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The interaction of hydrogenic atoms with a weak constant magnetic field is discussedindetail.
The Breit Hamiltonian, minimally coupled to the external magnetic field, is treated in several
different ways. First, approximate eigenfunctions are obtained in the nonrelativistic nucleus
approximation. These wave functions are used to treat perturbatively the residual terms de-
pendent on the magnetic field, and to identify the magnetic moment of the bound electron in the
ground state, The corrections previously given by us, of relative order (Ze), (Ze) m/M, e (Zn),
and 0.'(Zn) m/M, are confirmed including lowest-order radiative corrections. Next, a unitary trans-
formation of the complete Breit Hamiltonian is made in order to simplify further the calculation
of small corrections to the ejectron and nuclear g factors. The physical origin of this unitary
transformation, which is similar to a gauge transformation. , is discussed extensively, and it is
shown that the transformed Hamiltonian for a neutral system commutes with P, the momentum
conjugate to the center-of-mass position X. This new Hamiltonian, which treats the electron
and the nucleus on equal footing, is then transformed by means of the Chraplyvy-Barker-Glover
reduction. The electron and the nuclear g factors are calculated, this time including terms of
relative order (Zo. ) m /M and e(ZQ. ) m /M2. These computations yield the magnetic moments
for hydrogenic atoms in their ground state. The theoretical results are summarized and com-
pared with recent experiments.

I. INTRODUCTiON

Recent work in the precision atomic spectroscopy
of simple atoms indicates a need for greater ac-
curacy in the theoretical calculations of the exter-
nal electromagnetic interactions of composite sys-
tems. Although, in principle, it is not difficult to
achieve such accuracy, in practice there are some
problems to surmount; these will be discussed be-
low.

A bound state such as hydrogen is properly de-
scribed by the Bethe-Salpeter (BS) equation. ' The
advantage of this approach is that it is fully covari-
ant and it treats the electron and the proton on an
equal footing. The interaction between them is
prescribed by the irreducible Feynman graphs
which provide the interaction kernel. If the atom
is in an external field, the BS equation may be
minimally coupled provided the external field is
time independent.

The BS approach is a two-time formalism, but
under certain approximations it is possible to de-
rive from it a single-time formalism. Examples
are provided by the Schrodinger equation, the Dirac

equation, the Breit equation, and the Salpeter equa-
tion. In the present paper the Breit equation will
be used to study hydrogenic atoms.

The Breit equation is an approximate two-body
formalism which provides a suitable starting point
for consideration of atomic problems. Its deficien-
cies are well understood and do not affect the con-
siderations of this paper. In a sense the Breit
equation is often a better starting point for consid-
eration of atomic problems than is the BS equation
in ladder approximation, for while the former re-
duces to the Dirac equation in the limit of infinite
nuclear mass, the latter does not. It is known that
in the BS formalism crossed graphs must be in-
cluded to recover the Dirac equation.

To obtain the energy levels of the isolated atom
it is sufficient to solve the eigenvalue problem in
the center-of-mass (c.m. ) frame. However, it the
atom is interacting with an external field, the atom-
ic momentum can change and therefore perturbative
methods require a knowledge of the full wave func-
tion, and not merely the c.m. wave function. In
nonrelativistic quantum mechanics, the separability
of the Schrodinger Hamiltonian of the isolated atom
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into conventional c.m. and relative variables guar-
antees that the total atomic wave function is known
once the c.m. wave function is known. Relativistic
Hamiltonians such as the Breit Hamiltonian are not
separable in the above sense and therefore the
problem of determining the complete wave function
is nontrivial. This nonseparability is the basic
problem which must be surmounted in order to
handle the problem of electromagnetic interactions.
Recently a number of papers have considered the
electromagnetic interactions of loosely bound sys-
tems by various methods. ' ' The present paper
suggests another approach but considers in detail
only the interaction of hydrogenic atoms in a mag-
netic field. It contains a more comprehensive
treatment of work previously discussed more
briefly by both authors.

In Sec. II we show that approximate solutions of
the Breit equation may be obtained to describe the
motion of the atom. We discuss the approximate
nature of these solutions. In Sec. III we treat the
important problem of the hydrogenic atom in an
external magnetic field. Only the ground state is
discussed here although in future work it should be
easy to analyze excited states. We calculate bound-
state corrections to the electron g factor including
terms of order (Zn)2m/M Sectio. n III, as well as
Sec. IV, in which the radiative corrections are
analyzed, gives a detailed treatment of earlier
work published by one of us (H. G. ). ' Since the
wave functions are not accurate enough to calculate
the corrections of order (Zn)ama/Ma, further ac-
curacy is achieved by using the Barker-Glover
method, the approach previously discussed by one
of us (H. A. H. ).' In Sec. V we discuss a, unitary
transformation of the Hamiltonian which greatly
simplifies the calculations. This Hamiltonian also
includes the anomalous moment terms discussed
earlier. In Sec. VI the Barker-Glover method is
used to transform the Hamiltonian of Sec. V to a
form in which the operators a.re even (with respect
to Dirac matrices) in both electron and nuclear
variables. Both the electron and the proton g fac-
tors are obtained for the 1S state of hydrogen.
Finally, in Sec. VII we summ, arize the results and
make some comparisons with experiment.

II. APPROXIMATE SOLUTION OF BREIT EQUATION

The Breit equation provides an approximate
treatment of the two-body problem. ' Its deficien-
cies are understood and it is known that certain
recoil corrections to fine structure and hyperfine
structure are not contained in this formalism. "
Nevertheless, for our purposes the Breit equation
with Coulomb and Breit potentials is sufficiently
accurate.

The Hamiltonian is

eo n p +Pm+n, p, +P,M-Zn/r

+(Zn/2r)(n, n, +n, rn, r), (I)

where variables subscripted with e or p denote
electron and nuclear variables, and Z is the nu-
clear charge.

In working withthis Hamiltonian we must keep in
perspective its approximate nature. Consistency
requires that in applications the Breit potential
should only be treated in first order, since second-
order effects would give results of the same order
as terms which have been neglected in Eq. (l).

Keeping this limitation in mind, we may derive
from Eq. (l) a Hamiltonian H which acts only in
the upper component space of the nucleus. In ef-
fect we are treating the nucleus as nonrelativistic.
This approximation is valid in most hydrogenic
atoms (positronium excluded) because of the small-
ness of the ratio m/M.

Dropping nuclear-spin-dependent terms, which

may be handled by perturbation theory, we obtain
to first order in M '

H = n, ~ p, + P,m + M + p &/2M —Zn/r

+(Zn/2Mr) (n, p, +n, r r p, ) . (2)

This is exactly the Hamiltonian given by Grotch and
Yennie from the effective-potential viewpoint. " It
is also the Hamiltonian which replaces Eq. (I) when

the nucleus is spinless.
The electron and the nuclear variables in Eq. (2)

may be written in terms of relative and c.m. vari-
ables, using p, = p + [m/(m +M) J P, p~ = —p + [M/(m
+&VI)]P, x, =X+[M/(m+M)] r, and x&=X —[m/(m
+M)] r. H may then be written as

p ZQ
H =~, ~ p+ P,rn+M+

(ne ' p+ne ' r r ' p)+ ne ' P
2M' ' ' m+M

p P M P~ Zn
m +M in +M 2(m +M) 2r(m +M)

x(n, P+n, r r P) =H„„+Hr, -

where H„y contains only relative variables and
H„contains all P-dependent terms.

Approximate eigenfunctions of H„, have been
given in Ref. 12. In obtaining these, H„y was re-
arranged and approximated by discarding some
operators of order (m/M )(Zn/r) and

(m/M )n ~ p Zn/r. Therefore, in doing computa-
tions with these wave functions, errors of relative
order (Zn) m /M are possible.

I et g, (r) be the approximate eigenfunction of
H„, with eigenvalue 3R, where SK is equal to
rn +M+ e, e being the binding energy. In the Ap-
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pendix ve show that

&t&„(r, X) = (1+n, ~ R/2%+zIjr R/%) it&&I(r)
e'x'x

is an approximate ei.genfunction of H, characteriz™
ing an atom of momentum R, where Ij =- 6+Zn/S".
In proving this we have ignored certain terms of
order mKB/1'f and'-R 6/M, and therefore in Eq.
(4) the term Air K/NI could just as well be re-
placed by iIjr R/M. Moreover, the energy eigen-
value corresponding to Eq. (4) is 3f&'. +R'/Mlf. How-
ever, K~/2N could just as well be K~/2(m+M)
since our approximations are not accurate enough
to obtain the exact kinetic-energy term R3/2Mf.

Recently Brodsky and Primack have given a
solution of the Breit equation which also includes
c.m. motion. We would like to compare and con-
trast their result with Eq. (4). The approach of
the present work has been to assume the validity
(approximate) of the Breit equation in the labora-
tory frame and to separate the interaction into an
instantaneous and a, transverse part in that frame.
The Hamiltoni. an is Dot separable in conventional
relative and c.m. variables as in the no»relativis-
tic case. However, it is possible to obtain the
wave function for the slowly moving atom once the
wave function &~&0(r) of the stationa, ry atom is known.

Brodsky and Primack assume a Breit equation
in the c.m, frame of the atom, and that the inter-
a,ction separates into a Coulomb and Breit part
(they drop the Breit part since their work does not
I'equ11'6 1't). At t1118 s'tage R single-time formalism
exists in the c.m. frame. The wave function for
the moving atom is obtained by performing appro-
priate I.orentz boosts of the c.m. wave function. "
This procedure is perfectly natural, but it should
be remembered that the boosted solution is actually
a solution of the BS equation in the laboratory
frame. This solution is a. two-time wave function
and, moreover, lt satisfies a BS equation l» which
the gauge is no longer the Coulomb gauge and the
interaction is no longer instantaneous.

Using our approach, the electromagnetic inter-
actions of a composite system are described by
minimally coupling the Breit equation in t]he labora-
tory frame, whereas in the approach of Ref. 4 the
BS equation in the lab frame corresponding to the
assumed c, .m. conditions must be mlnlmauy
coupled. ' For the work described in this paper
we prefer the former method, although the latter
method would appear to be advantageous in its
ha, Ddllng of covarlance.

]IrI. M~@&EnC Ir TERWcnoNS OF H. DRocExIC ~TOMS

When a, constant magnetic field H is applied, the
Hamiltonian of Eq. (1) is modified through the re-
placement of p, and p~, respectively, by p, —eA,

The change in the energy levels due to H, , may be
evaluated by means of first-order perturbation
theory, using the wave functions of Eq. (4). It is
important to note, however, that IP, Fl „]o0and
therefore P is not a conserved quantity. 'I'hi. s
raises doubts concerning the validity of the use of
noIldeg61161'R'te perturbatlon theory (6.g. &

foI' 8
states) since there is a great deal of degeneracy
due to the continuum of unperturbed eigenstates of
P, all having the same energy. However„ it turns
out that for a constant magnetic field, spin-depen-
dent terms a.re diagonal between eigenstates of P
and therefore questions of degeneracy do not
al ).Se.

To evaluate the matrix elements of H,„«we fir "t
evaluate

I

~n P I'ILr P II P iver p1+ '--———-- 8 „1+—'—+ —'--——
2M M -" 2'M M (6)

to order M '. Thereafter the expression of Eq. (6)
is to be evaluated using' wave functions &l&,(r)e' '

We obtain from Eq. (6)

Zc ~ ~ Z Qe2
—en A+-—-p A+ ———(II. A+O. I I'A)e I' ~ P P g~&„~ e P e P

——P A ———&' H+ &in Hxr . (7)M 2 f'Q ' 2M
I

A' t. this pollli, we separate Eq. ( f) Illto relative Rlld

c, m. coordinates to obta, in to order i~f '

t'P'l P. ~ e—eo. ~ ~ H&r L —-- ———0 H+- -- ")()f. jti&I2u ' 2&~

Ze &" " (Z —Ije-—e O. 2 H ~ X ——P -2 H ~ X+—----—P —H X Xe M M

~ 2
I . ~ W 0'e -a»——P —,H x r +— —- (n ~ ~ H x X + n c' s" —.H x X).

2J'I/Jr

(6)
For comparison with previous work we exanllne
the terms containing c.m. variables in the limit of
lgnorlDg the binding-energy correctlo»s. %he»
—eQ, p H'&X is tc&en between the relative wave
functions it contributes —(e/m)p = H xX and
therefore the c.m. terms becorv. e

(- ej n& —Ze/M) p —,
' ll xx+ [(Z —I)e/M]I- ~ .'; ll x X

(e/M) P —,
'-

H x r, (9)

and pp+Zehp where A~ p
= p H &x„p. 1his mlnlmal

coupling procedure will also change the Hamiltonian
H of Eq. (2), the change being effected by the same
r eplacements.

If we retain only terms linear in H (qusdratic
terms are only needed for large fields), we obtain
an addition to Eq. (2) given by H„„„where

0'm~ = —e II, X, + (Ze/M) pq Aq

+ (Z IIe/2M' ) (u, A, + n, I""~ Ap) . (5)
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and (10)

1+PA Z6 1 . r
qo (r) = yo (r) ——1+—'— +i —p—1+&, 2M

where 5 = 2m/M and (II)0(r) is the Dirac wave function
for the Coulomb problem with a modified mass
m =m(1 —m/M} and a. modified fine-structure con-
stant n'= o./(1 —m'/M')'".

We then obtain

m 1 e
eQ ' gHxr 1 'g o~'H(I+))' ' ' M M 2M '

e ZQ~——u —,Hxr, (ll)
2M

where now the matrix element is taken with the
Dirac wave function (t)0(r). The last term of Eq.
(ll) comes from the —(Zc(/2M) i (r/r) p term in

Eq. (10). It cancels part of the )I contained in the
first term so that finally we obtain

1 m 1 e
Ha, —,Hxr i-———a — —— v, H) .

1+m/M M M 2M

(12)

This is easily evaluated in the ground state to ob-
tain

(
e -, , rn 1-(x, H[1 ——, (Zo. ) ] 1-———e i

2m M M

where now the matrix element is taken between two-
component spinors. The final result is

&- (e/2m) (x, H fl ——,
' (Zo.)'+-,'-(Zn)'m/M]& . (14)

The g factor (excluding radiative corrections) of
the bound electron is therefore 2[1 ——,(Zu)
+ z (Zn)2m/M], a result which one of us has pre-
sented elsewhere in a more succinct paper. '"'

a result in agreement with Ref. 16. Gf course,
there are also binding corrections to this result
but these are not of interest here.

The first three terms of Eq. (8) affect the energy
levels of a stationary atom and therefore give rise
to the customary Zeeman effect. Using this inter-
action, we may calculate the electron g factor for
various states. Gur main interest is in computing
the order (Zn) m/M correction to the g factor in
the ground state, although similar corrections may
also be calculated for excited states but are prob-
ably of little importance since precision experi-
ments are not accurate enough for these states.

The relative wave function of Eq. (4) may be
taken from Ref. 12. To the required accuracy"

Zo t I . r I+P&
q, (r) = 1--—

~

-+z — p -- y, (r)
2M (x r 1+&

Grbital g factors may also be calculated from
Eq. (11) for va, rious excited atomic states. The
results of order (Zn)' agree with those of Ref. 16,
while those of order (Zn)2m!M are not likely to be
of interest.

We wish to stress the importance, in the above
calculation, of the c.m. dependence in the wave
function. This has been discussed earlier. If one
assumes the atom to be at rest from the start, then
certain terms in Eq. (8) arising from commutators
of X and P will be missing and will cause an error
in the g factor of order n m/M. In Sec. V we dis-
cuss a unitary transformation which eliminates to
a large degree the complication of c.m. motion
and thus makes the problem substantially easier
to solve.

IV. RADIATIVE CORRECTIONS

Thus far we have not considered the interactions
due to radiative effects. The radiative corrections
modify the magnetic moments of the free particles
and also add to the binding corrections to the g fac-
tors. In the present section we are interested in
the electron@ factor (and not the nuclear g factor)
and therefore we consider the electron as being
bound to a scalar nucleus. Nuclear spin will be
discussed in Sec. VI.

As discussed in Ref. 8(a), the corrections due to
lowest-order radiative processes should come
from self-energy modifications of the propagator
of the bound electron as well as from vacuum po-
larization corrections to the photon propagator.

Brodsky and Erickson" have developed a, formal-
ism for handling such radiative level shifts. Care-
ful examination of all possible contributions indi-
cates that only the terms considered here can be
important when working to first order in binding
corrections.

For the level shift due to the self energy correc-
tion we obtain

~Z(M) =- (e/2m) (~/2v) {P,f, . A, - iy, - E,),
where H, and E, are the total magnetic and electric
fields at the electron. In the present case, H, is
approximately the external magnetic field and E,
is the Coulomb field. In other words, to first
order the level shift is given by the expectation
value of the Pauli interaction in the field discussed
above.

To evaluate Eq. (15), we first compute

e Q cv P Djl 'P
1+—' — — (P, a H-iy E }

2 2, 2'M M ~e 8 8 8

x 1+ ' —+ 16

to order M ' and then use wave functions as dis-
cussed below Eq. (6). This gives the result



e e 1 Za M
2m 2m 3m t' m +I (20)

Combining Eqs. (20) and (18), we obtain to order

n.E(M)=- '—
2m 2'

x 0'. H 1 --- . + V 1

which gives a ground-state result of

&E(M) = — —(o, H)[1+—,' (Zn)'(1 —2m/M)].

(22)

The interaction of an electron with an external
field must be corrected to account for vacuum
polarization graphs on the photons exchanged be-
tween the electron and the source of the field. As
discussed in Befs. 18 and 20, the energy shift due
to vacuum polarization in a magnetic field is

2v '
0 4m'+q' 1-v'

(28)
where here we are working in the momentum rep-
resentation. For a constant magnetic field
X(q)-Hx0;5'(q) and therefore Eq. (28) should
yield a zero result. This has already been dis-

Q ~ P ~ . ~ Ppo H ——xE —iy ~ E+—xH
2m 2' M ' I

(IV}
whichexplicitlydemonstrates the interactions with
motional electric and magnetic fieMs.

Consider now nonmotional terms, the largest of
these being P, o, H. In evaluating this term using
the relative wave function, it is necessary to in-
clude both the upper and lower components of the
wave function and to note that the upper components
are not normalized to unity. The result from this
term will be (for the ground state or other 8 states)

(e/2m)(n/2v) (o H(1- p'/8m'}), (18)

where the matrix element is between two-component
Schrodinger wave functions.

To Eq. (18) we must add a correction due to the
—iy, E, term. This term does not appear to be
magnetic field dependent but its expectation value
should be taken with wave functions which have
been corrected due to the magnetic field dependence
present in Eq. (5). '~ As discussed in Ref. 8, the
primary effect is to modify the lower components
of the wave function by replacing the factor
o, p, /2mbyv, (p, —eA, )/2m. This leads to a term

—(e/2m) (n/2w) ((-e/m) o, E,xA,), (19)

which for 8 states gives

cussed in Ref. 8 of Ref. 8(a). Tins null result
disagrees with early work on this topic. 3'

Therefore it appears that in lowest-order the
radiative level shifts are accounted for by intro-
ducing the Pauli interaction, in which the field is
provided by the constant magnetic field and also
by the Coulomb field.

V. UNITARY TRANSFORMATION GF HAMILTONIAN

. e M+Zm
=exp i- r HxX

2 m+M
(24)

be a unitary transformation such that g = Ug,
where g is the complete eigenfunction of the orig-
inal Hamiltonian. ~~ Then ( will be an eigenfunc-
tion of H = U 'HU. Position operators are unaf-
fected by U but momentum operators are trans-
formed as

U 'p, U=p, +e[(M+Zm)/(m+M)] A(x,),
U 'p& U=p& —e[(M+Zm)/(m+M)] A(x,} .

(25)

As a consequence, the mechanical momenta are
changed to

The treatment given in the preceding sections
depends critically cn the correct determination
of the wave function of the moving atom, as. given
by Eq. (4). The K dependence in parentheses is
crucial, even if the atom is at rest. The reason
for this is that the operator P does not commute
with the full Hamiltonian, since the Hamiltonian
depends on X due to the interaction with the ex-
ternal field. Therefore simultaneous eigenstates
of P and of the full Hamiltonian do not exist, al-
though simultaneous eigenstates of P and the unper-
turbed Hamiltonian do exist. It is therefore de-
sirable, if possible, to eliminate or to reduce the
importance of X-dependent terms. This may be
accomplished by means of a unitary transformation.

If the c.m. position operator X was not a dynam-
ical variable, we could make a gauge transforma-
tion which would eliminate the X dependence from
the Hamiltonian. Vector potentials ~ H xx, ~ would
be altered to —,

'-
H x (x„~—X) by means of a gauge

transformation and therefore, since x, —X and

x~- X would not depend on X, neither would the
8amiltonian.

Of course, X is an operator and it depends on
both x, and x~. Therefore it is not possible to
gauge-transform X away. However, by means of
a unitary transformation it is possible to complete-
ly eliminate X for a neutral system, ' and also to
reduce its importance in the case of a charged
system.

Let

U= exp(i&ex, HxX) exp(-i 2Zex, HxX)
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U '[p, —eA(x, )] II

= p, —«(r) + [m(Z —1)/(m +M)] eA(x,),
II' '[p„+ZeA(x, )]II

= p(, —ZeA(r) + [M(Z —1)/ (m +M)] eA(x,),

(26)

M(z —1)+ n, p, —ZeA(r)+
' —eA(x, )m+M

+P,M —Zn/r+(Zn/2r) [n n +n ~ rn r]
(27)

lf Z = 1, then [II, P] =0 and therefore the exact
elgenstates may be chosen as elgenstates of P as
mell as of II . This was not the case previously.
It should be pointed out that the unperturbed wave
functions are identical to those previously given
since the unperturbed problem is one for which
the magnetic field is zero. However, in applying
perturbation theory there are no longer any X-de-
pendent perturbations and therefore any K-depen-
dence in the unperturbed wave function mill give
rise to corrections which ax'e "truly" motional.
It follows now that if the atom is at rest, only the
relative wave function is needed. Previously we
found that the momentum dependence in the wave
function gave nonvanishing corrections to the en-
ergy levels even in the zero momentum limit.

If ZW 1, then 0 still contains X dependence and
therefore P no longer commutes with 0 . This
implies that X-dependent perturbations must again
be treated with considerable caution, although in
fact it turns out that these X-dependent terms ul-
tirnately give a very small contribution.

The physical origin of the unitary transformation
may be understood more completely by considering
the operators %, =p, +eA(x, ) and m~=p~ —ZeA(x~).
In the absence of any interaction between the elec-
tron and the nucleus these two operators are con-
served since they both commute with the mechanical
momenta p, —eA(x, ) and p~+ZeA(x~). However,
the components of these operators are noneom-
muting (e. g. , [0,„, ft,„]co). This is a well-known
result23 and in the nonrelativistic problem 0,„„/m&d
gives the coordinate of the conserved center of the
Landau orbit of the electron, where &d = —eII/m.
The same follows for the nucleus.

In the presence of interaction between the elec-
tron and the nucleus, 'f, and %~ are no longer sep-
arately conserved but their sum %= n, + m~ is con-

where A(x) .= g H xx. Elluatloos (26) RI'e independent
of X for a neutral system but do depend on X if Z is
different from unity.

Under the above transformation the ne& Hamil-
toll" Rll (without Pauli 1nteI'Rctlolls) II beconles

(I((2' —1)8 = ne' pe —eA(I') + = pA(x(, ) ,
'+ g(~m

Pl +.M

served provided the interaction is a function only

of the relative position. Moreover, for a neutral
system [IT„, I7,]=0. As we turn on the interparticle
the opex'atol 'F which fol the neutl al Doninteracti1lg
particle ease is proportional to the conserved rela-
tive vector connecting the centers of the Landau
orbits (NB case), continues to be conserved, al-
though its physical meaning becomes obseux'e.

The previous statements may be summarized by
the equations

[Tr;, IIJ =0, [v„v(]= —Ie(1 —Z)e, („H„. (28)

Adding these tmo equations and using Newton's

third law, we obtain

dt
—[m x +e Hxx, +m2X2+ezHxx, ] =0 . (&2)

Hut since m, x, =p, —e,A(x, ) and m~x2 =p2 —eaA(x~},
me obtain

—[p +e,A(x,}+p,+e,A(x,}]=O .
dt

The unitary transform of 8; is P;, i.e. ,

U-'v, II=P, P, . -,'. e-(Z. --1)(HxX), ,

and therefore, since a unitary transformation pre-
serves commutation relations, me have

[P,, II']=o, [J„P,]=-fe(l-z)~„,e„.
Clearly, if the system is uncharged, P; is equal to
P, and therefore simultaneous eigenfunctions of P;
and 0 exist. The unitary transformation takes the
operator m, into P„ the canonical momentum asso-
ciated with the c.m. position. If the system is
charged, eigenfunctions of P; and II may be con-
structed but simultaneous eigenfunctions of P„and
P, are not possible. Of course, if all magnetic in-
teractions are treated perturbatively, the unper-
turbed eigenfunction will always be an eigenfunction
of P; and of the Hamiltonian in zero field. How-

ever, for a neutral system all perturbations com-
mute with P; when the 0 form is used, whereas
for a charged system there are some pertuxbations
which do not commute with P, . These must again
be handled with great care.

It should be stressed that for a neutral system
at rest the above analysis allows us to calculate
the g factor with only knowledge of the relative
wave function. However, if the system is charged
or if we are specifically interested in motional ef-
fects, the K dependence of Eq. (4) is needed.

To further clarify the above unitary transforma-
tion and the motion of a composite system in a con-
stant magnetic field me discuss the classical
Lorentz force lam for two interacting particles
having charges of e, and e~. %e have

~ I 0 ~

mlxl ——elxl xH+ F12( max~ ——e2x2 xH+ Fpl . (31)
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Thus the conserved quantity m discussed earlier
emerges from purejy classical considerations.

Now let K be the constant value of m. %e then
obtain the dif ferential equation

(m. , + m 3) X+ (e, + e,) H x X+ ' -'-- --' ' H x r = K .
(34)

For a. neutral system this equation is easily solved
for X to obtain

K.
X{f)=--——— f —e,Hx r(t )dt (35)

'Pl
g + F02

If we neglect the second term of Eq. {35), the
center of mass would move in a straight line. If
the internal forces Fyg cause r to describe a smai, !
periodic orbit (which is the case for a "classical" H

atom), then the motion of the center of mass pre-
sumably fluctuates slightly about straight-line r"—

tion owing to the time dependence of r(t).
For a charged system, Eq. (34) may readily be

solved if we ignore the r-dependent term. The
center of mass will describe a circular or helical
orbit. This is presumably perturbed because of
the presence of r, and we therefore expect fluctua-
tions about the gross motion.

As discussed in Sec. IV, the radiative corrections
are accounted for by introducing a Pauli interac-
tion. This takes care of the electron's anomalous
moment. The nucleus also has an anomalous mo-
ment which is due to the meson cloud. Therefore a
Pauli interaction, introduced phenomenologically„
is also needed for the nucleus. Since these inter-
actions are not momentum dependent, they are un-
affected by the unitary transformation. Therefore
the addition to H of Eq. (2V) is H, „(IM denotes
intrinsic moment or Pauli moment), where

ZQ, ~ r ~ ~ r
H)M= ———a, iP, n, —

q
—P, o, epx —

3
ZQ

, j' ' H + ap iPpnp —
3

—Ppop' cv~ x—
~ + ap Ppop H

Here a, and a~ denote the anomalous moments in

units of the Bohr magneton and the nuclear magne-
ton, respectively.

Using the total transformed Hamiltonian H +H, M

we may repeat our earlier calculation of the elec-
tron g factor. The results are unchanged. As
mentioned earlier, our unperturbed wave functions
are approximate and would have to be corrected
in order to obtain g-factor corrections of relative
order (Zo. ) m /M . Since we are interested in

terms of this order„we prefer to use the alterna-
tive procedure of making a Foldy-Wouthuysen

type transff;rmation. These transformations have
been discussed by Chraplyvy 6 and by Barker and

Glover. 4 We apply this method in Sec. VI.

VI, CHRAPLYVY-BARKER-GLOVER REDUCTION OF
HAMI LTONIAN

We now perform a, reduction of the Hamiltonian

H +HrM by means of the Chraplyvy-Barker-Glover
method. Thi. s is essentially a, Foldy-Wouthuysen-

type transformation for two particles, and affords
an expansion. of the Hiniltonian in inverse powers
of the electron and proton masses. An expansion
of the Ha&niltonian to orders I/m', I/M', and

I/m. .M allows calculation of the g factors to relative
orders (Zn)'m2/M' and o(Zo)'m /M' This m.ethod

also provides a simple physical interpretation for
the bound-state corrections to the g factors„as
noted in Ref. 9.

Chraplyvy, Barker, and Glover found a unitary
transformation which transforms a two-body Ham-

iltonian of the form

H= p'm, + p"m„+(hh)+(eh)+(h~)+(e6) (3V)

into an even-even operator

H „=p'm, + p"m„+(hh)+ (6h)'+ p (h6)' —,(Oh)' —8, (h@)'+8- [[(&h), (hh)], (6h)]
I 'II I

~ [[(hf~), («)], (h&)]+— [[(«), («)1„(«)],+ . (38)
8m,„' ' - 4m'„

The above notation is that of Barker and Glover.
The symbols (hh), (eh), (ho), and (6&) refer to
operators which are even-even, odd-even, even-
odd, and odd-odd with respect to the Dirac matrices

for the two particles. In our case we have

(hh) = — ——a, P, o, H+ a~P~(7~ H
ZD 8 ~ ZO
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ZQ 8m
+ —

p, p~a, a~ —o, o~ 5 (r)
4mM

' &p 'ITp' 8
2M'

A
30' ' g 0'p' t —0'e'0'pp e

ys

P

(6h) = n, p, —eA(r) +— — (Z —1)eA(i~)

sZQ 0 ' r ZQ Q, xr——a rr PQ 0'
2m '"' x 2M" g

(h6} = n, p, —ZeA(r) + (Z —1) eA(x, }

lZQ Qp'r ZQ ~ Qpxr
+

2M ~~~1(r 3 +2m

(6 @) = (Zn/2r) (n, o, + n, i n, r), . (ss)

2 2 ~4 ~4
TT e 7Tp ZQ 77 e 7Tp

2m 2M ~ ' 8m 8M

H =—, (1 2a,}rr'(r} + (1 2ar) rr'(r%ZQ 7TZ Q

H, =4—,- (1+2a,) o, —,'-4, (1+2ap)rrp.
ZQ ~ r X 'TTe ZQ rxp~
4m e e &3 4M'

(40)
ZQ r x~g ZQ rxm,

Hr ——— (1 +aq) 0'q' —g + (1 +ap) op'
'Y

e ~ I e e e

r ~2Z8 ~ ~ 7Tp

2M
'

2M

and the transformed Hamiltonian becomes (setting
P, =1, Pr, =1 for positive-energy states)

7

HTR ——M+m+ $~ H„,

ZQ 1~ ~ ~ r
6 = ~e' mp+r —, m,

2mM

H, =- —-- (1+a,) (1+a,) —o, o, 5'(r)
4mM

where we have defined

30'e' r~0' ' r —0'e 0'~g

r k

rr, =- p, —eA(r) + [m/(M + m)] (Z —1) eA(x~)

m
2-

= p+ P — 1+ (Z —1) eA(r}
M+m +m

+(Z —1)
' eA(X),

(41)

rr,
-=p, —ZeA(r) + [M/(M+ m)] (Z —1)eA(x. )

M M= —p+ p-, z-(z-1)
M+m M+m

x eA(r)+ (Z —1) eA(X)M+m

Many of the terms appearing in our transformed
Hamiltonian have already been obtained by Barker
and Glover. However, with an external magnetic
field present, there are additional field-dependent
terms which contribute to the energy of the atom.
From these terms the g factors of the particles
may be calculated.

In order to calculate the g factors we first ex-
pand the terms in Eq. (40) containing rr, and rr~,

making use of Eq. (41). This expansion results
in numerous terms containing both relative and
c.m. variables. For example, IIo becomes

P p ZQ M+Zm - e m2 ~2
m - e(1-Z)-

Ho= z eP xH r — 1 —Z ——(1 —Z} r xp H- —--- ——Xxp H
2(M +m) 2m' Gdgpgg K (M +m) 2m M M+m 2(M+m)

e
+

2m
M1+Z —'+ (1 —Z} ( }—2(1 —Z(M+m)' (M+m)'

+ (1 —Z)~A(X)~+2es(1 —Z) z A(r) A(X) . (42)

The other terms, H„H3, . . . , in Eq. (40) may
also be expressed in relative and c.m. variables
after some straightforward calculations. Neglect-
ing motional terms such as Xx P H and quadratic
field-dependent terms such as A, which are dis-

cussed in Sec. VII, we use first-order perturbation
theory with the nonrelativistic Pauli-Schrodinger
1$ eigenfunction to evaluate H „between the spatial
part of the wave function. We obtain

m 2
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Ze—-', (Zn)' Z —(Z —1) +
2

-'g~(op H} 1 — (»)M+~ M+m 2M M+I 1+a~

(48)

where H „is the magnetic-field-dependent part of
the transformed Hamiltonian.

It should be stressed that for a charged system
H ~ still does not commute with P and therefore
in doing perturbation theory we should really re-
tain the momentum-dependence of the wave function
(as in Sec. III); i.e. , the wave function really does
not assume a Pauli-Schrodinger form since the ef-
fect of terms in H3 and H4 must be included in the
wave function [see also Ref. 8(b)]. However, it
turns out that those terms in H „which do not com-
mute with P are extremely small and do not, there-
fore, necessitate inclusion of momentum dependence
in the wave function, except, of course, if we are
specifically examining motional corrections.

Contributions to Eq. (43) arise from the perturba-
tion terms H~, H„and H, of Eq. (40}. Expanding
to order m /M in the masses and setting a, = o./2v,
we find for the g factors

2-
s. ()s)=s. I) —((ss)' s ———+s()+s)

1 2 5m 6+Z m2

(44)
g, (1S)=g, 1 —s Zn'+~zo. ' —-+

M 1+a&

3(Z + 1) + (8 —Z) a,
1+ap

VII. SUMMARY

Our final results for the electron and nuclear

g factors for the hydrogenic 1S state are expressed
in Eq. (44}. We expect that these results are cor-
rect to relative orders (Zn)'m~/M~ and o((Zo() m /
M'. Additional corrections should be of relative
orders (Zn)' and (Zo.)'m/M. Equation (44} is the
result reported by both of us previously. " It has
been independently confirmed by the recent work of
Faustov 7 and also by Close and Osborn.

The present authors and those of Refs. 2V and 28
have employed somewhat different approaches to
the calculation of magnetic moments, although each
method employs a single-time formalism. Our ap-
proach has been to start with the Breit Hamiltonian
and to give a quantum-mechanical treatment in the
Dirac representation (Sec. III) and also the Foldy-
Wouthuysen representation (Sec. VI). We have also
demonstrated the usefulness of using unitary trans-
formations (Sec. V) to simplify the quantum-me-
chanical treatment. The work of Faustov is based on

the quasipotential method, in which a single-time
formalism is obtained using the two-time Green's
function of the composite system. Matrix elements
of the electromagnetic current operator are ob-
tained between states of different total momenta,
and the magnetic moment is extracted by evaluating
the derivative of this matrix element at zero-mo-
mentum transfer. The work of Close and Osborn
is based on approximate realizations of the
Poincare group in the Foldy-Wouthuysen represen-
tation. The generators for the composite system
are constructed from the individual particle dynam-
ical variables, which are then expressed in terms
of c.m. and internal dynamical variables (which
differ from the variables X and r used in this pa-
per). In terms of these variables the Hamiltonian
is separable. The total electromagnetic current
(obtained partly through reduction of the Dirac
equation} is also expressed in terms of these vari-
ables and the magnetic moment is readily evaluated.

From an experimentalist's point of view there
may be motional corrections to the g factors.
These would be of relative order V~/c2, where V
is the atomic velocity, and could be important when
very high precision is required. There are also
possible corrections to the g factors if the mag-
netic field is not small. We find, however, that
these are extremely small for the ground state
[of relative order +(eH/m Ry) ] and are of order
+(eH/m Ry) for states with nonzero orbital angular
momentum.

The energy levels are also shifted due to diamag-
netic corrections but these do not affect the g fac-
tors. They shift the various hyperfine levels of a
particular electronic state by the same amount.
For an ion the (Xx P) H term of Eq. (42) gives the
interaction of the translational orbital motion with
the magnetic field and this also has no effect on the

g factors.
These results may be applied to existing experi-

ments' involving hydrogen and deuterium, as both
of us have noted previously. ' From Eq. (44) we
calculate a numerical value for the bound-state
correction to the electron-proton g-factor ratio
for atomic hydrogen g, (1S,H)/g~ (18, H)
= Q,/g~) (1+2. 8 x10 '). This value may be applied
as a theoretical correction to the measured value
of g, (IS, H)/g~ (18, H) (see Kleppner') to obtain a
precise value for the magnetic moment of the pro-
ton in units of the Bohr magneton. We also calcu-
late from Eq. (44) a numerical value for the hy-
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drogen-deuterium g-factor ratio R --g, (lg, H)/
g, (1&, D) = 1+ V. 22 x10 . This calculation is in ex-
cellent agreement with the measurement of Hughes
and Robinson, ' R= 1+ (7. 2+ 1.2) x10 ', and in slight
disagreement with the measurement of Larson,
Valberg, and Ramsey, ' R = 1+ (9.4+ l. 4) x 10
Measurements of R of even greater precision are
in progress which will hopefully test our
(Zn) m'/M and o.(Za) m/M corrections, each of
which contributes about —0. 01&&10 to R, as well
as the dominant (Zn) m/M contribution.
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APPENDIX: CENTER-OF-MASS DEPENDENCE OF WAVE
FUNCTION

We would like to show here that gz (r, X) given in
Eq. (4) is an eigenfunction of the Hamiltonian of
Eq. (3). We know that H„, (~0(r) =9Ri)o(r) and we
wish to correct the wave function due to the term
JI~ in the Hamiltonian.

We assume a solution of the form

In this expression we will ignore terms such as
(K/M')pV, (K /M')V, etc. , i. e. , terms of order
KM which bring in binding corrections. We then

obtain

n, .K iq-
3R+(o. ~ p+ P m+ V+M) —' —+—' K r

m - -. pK K V
m+M ' m+M 2(m+111) 2(m+ VT)

x(n, K+~, i ~ K) ]~,(r) e'" . '(As)

After considerable rearrangements are made we

obtain

2n, K iq .- K V e, K%1+ '. -+—K r + — —+ ——e
2::IR off 2(wi+ M) 2 m. + M

+—o., tp, qK r] —,
)
n, ~ i K q, (r)e'K'",

2~~~+ m

where e =X- m —M. Ignoring all K~ terms, we
have

X(I,'+- —1+— +—' K r $ r e' 'K +e K I'I ~ iK X
2(m+M) 25ff m

where q(~) is a. function of the relative coordinate
to be determined (if possible) in such a way that
(Al) is an eigenfunction of Eq. (3). Now Hgz(r, X)
is equal to

H„, g' (0r)
'e"' +H„„-' +—K.i $0(r)e'

t

V n, I i
+ ——e '=+—o., [p, qK r]2 m+AJ 3R

)
n, i ~ K tjo(r)e'K'x . (A5)

2~m +M

The choice q = e —2 V causes the second line of: (A5)
to vanish (within our approximation), and therefore
(Al) is in fact an eigenfunction of H with eigenvalue
m+M+e. +Ka/2(m+M). Note that, owing to the ap-
proximations made, the kinetic-energy term could
just as well be K /2M and the q-dependent term in

(Al) could be [iq/(m+M)]K r.
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Theory of One-Electron Molecules. I. Li2+
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An accurate method for solving the one-electron Schrodinger equation for small molecules
is presented. For Li2, the valence-electron-core interaction is treated as an effective poten-
tial found by fitting the atomic energy levels. The intermolecular potentials for six low-lying
electronic states of Li2'are calculated. For the ground state o«, a binding energy of 1.30 eV
is found at a separation of 3. 08 A and a vibration frequency of 277 cm . From the intermo-
lecular potentials, three cross sections are calculated for Li ions scattering from Li atoms:
(i) elastic scattering, (ii) charge transfer, and (iii) inelastic scattering leaving the atom in a
2p excited state. This last process proceeds through a curve crossing of the 0«and 7t„l states
at 8 = 5. 95ap.

I. INTRODUCTION

An accurate and convenient numerical method
for solving the one-electron Schrodinger equation
for small molecules is presented. This method
is applied to the calculation of the intermolecular
potentials of six low-lying electronic states of the
Li~' molecule. The interaction between the valence
electron and the core electrons is treated as an
effective potential which is determined by fitting
the atomic energy levels of the Li atom. As long
as the cores of the Li' ions do not overlap appre-
ciably, this effective potential should provide an
accurate physical model for Li~'. For the ground
state o~„a binding energy of 1.30 eV is found at
an internuclear separation of R = 5. 85@0 and a vi-

bration frequency of 2'77 cm '.
From the intermolecular potentials we can cal-

culate the cross sections for the three scattering
processes that have been studied experimentally:
(i) the elastic differential scattering cross section
for lithium ions bombarding lithium atoms' Li'
+ Li- Li + Li, (ii) the total charge-transfer cross
section ' Li'+ Li- Li+ Li', and (iii) the inelastic
differential cross section for the process in which
the lithium atom is excited from the 2s ground
state to the 2P state. ' This last process goes at
low energy via a curve crossing of the o„, and z„,
states at R = 5. 95ao. We calculate the transition
probability o„,—m„, as a function of ion velocity
and impact parameter by integrating the time-
dependent Schrodinger equation numerically for


