o Yz(p»(, 0) I~($, 8),

I„'($, 8) =Il exp[i)(~+(1 e )' sinh7)]
~OO

& + p. odd.

In (11) and (13) the quantity B„is the reduced tran-
sition probability which we have defined to be

B, (n( j;—n~j t ) = Q
I &nt jt I (p R)" Y,'(R)

I
n; j;&

I

1 I&~,j, Il(p R)" Y, ll»»(j;)I',
+

[e+coshr+t(e —1)' sinhr] '
X

A, +(1+ e cosh')"'

$ = (E( —Et)/(dp( (do =vp/rp( rp = 1/2Ep (10}

where

&ntj t II(p R)'Y, I!r»;j,& =2 'A, (n;-nt) &jt!I Y~llj;&,
(16)

The integrals (9) have been evaluated analytically
for ) = 1 and numerically for & = 2 by previous au-
thors (see Ref. 1 as a general source). We use
the data presented in Tables II. 3 and II.8 of Ref. 1
for our purpose.

We have defined Eo to be the incident energy in
a. u. and 8 as the scattering angle. To calculate
the cross sections we need the number of incident
particles in a plane wave of unit flux with impact
parameters between b and b+db. This is given by

2((bdb = [roo/4(sino 8)']dQ,

where dQ is an elementary solid angle, and
b = vp cot@ 8. The differential cross section for the
&th multipole transition averaged over the initial
substates m; and summed over the final substates

with the vibrational matrix elements

X, (n, -n, ) =5"!t„,(R)R'q„. (r) dR

and the reduced matrix element'
1/2

&jt II Y, ll j;& =(-1)'t (2j;+1)(2jt+1}
4m

III. SYMMETRIZATION OF CLASSICAL CROSS SECTIONS

In the present approach, the projectile orbit has
been described classically and consequently the
cross-sectional expressions (11) and (13) do not

distinguish between the initial and final states of

the trajectories. One of the most successful ways
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2 = 2
ct&

q v
q

0' « = (dy vy 0« (19)

where co;, v; and cof, vf are, respectively, the
statistical weights and velocities (in a. u. ) for the
initial and final states of the system. For the
present problem we have

(u; =(2j;+1), (u/= (2j/+1) . (20)

From (19) and (20) we conclude that a,& must have
the form

~v 2jr+10' « x (cross-sectional expression
symmetric in i and f) . (21)

Extending Kramers-type prescriptions for the
principal quantum number n- n+ 1 to the positive
energy continuum where n is replaced by f'q,

Biedenharn and Brussaard' obtain the correspon-
dence

q- (q'+1)"' (22)

for the so-called Sommerfeld number g, where

F2=2, ~z, z, e'm =(z, zze2)2/n2v22 (23)

is given in terms of half the distance of closest ap-
proach 2.2, or the incident velocity v2. In (23) m()
and z, are the mass and charge of the projectile
and z2 stands for the effective charge of the target.
In our case z, =z2 =+1. From the fundamental cor-
respondence between the quantum-mechanical ma-
trix elements and the classical Fourier components
and from the relation (22), it can be shown (for a
concise derivation and an elegant discussion see
Ref. 4} that the classical q yields the final corre-
spondence

2()12. +1) (&2+1)
(q2 + 1 )

1/2 (q2 + I )1/2 (24)

We note that in terms of the initial and final param-
eter q; and q&, the quantity $ defined in (10) reduces
to

&-ng-n;

For the cross-sectional expression to be inserted
in Eq. (21) we shall adopt the classical expression
(13) and symmetrize it through the use of Eqs.
(22}-(24}as follows:

2 2
q2 1 2 ~ ~2+ 1 q2+] 1/2 26

IE vo vo

of introducing the initial and final parameters for
the orbits is to impose the principle of reciprocity
on the cross-sectional expressions and replace
various classical parameters by their correspond-
ing quantal analogs via the correspondence principle.
To satisfy the reciprocity relation between the cross
section 0« for the direct process and a« for its in-
verse, we must have

(4-4X )/3
2(7/ + 1) (g/ + 1} / q2), 2

yZ 1 Z2 PÃ Pj ~

(2'?}
Finally, substituting (26) and (27) in (13) and com-
bining the result with (21) we obtain

2 2 (4-4X) /3
,/2 2(R, +1) (&/+1)

;, =—[(q, + () (ny + ()] (,, i)„,,(, i)„,}
x4B„(n;j;-n~jf) f), ($ g( gf) . (28)

An expression similar to (28) is obtained for the
differential cross section with f, ($) replaced by

df, (&, 8)/«.
We shall emphasize the fact that the symmetriza-

tion procedure adopted here for the classical cross
sections is by no means unique in character. Never-
theless it has been found that an essentially similar
procedure adopted by Biedenharn and Brussaard
in nuclear excitation problems produced excellent
agreement with the corresponding quantal calcula-
tions. We note, however, that our symmetrization
procedure has the advantage over that of the pre-
vious authors in that it yields the correct threshold
law'. 0«—-e '"f for the repulsive Coulomb scatter-
ing while the other expression yields cr,&

- (I/q&/2)

xe 2'"linear the excitation threshold. In a complete
quantum calculation one requires the Wigner thresh-
old law for Coulomb scattering to emerge naturally.
The unsymmetrized result is incapable of yielding
this behavior, and at the same time it numerically
overestimates the cross sections by large factors.
The present calculation is, however, not completely
classical in nature as we treat the target states
quantum mechanically and symmetrize the result
to satisfy the detailed-balance theorem. The pres-
ent symmetrization is found to lead to the correct
quantum limit at the threshold. In comparing our
symmetrization with that of Ref. 4 we find that for
the present problem they differ very little numer-
ically. Thus, for example, we calculate for a typ-
ical ~« —-0.02 a. u. the ratio between the two
cross sections to be 1.03, 1.01, and 1.00 for (typ-
ical) incident energies E, (a. u. ) = 0. 03, 0. 10, and
0. 25, respectively.

IV. NUMERICAL CALCULATIONS

In the present calculation we have retained the
quadrupole term ) =2 only; the dipole term X = 1
and the next-higher-order term & = 3 vanish iden-
tically for homonuclear diatomic target H2'. The
vibrational matrix elements are calculated using
Morse functions:

(k —2n) (k —2n+1) ~ ~ ~ (k —2n+i —1) ~
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the 0- 1 transitions. Finally, in Fig. 6 we com-
pare the total cross sections for a fixed rotational
excitation j,=0-j&=2, with various vibrational
excitations: n; = 0- nf ——1, n; = 0- nf = 2, and
Ã j 0~Ãf 3o

This result again shows that the n, =0-nf = 2 vi-
brational transition is much larger than those for
e; = 0- n& = 1 and n; = 0- n&

——3; while the last two
cross sections are comparable in magnitude. Al-
though we have not plotted the cross sections for
n; = 0- n&

——4, we noted that it was somewhat smaller
than that for n; =0-n&=3 in the energy range under
consideration.

We believe that the present method is particularly

suitable for the energy range E;=0.0 to E; & 0. 5 Ry
for the following reasons:

(i) In this energy range the distance of closest
approach is & 2ao and is expected to be large enough
to allow essentially nonpenetrating orbits for the
projectiles.

(ii) Since the threshold for positronium forma-
tion is at 0. 705 Ry, we may neglect such channels
for positron energies below 0. 705 Ry.

We conclude by noting that the calculated absolute
transition probabilities are all very small so that
the application of a first-order theory is generally
satisfactory.
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