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PHYSICAL REVIEW A

Experiments on the uv photoabsorption of Xe have determined level positions, line intensities,
Lande g factors, intensity profiles in the auto-ionization region, and the branching ratio of
photoelectron groups. This paper expresses all these data in terms of a single set of theoreti-
cal parameters which pertain to collisions of the e+ Xe' system with J = 1 and characterize the
five close-coupling eigenchannels of this system. Values of the parameters, obtained by fitting
the experimental data, provide (1) values of the zero-energy scattering eigenphases, (2) evi-
dence that the orbital angular momentum of the free electron (&

= 0 or 2) is a good quantum
number to within 2%, and (3) evidence that the I S coupling classification of the e+Xe com-
plex holds approximately, but only for ) =2. The whole analysis correlated diverse experi-
mental data into a unified pattern and can be extended to other values of J and & to other rare
gases and to spectra of other elements.
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I. INTRODUCTION

Theorems describing connections between photo-
absorption in discrete and continuum spectra have
been established for some time. More genera, lly,
the wave functions of continuum states of an elec-
tron-ion system, which represent electron-ion colli-
sions, are closely related to those of the discrete
states studied by ordinary spectroscopy. This re-
lationship is rather simple when the ion has a
closed-shell structure as in an alkaline atom. The
electron's motion outside the ion is then represented
by a Coulomb wave function with a quantum defect
p, , equivalent to a phase shift 5 = mjLt, , and the rela-
tionship between the discrete and continuum wave
function is rather well known. (The effects of core
polarization can a.iso be taken into account but will
be disregarded in this paper. ) The situation is
more complicated for open-shell ions with two or
more low-lying levels, but the necessary theory
has been developed, notably in the form of a multi-
channel QDT (quantum-defect theory). However,
little information on collision processes has been
extracted thus far from the wealth of spectroscopic
data, nor have these data. bein fitted extensively
into the broader point of view of collision theory.

Pano in a recent paper, 3 referred to in the follow-
ing as FH, has interpreted a highly perturbed por-
tion of the H, spectrum by collision theory. The
electron-ion system was treated in that paper with
emphasis on eigenstates of the combined system
rather than in terms of a nondiagonal reaction ma-
trix '~ which describes the interaction between
closed and open channels. The application of the

method of FH to the analysis of perturbed atomic
spectra has been outlined in a preliminary paper'
which will be called LF. Here we apply the method
of FH to a detailed analysis of the photoabsorption
of Xe.

Photoabsorption by Xe in its ground state leads
to (5P )d or (5P )s, J= 1, odd-parity states belong-
ing to five series (or channels), of which three con-
verge to the first ionization limit I3~2 and two con-
verge to the second ionization limit Iz~~. The
thresholds I, /2 and I~/3 correspond to the (5p') P3/2 g/2

ground-state doublet of the ion. In the discrete
spectrum some of these series are so strongly per-
turbed as to be hardly identifiable. In the auto-
ionization region between the two limits, levels con-
verging to I»2 have auto-ionization widths comparable
to the level separations. Photons with energy hv
above the second threshold produce photoelectrons
mith two energies hv -I, ~~ and hv -Ij+, the measured
valuee of the branching ratio of the two energy
groups is -1.6:1 instead of the "statistical" ratio
of 2:1.

%'e propose here to analyze all the a,vailable data
on J=1 level positions, on the intensities of ab-
sorption lines, on the intensity profiles in the
Beutler spectrum, on the photoelectron group ra-
tio, and on the Lande g factors from the point of
view of collision theory. In this work, level posi-
tions and spectral intensities mill be expressed
analytically and plotted as functions of an effective
quantum number v& ~~. The analytical expressions
will consist mainly of trigonometric functions of
yves p, invariant under the transformation vg(2- v, g
+n. This invariance accounts for the periodicity of
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Rydberg series. Conversely, it permits us to pool
the experimental evidence provided by levels with
quite different values of v&/2 on plots covering just
one unit's range of this parameter.

These data, which pertain to photoabsorption oc-
curring below, between, and above the ionization
limits, will be expressed in terms of a single set
of theoretical parameters. The parameters are de-
termined here by fitting to experimental data, but
they have a mell-defined meaning and should be the
objective of future theoretical calculations. Note
that these parameters are dimensionless, as are
the phase shifts and the interaction and reaction
matrix elements of collision theory. The interaction
parameters of theoretical spectroscopy often have
the dimension of. energy but generally they can be
made dimensionless and comparable to the param-
eters of collision theory by a change of normaliza-
tion.

The calculations reported in this paper are frank-
ly exploratory. They aim at demonstrating qualita-
tive relationships and at evaluating parameters to
one- or two-digit accuracy only. One main limita-
tion on accuracy should be explained at the outset:
All parameters of QDT's depend on the total energy
of the system, but their variations over an energy
interval 4E are of order &E/I3/2 These variations
are disregarded in the present work, as they were
in FH, even though a part of them is predicted by
the QDT (see, e.g. , Appendix B of FH) and the r'est
could be allowed for by fitting of linear regressions.
The energy range &E over which the theory is of
interest is a few times the separation of thresholds
I] /p I3/2 which is, in turn, -0. 1 I3/~ for Xe. Hence
&E/IS~2 is not really negligible in this paper, while
it was small in PH. Nevertheless only limited
evidence has emerged of gross errors due to disre-
garding n E/I, ~2.

wave functions described in Sec. III of FH and in
Ref. 2; and e and d are coefficients described be-
low. Symmetrization of the coordinate r of the ex-
cited electron with those of other electrons included
in C is implied in (2. 2), though not indicated ex-
plicitly.

The interaction of the electron with the ionic
core, in the non-Coulomb zone r &r„ is fully reP-
resented in this problem by a boundary condition at
r = ro which sets the coefficients of (2. 2) at

c = cos7Tp ~
d= sln7Tp (2. 3)

respectively, with

6 = —
2 la+ (1/0) in(2kr) + argl'(l + 1 —i/0) .

The wave function (2. 2) is then a, continuum wave
function normalized per unit energy range, with
phase shift 6 = m p. Accordingly, the scattering ma-
trix of the electron-ion collision problem is repre-
sented by its single element e~"'.

The cross section for photo-ionization is propor-
tional to the squared dipole moment

D= f @PLI&z&)@ada (2. 4)

where 40 is the ground-state wave function of the
atom, 4& is the final-state wave function that coin-
cides with (2. 2) for r &ra, and dr represents inte-
gration over all electron positions r, . The dipole
moment D thus defined is treated here as practical-
ly independent of E. The spectral density of oscil-
lator strength is

Here p, indicates a quantum defect which is regarded
in this paper as independent of the energy E over a
sufficient range. Above the ionization threshold,
i.e. , for E &I and v= i/0, the wave functions f and
g become

(2/mu)'~ sin(kr+ 8) and —(2/wu)'~'cos(or+ e),

II. QUANTUM-DEFECT THEORY (2. 6)

E=I —1/2v =I+ ~k (2. 1)

where I represents the energy of the ionic core.
For distances of the excited electron sufficiently
far away from the nucleus, x & ra, such that the
electron is outside the core and is only subject to
Coulomb attraction, the wave function of the atom
can be written as

e=e[f(v, r)c g(v, r)d] . - (2. 2)

Here 4 represents the state of the core, of all
spins, and the rotational part of the excited elec-
tron's wave function; f and g are standard Coulomb

Consider initially an excited or ionized stationary
state of an alkaline (or other) atom with a closed-
shell ionic core. %e express the energy of this
state, in atomic units, by

where Eo is the ground-state energy (in atomic
units).

The Rydberg states of the discrete spectrum are
identified by the condition that (2. 2) remains finite
at v = for E &I. For E &I and large x the functions

f and g are conveniently represented as superposi-
tions of a rising exponentia. function u(v, r) and a
falling exponential v(v, r) defined by Eq. (11) of FH,

f-u(v, r) sinwv -v(v, r)e'"
as r-~ . (2.6)

g- -g(v, r) coswv+v(v, r)e"'"' "
Substituting (2. 3) and (2.6) in (2. 2), we have

e = C(u(v, r) sinn(v+ p) -v(v, r)e'""'"') . (2. 'I)
large r

The condition that 4 remains finite at z- ~ is then
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are closed in the auto-ionization region, and all five
channels are open in the open continuum. These
relationships are indicated on the left-hand side of
Fig. 1. The determination of the coefficients c&

and d&, on the basis of the electron-ion interaction
for x &so, constitutes a main part of our problem.
The interaction prevents a separate determination
of c, and d& for each channel i. Rather we must
consider a wave function

FIG. 1. Relationship between dissociation channels
i and close-coupling eigenchannels ~.

sinl/(v+ p, ) =0, i.e. , v=v„=n —Il . (2. S)

E = I3/2 —1/ 2v3/2 —I3/2+ a k3/2
2

2 1 2fl /2 1/2vl /2 fl /2+ 2 hl /2 (2. 1o)

Note particularly that this equation establishes a
functional relation between v, /2 (or h3/2) and vl/2
(or hl/2).

The absorption spectrum involves, as indicated
in Sec. I, five wave functions 4', of the form (2. 2),
with i =1, 2, . . . 5. Here the analytic form of f(v, 5 )
and g(v, 3 ) in Eq. (2. 2) remains independent of i,
but v, C, c, and d depend now on i. These five
channels i, corresponding to a dissociated state of
Xe' and e, will be identified by the jj coupling which
is assumed for the functions 4„as follows:

i= 1 2 3
[ P3/2]d5/2 ) [ P3/2]d3/2, [ P3/2]sl/2 &

5
2 2 , (2. 11)[ Pl/2]d3/2 s [ Pl/2]sl/2

where the (sp)5 configuration of the Xe" ion and the
total J= 1 of each channel are implied. The value
of v

&
= i/h, coincides with v3/2 for i = 1, 2, and S and

with v&/2 for i=4, 5. In Xe problem, all five i chan-
nels are closed in the discrete spectrum, three
channels i = 1, 2, 3 are open and two channels i = 4, 5

Normalization of (2. 2) in the discrete is obtained by
multiplying (2. 2) by v„'/ (see, e. g. , Secs. VIB and
VIC of FH). The oscillator strength of the nth line
is then given by

f.= 2(E.-E5) IDI 2(iiv„3) . (2. 9)

Thus all characteristics of the absorption spectrum,
over an energy range of the order of eV on either
side of threshold, are represented by the two pa-
rameters p, and D in this simple case.

In the case of Xe there are two ionization limits
I3/2 and If /2 separated by - 1 eV, and thus two values
v3/2 and v, /2, or k, /2 and k& /2, for each energy E.
Equation (2. 1) now takes the alternative forms

or

e'"' s.5=2 U'. lsd/U/5
fg

2ltll~U t
iiot e at/ 0

(2. iS)

(2. i4)

The five eigenphase shifts g p, and the matrix U,
characterize the close-coupling non-Coulomb inter-
action between electron and ion which prevails at
short ranges. Each matrix element U, = (i

l
n) con-

nects the ith channel of the dissociated system con-
sisting of e and Xe' to the nth "close-coupling ei-
genchannel" of the e+Xe' complex. The ath column
of the matrix U; represents the nth eigenvector of
the scattering matrix S„.. In this paper U, is taken
to be real, such that U~, = U; .

A close-coupling eigenfunction 4 is a superposi-
tion of standing waves of all channels i with the
same eigeni/hase shift 1/Il, This eigenfunction is
obtained by setting

c& = U; cos7t p, , d; = U; simp.

in the wave function (2. 12), which becomes'3

4 „=[Q,C,f(v„3)U, ] cosmtl

(2. iS)

—[Ql@lg(v i) Y)Ul~ ] sln17tl~ ~ (2 ~ ie)

There is one such eigenfunction for each eigenvalue
e ""~of the S matrix and for each total energy
value E. Photo-ionization to each a state depends
on the dipole matrix element D, i.e. , on the value
of (2. 4) calculated for the state 4'/ whose wave func-
tion coincides with C for x &xo.

The QDT is based on the fact that the short-range
electron-ion interaction is represented by the same

and c& and d; will be determined by the interplay of
boundary conditions at ~ =so and at ~- ~.

Collision theory represents the effects of the
short-range electron-ion interaction by a scattering
matrix S;&. At energies E &Ij /2, an electron incident
on the ion in the jth channel with kinetic energy
2k&, with J= 1 and odd parity, has probability am-
plitude S&& of emerging from the collision in the ith
channel with kinetic energy —,

' k, but with the same
total energy E. The 5&&5 matrix S&; with eigenvalues
e ""a is diagonalized by a unitary transformation
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parameters p. and U; throughout the spectral
range of interest to us, i.e. , for energies E from
below the threshold I3+ to above the threshold I&/2.

These parameters are slowly varying functions of
E and are regarded as constant in this paper. Thus,
the boundary conditions at r=so are met by each
state 4 irrespective of its energy. However, the
boundary conditions at x = ~ differ in continuum and
discrete states. They are met by considering not
just the eigenfunctions 4 but superpositions

il. =Q O' A =Q;C;[f(v;, 3')Z„U,. cosz/p, &,

-g(v;, z)Z, U,. sing/z„A, ], 3. &r, (2. 1'7)

with suitable coefficients A . The main condition
on discrete states, that f(v;, 3 ) and g(v„z) remain
finite at x=~ for each "closed channel"-i. e. , for
real values of v; —leads to the condition analogous
to (2. 8) [Eq. (28) of FH]

L U;„sinz/(v;+ p. )A =0 (i=1, . . . 5) . (2. 18)

The aim of this paper is to determine the param-
eters p, , D, and part of 6; by fitting all available
data on the absorption spectrum. There are five
p, 's, five D 's, and ten independent elements of
the 5& 5 orthogonal matrix U; . From this point
of view, these parameters should be calculated by
solving the Schrodinger equation for x &x, Only,
that is, with boundary conditions at x = xo instead of
~- ~ and thus without distinguishing between dis-
crete and continuum states. In the original QDT,
and in the early stages of this work, no reference
was made to the eigenstates 4 but the observable
spectrum was related to the nondiagonal reaction
matrix Jt„= -z[(S —I)/(8+1)],/ The knowledge of
the matrices A;; or S;; is equivalent to that of the
matrix U, and eigenphase shift my, only if one
actually diagonalizes S or B. By knowing the U,
explicitly one finds the coupling of electron orbits
and spins in the state +; this information is com-
plemented by the determination of the D . Since
the interaction between the excited electron and the
(5p') core of Xe' is strong for 3 ~ 35, it has been
surmised that the states 4 would be I,S coupled,
with the classifications [(5p5)d]'P„3P„D„and
[(5p )s]'5P 'P4z. If so, the dipole moment D„
should vanish for the three transitions to triplet

It will be shown that the experimental data
verify this speculation only in part.

Section III develops formulas for energy levels,
intensity distributions and other characteristics of
the absorption spectrum as functions of the param-
eters U;, J(L, and D . Subsequent sections de-
scribe the determination of these parameters by
fitting of experimental data.

III. ANALYTICAL TREATMENT

A. Discrete Spectrum

When the total energy E of the system falls below

I3/2 all channels are closed. To determine the
discrete energy levels and their eigenfunctions we
solve the system of five equations (2. 18). To begin
with, (2. 18) is reduced to a system of two equations
with two unknowns B4 and B5 by the substitution

1 5

Z U'„, B, ,
sinz/(V3/2+ /z„) / 4

(3.1)

which satisfies three equations of (2. 18), those with

i = 1, 2, 3. The remaining equations with i = 4 and

5 are

siss(s, s+ S,),
), 4, , '"sin2(V3/2+ zz )

(3. 2)

5

M;;=2 U; cotz/(V3/2+ p, )U„; . (3.3)

The system (3. 2) has nontrivial solutions when

P(vz/» v3/2) -=detI cotz/(vz/2 V3/2)5o ™i/I= o

(z, ~=4, 5)

E(vz/2s v3/2) = cot g(vz/2 v3/2) + ( 44+M55)

x cotz/(vz/2 v3/2) + (M44M55 -M45M54) = 0 . (3 ~ 4)

This equation determines v&/~ as a function of v3/2

and plays a major role in the fitting procedure of
this paper. The discrete energy levels axe given
by pairs of values of v&/z and v3/~ which satisfy
(2. 10) and (3.4) simultaneously. A graphical pro-
cedure for the solution of these simultaneous rela-
tionships has been described in FH and in LF and

is illustrated in Fig. 2.
Concerning the eigenfunctions, note initially that

the system (2. 18) has the special solution

when (3.5)
~~/2=n~ p —Wa',

where n, /, and n~/2 are any two integers and n' takes
any value 1, 2, . . . 5. According to these results
the wave function 4 reduces to 4'„., that is, the ei-
genstate of the complete collision problem is also
the close-coupling eigenstate a'. As we shall see,
some of the observed levels of Xe have values of

v3/2 and v&/2 that fulfill (3.5) approximately; the

wave functions of such levels are approximately
close-coupling eigenstates of the e+Xe' collision

Alternatively, adding and subtracting zv3/~ in the
argument of sinn(v»2+ p, ) gives upon expansion

52 [cot2(vz/2 v3/2)5;;+M;;(V3/2)]&/ = 0 (z = 4, 5),
(3. 2')

where
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channel space i =4, 5 where Xe' is in the P«&
state. %e stress that the data to be fitted in Secs.
V and VI depend only on the subdivision of the dis-
sociation channels into the groups, i.e. , i=1, 2, 3
and i = 4, 5, pertaining to different thresholds.
Therefore fitting these data could not possibly de-
termine the U, uniquely, but only the Q ~; experi-
ments that distinguish between i = 1, 2, 3 or between
i=4 and 5 are necessary to get the full U, .

It was found convenient to represent the solution
of the homogeneous system (3.2') in the form

I

0.0
I

0.5
I

0.0
B~ = h5484, (3. 10)

P)
2

FIG. 2. Plot of vs~2 or 7'„vs v~~&, Open circles {0)
and crosses (x ) are level positions from Table II. Solid
curves are Eq. (3.4), E=0, with parameters listed in
Table I. Index p is labeled on each branch of the curve
corresponding to one of the eigenphases vtv~ . The diago-
nal line represents the equation —v3~2+ v&~2 ——0. The
function —~3g2(v&~2) defined by Eq. (4. j.) is represented
by dot-dashed lines. Some points are marked (t) to
show departure from the E = 0 curves.

complex. Graphically, these levels will lie near
the diagonal v3/3 —v, /3= 0 (mod 1) on a (v3/3, v1/3)
plot for discrete levels as suggested in LF and FH.
The immediate result of the observation of levels
which fulfill (3. 5) is the determination of an eigen-
phase shift 7t p, and the measurement of the relevant
D from the experimental oscillator strength, as
will be detailed in Secs. IV and VI.

Note also that (3.4) depends only on the following
combinations of the elements of the transformation
matrix U;, which are invariant under orthogonal
transformation of the two channels i =4, 5:

M44+M» =Q (U4~ + U,~)cot1/(V3/3+ /1(g) (3 5)

M44M33-M43=+(U4 U33 —U3 U43)
at 8

ay= U4~U48+ Us+Usa (3. &)

represent the matrix elements of a projection op-
erator Q, with the properties

(Q').,=Z, Q., Q„=Q.. .
TrQ=Z Q = 2 .

(3.9)

The diagonal matrix element Q represents the
squared projection of the eigenstate 4 on the two-

x cot1I'(v3/3+ p(g) cot1/(v3/3+ p'3) (3 V)

Therefore, experimental data on the energy levels
cannot by themselves determine the individual ma-
trix elements U4 and U~, but only those invariant
combinations which appear in (3.6) and (3.V). We
emphasize that the invariant combinations

where the ratio

-M54
&34(V1 /3 V3/3) =

Co t11(V1/'3 —V3/3) +M33
(3.11)

dv3&~ 3 dv& &z

fi

(3.13 ')

according to (2. 10). Substitution of (3.1) and (3.10)
gives

Z D~A'"'= Z D„"
sin%1(V3/3 „+p, ~)

x (//'4+// /s„(x// ss/ .)I) ''
B(& /4)

The coefficients of V3/3 „and v', /3 „ in (3. 13) are
proportional, respectively, to the squared projec-
tions of 4'„on the channels converging to the limit

is obtained from (3.2') with 3 = 5 and where the value
of v1/3 —V3/3 must satisfy (3.4). The value of B4
may be regarded as a normalization constant which
cancels out in the calculation of oscillator strengths
and of other observable parameters.

COnSider nOW the nth SOlutian (V1/3 gs V3/3 ) Of

the simultaneous equations (2. 10) and (3.4). To
this pair of values of v&~& and v, + corresponds an
absorption line whose oscillator strength is given
by a formula analogous to (2.9),

f.= 2«. &3) I
~-.D.Al"'I'/'l

I
+.I'«,

where A,'"' is given by (3.1) and f I (fl„l d7 is a nor-
malization integral which reduces to v„ for a single
channel. The normalization integral is worked out
using the representation (2. 1V) of the wave function
4 for r &so and adapting the method in Sec. VIB of
FH. The resulting equation, analogous to (5V) of
FH, is

2

Is/„I ds "P Z r/, .sass(s„s=„+s.)x.'"')
~( ft i=1 e

5 2

+ —'i~ U,. cosm v&p „+p,
n i=4 0,'

(3.13)
where
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I3 /2 and I, /2, i ~ e . , on the channe ls with Xe' in the
states P, /2 and P1 /2. The coefficient of v, /2 „ is
calculated by introducing the projection matrix
comp le mentar y to Q

3

Peg = ~ Uei Uis = &eg @en y

and the 2 && 2 symmetric matrix

Q./(V3/2) = Q U(a Cot(T(V3/2+ p a)Pa3 Cot)T(V3/2+ ff3)Utt/

(1, q= 4, 5) . (S. i6)
Substitution of (3.1) and (3.10) into the coefficient
Of V3/2« in (3 ~ 13) yieldS

3 2 5

Q U; cos)T(v3/2 „+/f „)A'") = Q B(")f)T„(V3/2 „)BI")
i=1 e i, j=4

(n) 2
44(V3/2, n) + +45(V3/2, «) k54(vf/2, «s V3/2, n) +& 5(5 V3 /2 )nk45( Vf/2, «y V3/2 n)]B4 G3/2 «B4" . (3. 17a)

The coefficient of v, /, „ is simplified by using (3. 2 ):

5 2

Q U(a COSTT(vf/2 „+P,a) Aa

5 2

Q U( [cosTT(vf/2 v3/2 )cotTT(V3/2 „+ff ) —sin)T(vf /2
—v3/2 )]Z U; B

e

g(n)2 g(n)2
5

2Sill TT(V1/2 „—V3/2 „)
+k54( 1/2. n t V3/2. n) B(n) —

G B(n)
sin'TT(vf /2 „-v„, „)

(3. 17b)

Substitution of these results reduces (3. 12) to

1 2

f„= (En —Ep) Z Da, , [U a4+ U a 5k4(5Vf/«2& V3/2 n)] (V3/2, n G3/2, n+ 1/2, n Gl/2, n)Sang(~3/2 n + P.e)
(s. is)

[The symbols G, /2 „and G»2 „have been introduced
in (3. 17) to indicate the squared projections of 4'„
on the channels with Xe' in the states P3 /2 Rlld

Pf /2' ]
The special solution (3.5) a.rises in the limit

where sin)((vf /2 „+p. „) and sin)T(V3/2 „+p,,) vanish.
In this limit (3.18) reduces to

the ratio d;/c; = tan)TV, . To obtain a wave function
4', from (2. 17) we set the three pairs of coefficients
with i = 1, 2, 3 in a fixed ratio tanm7'„

U; sin)/ p A„ /Q U, COSTT p„A = tan)T7', ,

i=i, 2, 3. (3.20)

More specifically we set

ifmf„= 2(E„-z,) 3
D. I

v3/2 n «a V3/2, n aa+Vl/2, n Qaa

~1 /2 n-i e

(3.19) Za U(a COST(/ a A a = T(n COSTT&n,

i = 1, 2, 3 (3. 21)Q„U;„sinTTff, A, = T„sin)T&,

B. Auto-Ionization Spectrum

In the spectral range I3 /2
& E (I1 /2 the parameter

v3/2 i/k3/2 is imaginary while vf/2 remains real ~

The condition that the closed -channel wave functions
f(vf /2, r) and g(vf /2, 4 ) remain finite at t - ~ yields
only two of the five Eqs. (2. 18), namely, those with
i = 4, 5. However, one recovers the other three
Eqs. (2. 18) in a modified form by introducing a
boundary condition for the open channels, i = 1, 2, 3.

We seek wave functions 4 which behave for large
as collision eigenfun ctions of the three channels

that are actually open. There shall be three such
eigenstates which we call @„with p = 1, 2, 3 (see
Fig. 1). Recall that when all channels are open the
close -coup ling eigenfunctions 4 are obtained from
(2. 12) by taking all pairs of coefficients (c;, d;) in

where each coefficient T; p represents the probability
amplitude of the ith channel wave function in the
state @p and FTp represents the eigenphase shift of
the collision eigenfunction 4 p. The wave function
of the eigenstate p is then represented by a super-
position of standing waves of the open channels
i = 1, 2, 3 for large distance x and also, at somewhat
smailer distances, by exponentially damped w ave s
in the closed channels, i = 4, 5:

O,.
k

sin k3/2r —
2 T/l;+

k
— In(2k3/23')

i=1 & 3/2 3 /2

2+argI / + 1 — + 7t'7'p T;p
3 /2

52 4( V(V1/2, 4') Z U(a COST/(v f/2+ p a) Aa . (3.22)
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To determine the A we eliminate T« from the
Eq. (3. 21) and find

Q U«sing(p, ~ —r, )aim=0, 3=1, 2, 3 . (3.23)

An essential point of our treatment is that these
equations differ from the first three Eqs. (2. 18)
merely by the substitution

v3/2 r, (mod 1) .
This means that the parameter v3/2 of each level of
the discrete spectrum can be represented in the
form v3/2=I -~„where 7'p is an effective quantum
defect and m&p represents the phase shift of the col-
lision eigenfunction 4, for I«2&E &I3/2. Thus we
have established here, as in FH, a correspondence
between bound-state levels and continuum eigen-
states, which is analogous to that for single-channel
problems.

The quantum defect ~p may be regarded as an ei-
genvalue of the system of equations for the A . The
secular equation for this system has the form (3.4)
with v, /2 replaced by —3, Equa. tion (3.4) is derived
from (3.1) and (2. 18) as a quadratic equation in
cot1T(v4/2 v3/2) with coefficients that are functions
of v3/2. Alternatively, one can derive a relationship
to yield v3/2 ———&, (mod 1) as a function of V3/2 such
that there are three roots 7p for each value of v&/2.

Whereas quantum defects and phase shifts are usu-
ally slowly varying functions of energy, the influ-

ence of the "closed channels" i=4, 5 causes the ~p

to vary sharply as periodic functions of v&/2 as will
be demonstrated in the following sections.

The coefficients A, are similarly given by (3.1)
and (3.10) with v3/2 replaced by —7,. The density
of oscillator strength in the auto-ionization spec-
trum is given by a formula analogous to (2.5) and
(3.18). It results as the sum of contributions cor-
responding to photo-ionization into the three eigen-
channels p, namely,

=2(E-E,)Z ~ZD.~„(,)~'
p p Ot

(p) 2
G3 2(/l V~ /2rs) E4 ~

Thus (3.25) becomes

(3. 28)

dE'J 4,', w; d~ . (3. 25)~ ~

I

Here the expression in the numerator is obtained
from (3.14) with the substitution v3/2- —v', and the
denominator is evaluated in accordance with (3. 22)
and (3.1Va) to give

3

J
I.s fs....;a. (far =a(s s) L-s, ,

i=i

3 2

Z U&, cos7/(p, —&,)A.,'"
i=1 e

df df (P)
= 2(E —E2)Q L Das, , [Uts4+UI3h34(Vg/2, — s)] G3/ ( g2/ V, —2Ts) .dE p dE p fi| SXM'( p ai

—~pj
(3. 2V)

Notice that T;, coincides with g U;, cos7/(p —3,)a4"'
for i = 1, 2, 3 and that g;, T„cionicdeswith the
squared projection G3/2(vf/2 —3,) of 4' ' on the
channels with Xe' in the I'3/2 state.

C Open Continuum

When the total energy E exceeds I&/2, all the
channels are open. The total oscillator strength
for photoabsorption in the continuum is given by
(2. 5) with IDI2 replaced by Q, ID I . The probabil-
ity of ionization into a specific close-coupling eigen-
state n is not observed by a specific experiment.
We are interested here in the ratio of probabilities
of photo-ionization into any of the three channels
with i = I, 2, 3 and into any of the other two channels
i = 4, 5, because this ratio equals the intensity ratio
of two photoelectron groups with energies ak3/2
and p ky/2 .2

To obtain this ratio we calculate first the probabil'-
ity of ejection of a photoelectron into each specific
channel i . The final state of this process is repre-
sented, for large x, by a wave function 4 ' ' '. This
wave function is obtained from (2. 1V) by choosing

coefficients A. =A. ' ' ' such that the amplitude of the
outgoing wave vanishes in all channels i 4 i. As de-
tailed in Sec. IV of FH, the desired coefficients are

~( t-) (3. 28)

The result is verified by substituting in (2. 1V) the
large x forms of

f(v;, r) (2/k; v) / sin(k;4 + ~ *)
and

g(v;, r) - —(2/I3; 7/)'/2 cos(13;3 + * ~ ~ )

together with the coefficients (3. 28).
The oscillator strength for photoemission of elec-

trons with kinetic energy —,'k3/2 is then

d g (3/2) 3 2

= 2(E -E,) Q Z D.8-"" U '. ,
j=jt, e

5

=2(E —E,) g S., cosv(I „-I,)D„D, ,
n, g=a

(3. 29)

where P, 2 is the projection operator matrix (3.15).
Similarly, the oscillator strength for photoemission
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of electrons with kinetic energy &hi/2 is

(i/2& 5

=2(E —E(&) Z Q zcos»(p, —/iz)D, D3, (3.30)
dE a, &=i

with Q, z given by (3.8). The branching ratio is then

df (3/2& df (1/2&
=pP zcos v(p, „—p, z)D,D

dE dE g

Q Q„,cosy(p, —p.z)D, D3 . (3.31)

Notice that this ratio depends on the matrices
& g and Q„~ = 6~~ —P z, which are combinations of
matrix elements U; . Therefore its experimental
measurement gives only information on I', z and

Q &
but not on the individual elements U; . The

same holds for the observable quantities obtained
above in A and B. On the other hand, evidence on

the U; could be obtained by observing the angular
distribution of photoelectrons which depends on the
wave functions C, of individual channels.

In summary we may say that this section has
formulated the relationships between the eigenstates
n and the various dissociation channels which are
indicated in the diagram in Fig. 1.

IV. GRAPHICAL REPRESENTATION

In our method the qualitative analysis of the

spectrum centers on the relation between vi/2 and

v, /z established by Eq. (3.4), E(v, /z, vz/z) =0. This
relationship is represented graphically in Fig. 2

(which is essentially the same as Fig. 1 of I.F).
[Note that the scale of vz/2 increases downwards
while that of the quantum defect 3,= —vz/z (mod 1)
increases upward in the figure; all scales are mod

I]. For each discrete energy level of the experi-
mental spectrum a pair of values (vi/zy v3/2) is de-
termined from (2. 10) and is represented by one

point in Fig. 2. Note that each point must lie at
the intersection of the curves obtained from (a)
the relation

3/2
.

vi/2 [1 —2(Ii/2 -Iz/2)vi/2 l
2 2I 2 -i (4. 1)

derived from (2. 10), and (b) E(v, /2, v, /z) = 0. The

full curve in Fig. 2 represents the analytic relation
F(v, /2, v, /z)

= 0, whose parameters have been deter-
mined to fit the experimental data as detailed in
Sec. V below. Since F(vi/2, vz/z) consists of cotan-
gent functions of 7tvi /2 and gv3/2 it is a periodic
function of vi/2 and v3/2 with period 1; therefore it
is sufficient to plot E = 0 on a 1 && 1 square of the range
of these variables, i.e. , mod 1 in both vi/2 and

V3/2

Two outstanding features of Fig. 2 help to deter-
mine the parameters of the theory:

(i) The special solution (3.5) implies that

E( —p, , —p,,) = 0. As has been explained, the wave

function 4 of the atom coincides with the close-

coupling eigenstate u when (3. 5) is satisfied. The

points of coordinates ( —p. , —p.„)are accordingly
the intersections of F(vi/z, vz/2) = 0 with the diagonal

v3 /2 v i /2 Thus the eigenphase shif t tT p, can be de-
termined by interpolation when no level fulfills
(3. 5) closely but two levels are represented on the

(vi /zi v3/2) plot by points which straddle the diagonal

V3/2= Vi/2.
(ii) The slope of the curve F(vi/2 V3/2) 0 equals

Q /E = Q /(1 —Q ) (4 2)

d( —vz/2) 8F sF ( 3/2

dvi /2 vi /2 ~v3/2 ~3/2
(4. 3)

The numerator and denominator of this formula are
the quantities proportional to the coefficients of

vi/2' and of v3/2' in (3.13), respectively As .noted

in Sec. III, these coefficients represent the squared

overlap integrals of a state + with the "Q" channels

(i= 4, 5) and "I&" channels (i = 1, 2, 2), respectively,
and are therefore non-negative. Hence we have

d( —v, /, )
dVi /2

(4. 4}

that is, the curve representing I' = 0 is a monotoni-

cally increasing function of vi/2.
In its form (3.4), the equation F(vi/2, vz/z) = 0 is

a quadratic equation in cot&/(v(/2 v3/2} with coeffi-
cients depending on v, /2. Hence it has two roots

vi/2 for each given value of v, /2. Likewise, an al-
ternative form of (3.4) could be derived which

yields three roots v3/2 for each value of vi/2. Hence

any horizontal line in Fig. 2 intersects the curve

E(v, /z, v, /z) = 0 twice and any vertical line intersects
the curve three times. Since F(v«2, v, /2) is a peri-
odic function of both v3/2 and vi/2 each branch of the

curve which exits from one margin of the basic unit

square of the plot reappears at the corresponding
point of the opposite margin. If one regards such

corresponding points on opposite margins as the
"same" point, all branches of the curve in the fig-
ure are seen to be parts of a single continuous

curve.
In our example, the quantum defects of the three

Rydberg series of Xe converging to the limit I3/2

are perturbed by states from Rydberg series con-

verging to the limit Ii/2, which are represented in

Fig. 2 by the crosses x. If one follows any one

at each of the intersection points of E(vi/2 v3/2) with

the diagonal line vi/2= v, /2, i.e. , at ( —/(„—/i ).
Therefore the diagonal elements of the projection
operator P and Q can be approximately determined

from a preliminary plot of E= 0 obtained by inter-
polation through experimental points.

The representation (4. 2) of the slope at

( —p, , —p.,) is but a, special case of a more general
relation. The slope of the curve I'= 0 at any point
is represented by
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branch of the curve, one sees that it makes two
consecutive stepwise jumps before it emerges from
the otl. er end of the figure. In the scattering prob-
lem the sum of the phases of all open channels in-
creases by p at each resonance; here the sum of
the three w, values increases by unity. In all three
regards, the behavior of the quantum defects of
discrete spectral levels in Fig. 2 resembles that of
scattering eigenphases near two adjacent resonances.

If all interactions between series mere very weak,
all unperturbed levels of the "perturbed" series
would lie on flat portions of the curves and the lev-
els of the "perturbing" series would lie on the sharp
vertical portions of the curves; pairs of curves
would nearly touch each other at the step corners.
In Fig. 2 gaps of various magnitudes remain be-
tween branches of the curve which approach one
another but fail to cross. The magnitude of the gaps
at such avoided crossings gives a graphical indica-
tion of the strength of interactions. 4 In particular
the branches of F(vl/2, v, /2) = 0 corresponding to
levels labeled gs and ns ' in Table II come fair ly
close to each other, namely, to within a distance of
-0.05. ' On the other hand, the branches corre-
sponding to d levels stay so much apart that one can
hardly identify regions of avoided crossing. The
avoided crossings of d and s branches have gaps of
the order of 0. 05 indicating a fairly weak s-d in-
teraction.

In the auto-ionization region of the spectrum, the
ordinates of the curves F(vl/2 v3/2) =0 represent
the eigenphases (in units of 1/) of the scattering ma-
trix for the three-channel collision e+Xe'( P3/2).
Each branch of the curve in Fig. 2 is labeled by the
index p corresponding to one of the eigenphases

The two stepwise rises of each branch corre-
spond to the characteristic rise of a phase shift at
resonances. ' The present treatment is equally ap-
plicable whether the resonances are sharp, as as-
sumed for the isolated resonances of Ref. 16, or so
wide as te barely permit the identification of over-
lapping resonances. ' The gap at each avoided
crossing of the pth branch now measures the partial
width for decay of the resonance into the continuum
state 4,.

V. PARAMETER FITTING OF F(v 1 /2, P3/2 ) 0

The function F(v, /2, v3/2) defined in (3.4) depends
on the five parameters p, and on the ten parameters
U4 and U, , though the latter are not independent
as noted before. These parameters will now be de-
termined such that the plot of I' = 0 in Fig. 2 passes
as close as possible to the points that represent
the experimentally observed discrete levels. The
values of the parameters finally adopted by trial
and error are given in Table I. The procedure fol-
lowed in obtaining the parameters is described
briefly and then the interpretation of the results is

dls cussed.
The values of p. , can be read off initially from

Fig. 2, to = 0.01 accuracy:

0. 57 0.36 0. 13 0.05 0.005 . (5. 1)

The same holds, to somewhat lower accuracy, for
Q by measuring the slope of E=O at vf/2 v3/2

(mod 1) and applying (4. 2). Note from the
definition (3.8) of Q 3 that

2 2Q~~= U40, +U5

The condition

(5. 2)

(5.3)

arising from the orthonormality of U, imposes a
consistency check on the values of Q obtained
from the curves of Fig. 2. The additional conditions
of orthonormality

ZU, =Z, U, =1, ZU, U, =0 (5.4)

reduce the number of independent parameters U4

and U5 to seven.
Preliminary fitting. A stepwise procedure was

followed, utilizing the fact that the coupling between
excited states with an s and with a d electron is
rather weak, as mentioned in LF and in Sec. IV.
Thus we assume that the five-channel problem sep-
arates into one tmo-channel problem with s-state
excitation and one three-channel problem with d-
state excitation. Under this assumption the con-
sistency equation I'=0 factors out in the form

Fs(Vl/2i V3/2) F3(V 1 /2i V3/2)

We assume more specifically that the excited elec-
tron has approximately d character in the eigen-
channels +=1, 2, 3 and s character in +=4, 5. In
view of the channel identification in Eq. (2. 11), the
above assumptions imply that all the matrix ele-
ments U, which connect states mith s and d charac-
ter are zero. One now sets U4 = 0 for a = 4, 5 and
U„=0 for n = 1, 2, 3. [Remember that in solving
the Eqs. (2. 18) for i=1, 2, . . . 5, we made the
substitution (3. 1) which left us with a consistency
equation (3.4) dependent only on U, for i=4, 5. ]
From Eq. (3.8), the matrix Q 3 reduces to separate
square blocks, with matrix elements Q z= 0 for
either (n=1, 2, 3; P=4, 5) or (n=4, 5; p=1, 2, 3).
To distinguish the parameters evaluated with this
approximation me write nom U~ in place of
U„(n=1, 2, 3) and U, in place of U, „(n=4, 5).

With this understanding the Eq. (3.4) (F = 0) splits
now into two equations, one for d channels:

F3(v3/2 vl /2) = co™(vl/2 v3/2) +M33
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3

cot11(P1/2 P3/2)+ g U„„cotv(P3/2+ p. cg) 0 y (5 5)

and one for s channels:

Es(V3/2s V1/2) COtV(vl /2 V3/2) +Mes

cob/(P1/2 P3/2) + 2 U, ~ cot1/(P3/2+ t1 (g) 0, (5 ~ 6)

4 5

0. 05 O. 005
(p's) 'P (p's) 'P

(5.7)

which was arrived at by the following reasoning:
(a) From Moore's table, 7 the s electrons have

smaller quantum defects (mod 1) than the d elec-
trons.

(b) By Hund's rule, within the set of d's and with-
in the set of s's the triplets have lower energy and
hence higher quantum defect than singlets.

(c) The relative assignment of (P'd) P and
(p'd) 'D will be explained in the Appendix.

The assignment (5.7) defines the matrix elements
U„and U, as recoupling coefficients of a (LSljj)
transformation. We list here the values of the
squared coefficients obtained theoretically as ele-
ments of the transformation matrix (LS ljj) and
compare them with the values Q derived from the
plot of Fig. 3:

2 2 2 2 2
Uqg Uq2 U „3 U, 4 U,s

(L,S le�)

Q.. 0. 14 0.48 0.38 0.82 0.18.
(5.6)

The largest. discrepancy in (5. 6), for the s states,
indicates that the coupling of the eigenstates &= 4, 5

is intermediate between LS and jj, since jj coupling
would give U,'4=-1 and U„=O. This result of the

since M„,=M~ = 0 .
In both cases, the U; 's (i= d or s) are just the

Q itself in the present approximation. Thus I'~
and I', depend on p. and Q only, both of which
can approximately be read from Fig. 2.

The separate curves representing the equations
F,= 0 and I'„=0 are plotted in Fig. 3. As expected,
these curves show a fair fitting with the experi-
mental points except in the limited regions where
the "s"and "d" curves cross, . since the avoided
crossing shown in Fig. 2 results from the s-d in-
teraction which we have disregarded.

Within the approximation of zero s-d coupling we
can also test the further assumption that the close-
coupling eigenstates have LS-coupling character.
Specifically we test the following assignments:

a= 1 2
/1, (mod 1) = 0. 57 0. 36 0. 13
assignment=(p'd) P (p'd) 'D (p'd) P

I
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FIG. 3. Preliminary fitting of discrete levels. The
full curve and dashed curve represent Eq. (5. 5),
E~=o, and(5. 6), Es=o, respectively.

were also relaxed to the extent of 0. 01, while (5.3)
was of course enforced. The relative signs of the
"small" UI and U3 coefficients (of order 0. 1)were
chosen to yield an adequate fit to Fig. 2, using the
orthonormality condition Eq. (5.4) to limit the num-
ber of signs. These coefficients influence the fitting
through the matrix element M 45= g U4 U5 cot7.

analysis is discussed in Sec. VIII. The next largest
discrepancy, between the values 0.38 and 3 for
U„3, also appears experimentally significant and
relates to the intensity of different photoelectron
groups as will be discussed in Sec. VI. The re-
maining discrepancies between the elements
(LSljj) (which are approximations to the U32 ) and
the Q are fairly small, showing fair agreement
with the assumption that the close coupling eigen-
states have LS-coupling character for the three d
channels, ~=1, 2, 3.

Eu3'tI3e3' fitting. We proceed now to a final de-
termination of coefficients U4 and U, , removing
the restrictions U„=O for m=4, 5 and U, =0 for
a=1, 2, 3. However, as we do so the i channel
previously designated as "4" or "d" no longer has
purely d character and can no longer be identified
with the channel defined as "4" in Eq. (2. 11). Ac-
cordingly the modified Ud will now be called U4
and similarly the U,„will be called U-, . Here 4
and 5 are channels identified, but not precisely, as
being close to 4 and 5 as defined in (2. 11).

To see the effect of s-d coupling we tentatively
assign the small value 0.01 to all the squared ma-
trix elements previously set to zero, U44, U45, -

-2 2

U-,~', U»', and Ug3 . The restrictions previously
adopted with regard to Q, namely, that

3

Z Q, =Z U, 2= 1 and Z Q„=Z U,„=1
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(0 g)=

0. 14 0.26 0. 21 —0.052 —0.077
0.49 0.41 —0.017 —0. 11

0.38 -0.15 -0.019
0.81 0. 36

0. 18

(5. 9)
As a consistency check, it was verified that the
elements of this matrix satisfy E|l. (3.9), Q,„
=

/zan

zQ», within 0.003.

VI. FITTING OF OSCILLATOR STRENGTH

In this section we fit initially the dipole strength
par"meters D in the oscillator strength formula
(3. 27) to reproduce the intensity profile in the auto-
ionization spectrum measured by Huffman et al.
The ability of the formula to reproduce the experi-
mental data serves as a first test of our formula-
tion. A second and more stringent test is thai Eq.
(3. 18) with the same parameters D should fit the
discrete spectrum oscillator strength of Ref. 8.
Finally, the same parameters will be entered in the
branching ratio expression (3.31) to compare the
results with the ratio measured by Samson and
Cairns.

Recall that all parameters are regarded in this
paper as approximately independent of energy over
the range of a few eV covered by our analysis. It
might then be inconsistent to treat the factor E -Eo
of the oscillator strength as variable, since its
variation should be of the same order as that of
other parameters. Accordingly we replace the di-
pole element D by

x(p + v~~~), which appears in Eq. (3.4) andrepre-
sents the s-d interaction but vanishes in the approx-
imation leading to (5. 5) and (5.6). The "final"
choice of parameters U4 and Ug is shown in Table
I. Due to the indeterminacy of U;, noted in Sec.
ID, this set was obtained by assuming the small
U4 's and U5 's are equal to 0. 1 and adjusting the
large U4 's and Ug 's with the understanding that
the square of these matrix elements are close to
the corresponding Q „'s, so that Eq. (5.4) is sat-
isfied and so that one obtains a good fit to the ex-
perimental data.

For further analysis it is convenient to give the
matrix Q z

= U4 U&+ Ui U» constructed with these
parameters

spectrum do not separate out the contributions of
photo-ionization to the three collision eigenchannels

p = 1, 2, 3. Therefore the quantity to be fitted is
the total contribution

(6. 2)
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However, it is important for us to calculate the
separate terms of (6. 2) because it is these that also
fit the oscillator strength of discrete lines. This
analysis of the auto-ionization intensity as the sum
of three terms differs substantially from that intro-
duced by Fano and carried out in detail by Comes
and Salzer. The Fano approach represents the
spectrum by interference of auto-ionization lines
with a smooth background. The two approaches are
actually equivalent.

Since the auto-ionization spectrum observed by
Huffman is periodic in terms of the effective quan-
tum number vj/2 within the experimental error, we
have fitted only the section between vg/q= 3.55,
i.e. , just above the I, /2 threshold where accuracy
is highest, and v&/2= 4. 55. Figure 4 shows the final
fitting that was achieved using the values of the pa-
rameters p given in Table I. As elsewhere in
this work, consistency with the rest of the treat-
ment justified only a modest effort to obtain an ac-
curate fit. Dashed curves in Fig. 4 represent the
result of the preliminary fitting described below.
Figure 5 shows the separate contributions of the

9 .= [2(E —Z )]'"a (6. 1)

and adjust y rather than D to fit experimental
data.

A. Auto-Ionization Spectrum

The measurements of absorption coefficients,
i.e. , of oscillator strengths, in the auto-ionization

FIG. 4. Xenon auto-ionization profile between v&/2 =

3.55 and 4. 55. The full curve represents the measured
profile by Huffman et al. {Ref. 9) plotted as function of
p f / 2 The dashed curve is the one- channel fitting cor-
responding to Eq. {6.3a) with y3& 0 and Itft&

——y&-—0. The
dotted curve represents the fitting of the intensity profile
given by Eq. {3.27) with cp~'s listed in Table I.
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FIG. 5. Oscillator strengths of
Xe in the discrete and auto-ioniza-
tion region. The full curve in the
upper portion of the figure shows
the separate contribution of the
oscillator strength df /dE for
photo-ionization into pth collision.
eigenstates of the auto-ionization
region as function fo v~~& over
three periods of v&~2,

- each period
corresponds to one of the three
roots Tp of the Eq. (3.4), E(vf/ 2 Tp)
= 0. The corresponding root v p is
plotted below the main graph for
purposes of identification. The
labeled open circles (0) in the upper
portion of the figure are the reduced
discrete line intensities obtained
by dividing the discrete oscillator
strength f„from Ref. 8 by the coef-
ficient {6.5). No measured point
has been omitted.

(p) 1fddE, sina(p —~,)

(& sf.
dE 4 sinn( p —~,)

(6. 3a)

„.(6. 3b)

A further simplification follows from the fact that
the eigenstate n = 3 was identified in Sec. V as ap-
proximately P, while n =1, 2 were identified as
approximately triplets. Under this assumption the
oscillator strength for the eigenstates n = 1, 2 would
be negligible because of the spin selection rule. In
practice the parameters y& and y2 would be very
small compared with @3. The value of y3 itself was
obtained by utilizing the special solution (3.5) which
reduces (3.27) to

oscillator strength for photo-ionization into collision
eigenstates of the auto-ionization region.

As in the fitting of discrete energy levels (Sec.
V), we disregard initially the interaction of d and s
channels, i.e. , we set such matrix elements as
U4 =U, (n=4, 5) and U,„-=U, (n=1, 2, 3) to be
zero. Under this approximation the expression
(3. 27) of df '"/dE is replaced by the sum of two
separate terms

sharp peak which is known to arise mainly from s
state excitations. This preliminary fitting was then
improved by inserting small nonzero values of y&
and y~.

The contribution of the oscillator strength of the
"s" channels cannot be attributed to a single eigen-
state n = 4 or 5, because we know from Sec. V that
neither of these eigenstates has approximately trip-
let character. Also the absorption peak attributable
to s excitation lies between the values of v&+= —p, 4

and —p, , (both mod 1), indicating that excitations of
both eigenstates interfere constructively near the
peak. Qn this qualitative basis the values of q4 and

p5 were determined.
We proceed to a finer determination of the above

five tentatively determined y„'s from Eq. (3.27),
using the parameters p, , U4, and U5„obtained in
the earlier fitting, as listed in Table I. We note
that for each value of v&~2 there are three values of
~p corresponding to different collision eigenstates
p. The pairs of values (v~~a, 7,) have to be chosen
to satisfy the consistency Eq. (3.4), E(v, ~a,

—r,)
=0. By trial and error a final set of p 's is cho-
sen, as listed in Table I, which fit the experimental
data to the extent shown in Fig. 4.

(6.4) B. Discrete Spectrum

Tp

where we have assumed tentatively that the other p
values do not contribute appreciably at the spectral
point v«a= —p, ~; that is, (6.4) was set equal to the
entire observed oscillator strength at this point.
The resulting values of df ~"'/dE, plotted in Fig. 4
(dashed curve), reproduce the major features of the
experimental spectrum, with the exception of the

It is interesting to compare the theoretical oscil-
lator strength formula (3.18) for a discrete line
with that for photo-ionization to an eigenstate 4'p of
the auto-ionization spectrum. The discrete
strengths f„are obtained from the continuum

strength df '"/dE by (i) setting v, ~a= v~&a „, (ii) re-
placing r, by —vs&2 „, and (iii) dividing by the dis-
crete normalization coefficient
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TABLE I. Fitted values of theoretical parameters.
See Sec. V for the meaning of 4 and 5 in the labeling of
U-matrix elements.

0. 57 O. 36 0. 125 0. 047 —0. 007

U4~
2

U5~
2 0. 01

0, 36

0.48 0.37

0. Ol 0. 01

0. 69 O. 61

0. 01

0. 80

O. 1

0. 01

0. 17

—0. 1

—0. 1 —0, 1 0. 1 O. 89 0. 41

(pf„(a. u. ) 0. 8 —0. 13 4. 17 0. 64 —l. 19

3 3
~3/2, n + ~1/2, n (G1/2, n/G3/2, n) (6. 5)

The coefficients G are defined by (3.17a) and (3.17b)
and their ratio represents the slope of the I' = 0
curve according to (4. 3). The normalization factor
(6. 5) coincides with (57) of FH. t The continuum
wave function of FH is normalized per unit energy
range in the auto-ionization region and thus differs

from the 4', of this paper by the square root of the
expression (3. 26), G2/284 ]

Having already evaluated the theoretical expres-
sion of df "'/dE with the values q in Table I we
now perform the comparison with the discrete
strengths in the following way: We plot in Fig. 5

df "'/dE vs v2/2 over three periods of v2/» each
period corresponds to one of the three roots 7, of
the Eg. (3.4) E(v2/2, —r, ) = 0. The corresponding
root 7'p is plotted below the main graph of Fig. 5
for purposes of identification. (The value of df/dE
plotted in Fig. 4 is the sum of the values of df "'/dE
at the three abscissas of Fig. 5 with the same value
of v2/2. ) Each of the experimental values of f„from
Ref. 8, listed in Table II, has been divided by the
appropriate value of the coefficient (6. 5) and plotted
in Fig. 5 (as marked by crosses) at the abscissa
for which v&&2= v&~~ „and, = —v3/2

The reduced experimental points appear to agree
with the main features predicted by the theoretical
curve, which was based on fitting to the auto-ioniza-
tion spectrum. Note in particular:

(a) The intensities of the discrete and continuum

TABLE II. Xe level positions, line intensities, and Lande g factors.

Desig. +

6s El
6s' fO-,'l.
5d fO-'l.

5d [12]'
7s[1-']
6d [0-,']
6d fig]
8sP 2]'
7d [02]'
7d [12]'
9s [12)'

fl ~Jo

8d [02)'
8d [12]
10s f12]
9d [0-.'].
9d fl-.'].
lls [12]'
7 'EO —']
10d fO —')
10d [la)'
12s [12J'
lid [02]'
lid E12]'
13s[12)
12d [02]'
12d [12]
14s f12]

Level
(cm «)

68 045. 663
77 185.560
79 987. 16
83 890.47
85 440. 53
88550. 28
90 032. 65
90 932. 939
92 128. 795
92 714. 555
93 422. 615
93 618.75
94228. 523
94685. 94
94 787. 603
95 228. 913
95 498. 99
95 591.48
95 801. 092
95 913.388
96 046. 28
96 123.28
96 315.67
96 424. 28
96 481. 13
96 616.73
96 694. 90
96737. 9

(mod 1)

0. 65
O. 88
0. 97
0. 12
0. 19
0. 35
O. 45
0.51
0. 60
0. 65
0. 71
0. 73
0. 79
0. 83
0. 84
O. 89
O. 92
0. 93
0. 96
0. 97
O. 98
0, 99
0. 02
0. 03
0. 04
0. 06
0. 07
0. 07

V3)2
(mod 1)

0. 92
0.31
0.48
0. 81
0. 98
0.44
0. 75
0. 99
0.39
0. 63
0. 99
0. 10
0. 52
0. 90
0 ~ 001
0.49
0. 86
0. 995
0. 35
0.56
0. 83
0. 008
0. 50
0. 82
0. 005
0. 49
0. 81
0. 004

0. 272
0. 189
0. 012
0.381
0. 09
0. 002
0. 082
0. 021
0. 021
0. 0003
0. 001
0. 186
0. 006
0. 109
0. 015

dg(P) d

dE

l. 92
2.28
0. 18
9.0
2. 37
O. 1
4. 76
l.33
2. 0
0. 03
0. 14

38.6
1.01

24. 23
3.31

gexyt

1.204
1.321
l. 395

1.182
l. 273
0. 819
l. 154

1.180
0. 914
1.164
1.217
0. 899
l. 188

~Reference 7.
"The labeling of levels in figures will be abbreviated

by: ns =ns[ly)', ns' =ns' [Oy], nd=—nd[02)', nd —=nd[121;
and ns' = ns' [Oy]'.

'Heference 8.
ndf n /dE =fnnn2(v2/2 n + (d(- 22/2)/dvj/2)n P2/2 n )(a.u. ) .3 3

'References 7 and 10.
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df (3/2) df (1/2)

dE dE
(6.6)

in full agreement with the value 1.6 measured by
Samson and Cairns. Since the parameter y3 is
much larger than the other ((), the value of (6.6)
depends primarily on the ratio P33/Q33 (1 Q33)/
Q33 in fact, it doe s not dif fer fro m this ratio sig-
nificantly. According to (4. 2) this ratio is the re-
ciprocal of the slope of the Il = 0 curve at the point
vj /Q l 3/2

—p 3, we have here another example of
the close relationship between quantities determined
in different spectral regions.

The result (6.6) and the corresponding experi-
mental value depart significantly from the value 2

of the branching ratio which would be predicted on
"statistical grounds. " The statistical argument
could be formulated in the context of this paper in
various ways among which we mention the following
one. Assuming that (a) the s and d channels are
uncoupled and (b) that the (2 states are LS coupled,
then only p3 and p~ would be nonzero, Q33 and Q~~

would both equal 3, and Q3~ would vanish. The
branching ratio would then equal P33/Q33 P55/Q55
= 2 irrespective of the values of p3 and q~. From
this point of view, the sizable departure of the
branching ratio (6.6) from 2 is traceable to the
seemingly small departure of Q33 0.38 from the

spectra are provided by totally unrelated measure-
ments.

(b) Reduction of the two sets of data to a com-
parable basis is provided here for the first time
through the coefficient (6.5) and the summation of
the ordinates of the three cycles of the plot of Fig. 5.

(c) The theoretical plot of df "'/dE reproduces
the main features of the experimental variations of
f„, previously unexplained. In particular it repro-
duces the points of near zero intensity which cor-
respond to those intersections of the 7, plots with
the diagonal that indicate the occurrence of triplet
eigenstates. For example note the low intensity of
the 6d and 7d lines near the collision eigenstates
~= 1 and 2, which have triplet character. The pre-
diction of these low minima is a main feature of this
theory combined with the surmise of approximate
LS coupling in the eigenstates 4; we return to this
point with complementary evidence in Sec. VIII.

(d) The entire fitting procedure carried out in
this paper has a level of accuracy not inconsistent
with the discrepancies of theory and experiment in
Fig. 5.

C. Open Continuum

For E &I&/2 the branching ratio of the two groups
of photoelectrons, with kinetic energies —,

' k, /2' and

2/21/2, is given by (3.31). This ratio is readily
calculated with the values of y, p. , and Q z given
by Table I and (5. 9). We find

g„= J' e „'ge„dr/ 1'
i e„~ 'd~ . (7. 1)

In this paper the wave functions C„have been de-
termined only to an extent insufficient for the eval-
uation of (V. 1). First, the expression (2. 1V) holds
only for r &so; this limitation is not too serious be-
cause the region r &xo yields presumably most of
the contribution to the integrals in (7. 1) for excited
states of the atom. Second, we have obtained only
two rows of matrix elements, U4 and U5, which
include seven independent parameters out of the
total of ten required to determine the complete ma-
trix U„. [In addition the matrix rows labeled 4
and 5 in Sec. V coincide only approximately with
i=4 and 5 as defined by (2. 11).) Nevertheless, a
few steps of the evaluation of (V. 1) will be outlined
here to demonstrate how to utilize additional infor-
mation as it becomes available.

The denominator of (7.1) can be taken from
(3. 13). In the numerator, the operator g acts only
on the angular and spin factors C, of the wave func-
tion (2. 1V) and is accordingly represented by the
matrix

'
I'!

Xo

0
0

2 3
3 0

P1 o
0 7

6
-', W5 o

o

4
0 0

-', Ws o
O —15W2 '.

o)
(7. 2)

For the purposes of radial integration we note that
the form (2. 1V) of the wave function simplifies con-
siderably for levels of the discrete spectrum, with

parameters v&/2 „, v3/& „, and A "' which satisfy the

Eqs. (2. 18). In this case one finds

+„=Z C';y5(v;„, )') '
1,

'" ZU«sinvp, „A„",I'(I; + 1 —v, „)
of

(7 3)

where
y5(v& t) W~ lil/2(2r/v) (7. 3')

is the exponentially decreasing Whittaker function
used in Ref. 2. Substitution of (V. 3) yields

OD

fet ge„d~=p g, , y, (v,„, 3.)y5(v/„, 3)d)
fp

value 3 which pertains to a P state.

VII. LANDE g FACTOR

Values of the Lande factor, measured by Zeeman-
effect experiments for many of the discrete levels
considered in this paper, ' are listed in Table II.
The measured value of this factor for each discrete
level, g„, represents the expectation value of the
operator g = 1+S ~ J/ J J over the level's wave func-
tion 4'„,
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I(l(+1 —v~) ~ . (&~ U, ~ sinn p.„A~"
&~co

&( i. " Q U/g sing pgA6 ~ (7 ~ 4)
7T&g„' 8

VIII. DISCUSSION

Several relationships have been established in
this paper between spectral properties of Xe in the
discrete and continuum regions. The plot of the
consistency equation E(vg/2p v3 g/) 0, in Fig. 2, de-
termines on the one hand the position of discrete
levels of strongly perturbed series and on the other
hand the resonant behavior of collision eigenphases
m7', in the auto-ionization region. Figure 5 of 7', in
the lower plot, is associated with maxima of oscil-
lator strengths. The main upper portion of Fig. 5
provides the connection between the oscillator
strengths in the discrete and the continuum, on the
same scale. Finally, the data obtained from the
lower portion of the spectrum have provided an in-
terpretation of the branching ratio (6.6) measured
in the open continuum (above the second threshold
Iq/z). In all these regards the series of discrete
levels and their adjoining continua can be indeed
treated as a single unit.

The analytical treatment of this paper involves
the parameters p, , D, and U; . Values of the
ten parameters p„and D (or, rather, of the equiv-
alent y ) have been obtained by fitting 28 discrete
level positions and the profile of auto-ionization
lines and are. given in Table I. This table also
gives values of matrix elements U4 and U5 ob-
tained by the same fitting procedure, which amount
to seven out of the ten independent data required to
determine the matrix U; . However, the problem
of indeterminacy of U„exists as mentioned in Sec.
III. Additional effort will be required to obtain the
remaining parameters and thus to calculate the

Lande factors g„as well as the angular distribution
of photoelectrons. Extension of the treatment pre-
sented here to channels with different J values, as
outlined in the Appendix, and with different l quan-
tum numbers of the dissociating electron would per-
mit a calculation of the cross sections for elastic
and inelastic e+Xe' collisions at low energies.

Observable properties have been related here to
the five close-coupling eigenchannels of the complex
8+ Xe'. A preliminary characterization of these
eigenchannels has been achieved. In three of them
the electron's orbital momentum is 98% I = 2, and
2% l = 0; in the other two the situation is reversed
Yet the s-d interference effects are quite appreci-
able, being of order = (0.01)'/2 as characterized by
the small elements U4 or U-, , i.e. , roughly 10%,
and are clearly observed in the avoided crossings
of Fig. 2. One of the three eigenchannels with pre-
dominantly d character, namely, the one labeled by
n = 3, is identified as predominantly singlet by the
large value of the intensity parameter y3 and the
local maximum of oscillator strength at v&/z= —p, 3
=0. 875 (mod 1) in Fig. 5. The triplet character
of the channels m=1 and a=2 is supported by the
minima of strength at vq/q= —pal= 0. 48 and vq/2
= —V.2=0. 64 (mod 1) in Fig. 5.

This interpretation of apparent. anomalies of os-
cillator strengths along perturbed spectra, illus-
trated by Fig. 5, constitutes a main result of this
paper. As a further illustration to show the poten-
tial of this analysis we list in Table III relative in-
tensities of absorption lines in Ar measured re-
cently by Yoshino. Partial data for argon are
shown for three of the same five series as occur in
Xe, together with the value of v&/2 —v, /2 for each
line. The intensities of these three series are seen
to drop as the value of v&/3 —v, /2 passes through
zero (mod 1); the values of —vq/2 (mod 1) at which
this drop occurs represent values of p. for eigen-

TABLE III. Ar relative line intensities.

ns f12]('

5
6
7
8
9

10
11
12
13
14
15

70
56
41
42
41

+15
30
42
28
30
60

Vi/2 —V3

'TPf1+ V1/2yfl

(mod 1)

0. 86
0. 67
0. 39
O. OO1"

0. 54
0 99"
0. 36
0. 68
0. 95
0. 17
0. 36

ndl1-,'] ~

12
13
14
15
16
17
18
19
20
21
22

Ia

42
60
45
34
29
+19
41
40
59
41

Vi/2 VB/2

~pm+ V i/2, n

(mod 1)

0. 16
0. 37
0. 54
0. 69
0. 83
0. 98
0. 89
0 03
0. 11
0. 18
0.24

nd[0-,'H'

11
12
13
14
15
16
17
18
19
20
21

35
30
29
22

9
23
34
30
30
29
28

Vt/2 V3/2

V~+ Vf/2~n

(mod 1)

0. 72
0.61
0.37
0. 18
0. 0
0. 12
0. 13
0. 03
0. 31
0.41
0.49

Classification and intensity from Ref. 20.
"These two lines have values of v3/& differing by = 0.03

and correspond to different eigenchannels, presumably

sPands P.
These two lines correspond to different eigenchannels,

presumably d3P and d~P.
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channels with triplet character according to LS
coupling. A singlet character eigenchannel does
not cause a drop in intensity as the value of v& +
—v, i2 passes through zero (see, for example,
Bs[1-,'j' level in Table III).

The further characterization of the eigenchannels
n = 1 and n = 2 as 'I' and D, respectively, requires
additional evidence. This evidence is provided in
the Appendix by the plots of levels 5p'zd and 5p'ns
but with J ~ l. These plots support the statement
that the character of I S-coupled eigenchannels &

is essentially the same for different J values. For
example, the fact that the J = 3 plots in Fig. 6(c) do
not intersect the diagonal near v&/2= 0. 43 shows
that n = 1 is part of an LS multiplet without any J = 3
level. The data in the Appendix also confirm the
other assignments made in this paper.

As noted in Sec. V the LS characterization breaks
down for the two eigenchannels with s character,
namely, n= 4 and 5. This breakdown is understood
qualitatively on the basis of the relative strength of
spin-orbit coupling and electrostatic interaction.
In our collision method, interaction strengths are
represented by dimensionless numerical param-
eters equal to the shifts of quantum defect ~p, they
produce. On this scale the strength of the spin-
orbit coupling in the Xe' ion doublet is represented
by &p.„=0.049. On the other hand the quantum-
defect differences p. —p.z of the close-coupling ei-
genchannels should arise primarily from electro-
static interaction and should be at least of the order
of 0.1 for Xe. These differences are 0. 2 for the
eigenchannels with d character, i.e. , with (o., P)
=1, 2, 3, and thus are much larger than &p.
=0.049. However for the eigenchannels n =4, 5
with s character this difference is p, 4

—p, 5
= 0.05,

which is comparable with the strength of the spin-
orbit coupling. The large effect of spin-orbit cou-
pling on the eigenchannels &=4, 5 is then attributed
to an anomalously small value of the sp exchange
electrostatic interaction which would otherwise
widen the difference analogous to p, 4

—p.5. ln fact,
the quantum-defect difference analogous to p, 4

—p. z

ranges between 0.03 and 0. 05 for all other noble
gases; in the other gases this value is larger than
spin-orbit effect 4p. , which is smaller than for
Xe. Thus the I S characterization for the eigen-
channels with s character is better fulfilled for
other noble gases than for Xe.

As emphasized in Sec. I and in I F, the energy
dependence of the parameters p, , U;, and y has
been disregarded altogether in the fitting of data.
Gross misfitting due to this rather extreme sche-
matization is apparent only in the position of the 6s
and 6s' levels, which lie about 0. 06 units outside
the E=O curve of Fig. 2; a lesser misfit by 0.01
is observed for the Vs level. These misfits may
be interpreted in terms of an upward drift of p. 4 and

I I I

I 7s",

0.5—po--

p 04— t

0.3-
I

00 (s)'pQ
I I

0.0 0.0
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0.8
0.9
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FlG. 6. Plot of vS/2 or Tp vs PI/2 as in Fig. 2 with
different J values. (a): J= 0 with LS-coupled states
ssPO and dsP(). (b): J= 2 with LS-coupled states s P2,
d P&, d'D2, d D2, and d E2. (c): 0, J= 3 with LS-coupled
states dsDs, dIEs, md dsE 2 J =4 with LS-coupled
state dsE4. Dashed lines are interpolated curves.

p, 5 as the energy E decreases. The absence of a
corresponding upward drift of the p, values for the
d channels in Xe may be due to a centrifugal barrier
effect.
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Accounting quantitatively for the values of the p. ,
D and for the coupling characteristics of the eigen-
channels 4 should be the objectives of calculations
by the close -coupling or equivalent methods. The
semiempirical approach developed in this paper may
be extended to higher accuracy, e.g. , by improved
fitting and by taking care of the energy dependence
of the parameters. Complementary information
could be obtained from experimental analysis of the
angular distribution of photoelectrons, particularly
in the auto-ionization region where the distribution
must vary periodically along the spectrum. The
plots in Fig. 5 may serve as a guide for future line
intensity measurements for highly excited and
strongly perturbed levels. Extended information
should be gathered readily by applying the analysis
of this paper to the spectra of the other noble gases.
On the other hand a substantial amount of further
development will be required for application to the
photoabsorption spectra of atoms that have more
than two ionization thresholds within 3-4 eV of the
lowest one.

Finally, we compare the approach of this paper
with the traditional interpretation of auto-ionization
spectra and of series perturbation in terms of con-
figuration interaction. ' Configuration interaction
normally deals with the perturbation of a continuous
spectrum or of a Rydberg series by a single dis-
crete level of a different series. Initial steps have
been taken in the past to deal simultaneously with
the perturbations caused by a series of Rydberg
levels, but the formalism did not appear suitable
unless the perturbing levels were well separated.
The formalism of configuration interaction main-
tains a clear distinction between a perturbing level,
or series of levels, and the perturbed series. In
the present approach all interactions are regarded
as included in the characterization (a) of the close-
coupling eigenchannels 4 and of their qua. ntum de-
fects p, „and (b) of dissociation channels 4, and of
their ionization thresholds I3~2 and Ij +. The present
theory deals with the frame transformations U,
between the states 4 and +, as well as with the
effects of the Coulomb field on the excited electron,
which yield the entire Rydberg structure. Config-
uration interaction and its effect of auto-ionization
do not appear explicitly here but their consequences
emerge from the expression of the expansion coef-
ficients A and from the values of the quantum de-
fects p, .
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APPENDIX

In the text we have considered only J=1 states
which are reached from the ground state, 5p So,
by way of electric dipole transitions. However, the
angular momentum coupling of an s or d electron to
the 5P' P~~& 3~& core can also produce states with
J= 0, 2, 3, and 4 and with the same threshoMs I3/Q
or I&~2 as for J =1. The close-coupling eigen-
channels with these alternative values of J should
be related to those with J= 1. To be specific, the
character of the LS coupled -eigenchannels should
be the same irrespective of the J values.

The plots v, ~& „vs vq ~2 „for observed levels with
different J values are shown in Fig. 6. The LS-
coupled states belonging to a given J are listed on
each figure. The intersections of the interpolated
curve with the diagonal line give the eigenphases
vp, Figure 6(a) shows the case of J=0 for which
there are just two dissociation channels, namely,
P'( P, t2)s with the threshold I, ta and P'( P»a)d with
threshold I3&~. In LS coupling these channels can
form only 'P states. The interpolated curve passes
through the diagonal line at vq ta= 0.43 (mod l). This
corresponds to a collision eigenstate p'd P in LS
coupling with eigenphase p. = 0.57. In both Fig.
6(b) for H = 2 states and Fig. 2 for 2= l states, we
note that intersections occur at the same place v&&2

=0.43, which corresponds to a p'd'P eigenstate.
Here, at least, the eigenphase is the same for the
same eigenchannel n independently of the J value.
The other intersection with the diagonal occurs in
Fig. 6(a) at v, ts=0. 95, i.e. , near the value of —p, 4
for d= l. A series of states of the p'('Pqt2)s channel
intersects the diagonal in Fig. 6(b) for d = 2 at v~&z

=0.98, that is, at a point intermediate between
those of n = 4 and n = 5 for J= 1. The intersection
corresponding to D occurs at vq~2= 0.64 for J= 3,
while for J= 2 intersections corresponding to D or
'D occur between v&~2= 0.62 and 0.65, that is, near
the v&+=0. 64 attributed to Dj in Fig. 2 for the J=1
plot.

The assignments of the eigenchannels at the other
intersections are also consistent with the LS
scheme, e.g. , v&&z= 0. 5 is attributed to 'I' in Fig.
6(b) for Z= 2 and in Fig. 6(c) for J= 3 and Z= 4.
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Analogies between Coulomb excitations of nuclei and ionic molecules by charged projectiles
areutilized to calculate vibrorotational excitations of H2+ molecular ions by e+ impact by a
semiclassical method developed in the nuclear case. The coupling between vibrational-rota-
tional states of target molecules can very significantly affect the scattering cross sections for
either kind of excitation on the other. In this paper we have shown that the effect of such cou-
pling may be included very conveniently, under the present model, whenever applicable. In
a subsequent paper we intend to publish results for the experimentally more accessible sys-
tems, including the H'+ H&' system.

I. INTRODUCTION

Recently there has been a considerable upsurge
of interest in the study of rotational and vibrational
energy-loss processes in diatomic molecules by
electron impact. They are of much importance
not only for understanding the fundamental energy
exchange processes involved, but also for their ap-
plications in such allied fields as astrophysics and
atmospheric physics.

In the present work we shall investigate the
coupled excitation of vibrorotational states of hy-
drogen molecular ions H&' by collision with posi-

trons e'. The study of such excitations with e' is
not only important for its intrinsic significance
but also for the mathematical simplicity it intro-
duces in the formulation of the complex excitation
process itself. This is due to the fact that the
Pauli exchange does not enter directly into the
problem.

In this work we shall adopt a semiclassical view
and make use of the analogy of Coulomb excitations
of nuclei, which has been studied extensively in the
past. ' The present method is semiclassical in that
we shall treat the target system quantum mechan-
ically while the motion of the projectile would be


