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Calculations and measurements of energy dissipation by protons at energies above ~ 100
keV are presented. The calculations, which make use of a statistical model of the atom, are
based on a refinement of a procedure suggested by Lindhard and Scharff. The theoretical
section of the present paper is concerned with energy straggling, as stopping powers were
dealt with in an earlier publication, Measurements of stopping power and energy straggling
for 100—500-keV protons have been made in various gases, viz. hydrogen, helium, air, neon,
argon, and krypton. The stopping-power data are in good agreement with theory and earlier
experimental work. For the heavy gases, the experimental straggling values are seen to be
an increasing function of energy, as expected from theory. In a more quantitative compari-

son, however, some discrepancy between theory and experiment is observed.

I. INTRODUCTION

Consider a beam of heavy particles of low charge
number traversing matter. The average energy
loss is a quantity of great interest, and it has been
studied extensively, both theoretically and experi-
mentally. Sometimes, however, it becomes neces-
sary to pay attention to the fact that during pen-
etration, the energy distribution of the beam is
broadened. This happens because slowing down
is the result of individual collision events, the
number of which is governed by statistical laws.

In the following we present a theoretical and
experimental investigation of straggling, i.e., the
mean-square deviation in energy loss. For a suf-
ficiently fast particle, only collisions with elec-
trons contribute appreciably to the slowing-down
(electronic stopping, Sec. IVB). Only such cases
will be treated below. On the other hand, we con-
centrate on such low energies that a well-known

asymptotic expression for straggling does not apply.

II. THEORY

A general discussion of energy loss has been
given by Bohr.! For the straggling 2% one obtains
in limiting cases

Q=02 =4n1ZZ,e*NAR , 1)

where - e is the charge of the electron, Z, and

Z,, the atomic numbers of the projectile and the
target atoms, respectively, N the number of atoms
per unit volume, and AR the target thickness. The
above expression is derived under the following
conditions: (i) The target atoms are randomly
distributed; (ii) the velocity of the projectile is
high as compared to the orbital velocities of the
target electrons; (iii) the energy of the projectile
is changed only slightly during penetration. In

the following, conditions (i) and (iii) will always

be assumed to be fulfilled.

If, for some of the electrons, condition (ii) is
not satisfied, a calculation of average energy loss
and straggling becomes rather complicated. A
fairly simple treatment of cases, where condition
(ii) is not necessarily fulfilled, was suggested by
Lindhard and Scharff and found to be useful. 3
The idea was to use, as far as possible, a com-
parison with an electron gas of constant density,
for which exact results can be obtained. Such a
treatment is of Thomas-Fermi type and thus con-
tains the kind of similarity which is characteristic
for a Thomas-Fermi description.

In the case where a heavy nonrelativistic particle
of charge Z,e and velocity v only exerts a perturb-
ing influence on a free electron gas of density p,
all quantities connected with the slowing down of
the particle can be expressed in terms of the lon-
gitudinal dielectric constant €’(, w) for the gas.
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k and w refer to Fourier components of functions
of space and time, respectively.* Lindhard?* found
the following formula for the straggling 92

272 % “de [ * w?
Q%=—- AR =1 <f == d
w? P\ )% ), T

()
By using the explicit expression for €*(¢, w), asymp-
totic formulas were derived for the cases v/vp>1
and v/v <1, vy being the Fermi velocity belonging
to the gas. For v/vz>1, Eq. (2) turned into (1)
with the obvious replacement p—~NZ,. In the other
limit, Q2 was found to be proportional to »2, im-
plying a great reduction as compared to (1).
Lindhard and Scharff? treated the case of a real
target material by dividing up the electron cloud
of a target atom into “outer” and “inner” electrons,
the outer ones being roughly those corresponding
to a (local) Fermi velocity lower than v. Letting
outer and inner electrons contribute according to
asymptotic expressions for an electron gas and
using a simple and rather crude model for the
density p(») of atomic electrons at a distance »
from the nucleus, Lindhard and Scharff arrived
at the following formula:
L (x)

for x<3
@-05) 2 ®
1 for x2 3.
Here, x is a reduced energy variable
x=0*/0}Z, (o=e?/n), )

and L (x) is given in terms of the stopping power
dE/dR by

dE _ 4nZie*
B et NZ:Li), ()

where m is the electron mass.
A similar calculation of the stopping power gave
the following result for L (x):

L{x)=1.36xY2-0.016x%2, 6)

Actually, it is only to a first approximation that
L, as defined in (5), can be written as a function
of one variable.

Experimental measurements in metals by Mad-
sen,® by Nielsen,® and by Chilton ef al.” were con-
sistent with (3). Particularly, there was an indi-
cation of a decrease in straggling at x values lower
than ~3. However, the measured points scattered
to an extent where a more detailed comparison
with theory was not possible. The experiments
to be reported in Sec. III are considered accurate
enough to allow such a comparison, and it even
seems worthwhile to try to improve upon the theo-
retical evaluations.

An obvious refinement of the Lindhard-Scharff
calculation would be to use a more realistic formula

for p(r) together with a more accurate expression
for the contribution to the straggling Q®(#,v) from
the various parts of the electron cloud. Indeed,
a similar refinement of the Lindhard-Scharff cal-
culation for dE/dR turned out to be profitable. ®

In order to obtain %@, v), numerical calcula-
tions of Q2 in (2) were performed, using the exact
expression for €'(¢, w). #*® The results are shown
in Fig. 1. The density is conveniently given in
terms of the dimensionless parameter X%, where

X2 =e¥/ v, vp=(t/m)@3n*p). (M

Typical electron densities in atoms correspond to
X%~ 107'=10"%, In the same figure, the numerical
results are compared with analytic, approximate
formulas for 2. For high velocities, the expres-
sion was derived from (2) by expanding €'(%, w) for
large k. Explicitly, the following formula was
obtained:

Qz ~ 1 UF>2 ﬁwo ] (‘U 2
QB—1+[5<U * 2mo?| U for e >vx.
@)

The term with the plasma frequency w,
= (4me?p/m)M? is a contribution from resonance
collisions due to collective excitations. However,
this is only a small fraction of Q2/9%, the main
part of which comes from single-particle collisions.
For dE/dR, the situation is different, the contri-
butions from single-particle and resonance colli-
sions being equally important at high velocities. o

For v <vp, one has the asymptotic expression®

Q¥/Q5=AX) /v, ©®)

with A (x) of the order of 1 at ordinary electron
densities. As shown in Fig. 1, a reasonably good
fit to the numerical calculations was obtained by
setting

Ax)=(1+13x%2, (10)
It is seen that formula (9) together with formula
(10) is a somewhat less accurate approximation
than formula (8).

For the atomic case, we now suggest the fol-

lowing formula for Q2/Q3:

2 © 2
%i:Zszo amr @) ———Qﬂ(’};;”) dr 1)
where
QPw,v) . (1 x0)\ [(ve0))? v \?
——2—“93 = 1+<5 +73-—> (———{; ) ln<——vp(7)) (123,)
1 v \2
S EA (w(?’)) (12b)

For v Svp() we use (12b), and for.v =v @), the
expression with the lower value should be applied.
The functions v z(») and X () are given in terms of
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FIG. 1. Straggling as a func-
tion of projectile velocity at
various densities of an electron
gas. Points are taken from
numerical calculations, where-
as the curves represent analytic
asymptotic expressions.
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the electron density p(») by the quoted expressions
for an electron gas.

In the actual calculations, an analytical form of
Thomas-Fermi type for p(») was used, namely,
the first-order Lenz-Jensen model.'® As p is
proportional to ZZ, and thus v to Z&/3, the formu-
las suggest that ©2/Q% should depend only weakly
on Z,, when expressed in terms of the reduced

energy x,, where

x,=0v3/vd 233, (13)

The Lindhard-Scharff formula could be written as
a function of the reduced energy x, as the division
between inner and outer electrons was made in
terms of the variable 2mv?/fiw, rather than 2mv?/
2mv%. Below we shall display 2%/93 in both vari-
ables.

As to the validity of (11) and (12), the following
remarks should be made: First, the approxima-
tion can only be expected to give good results
when we obtain relatively small contributions from
the inner electrons, i.e., from those that con-
tribute according to (12b). As an example, for
Z,=18, Q2.,./Q% .; takes on the values 0.41,

0.22, and 0.09 at the x, values 0.23, 0.79, and
2.9, respectively. Thus, we should not try to use
our procedure forx; values lower than, say, 0.1.
Second, owing to the statistical nature of the treat-
ment, our formula may not apply too well for low
Z, values.

There is still one difficulty of a more fundamental
character. According to well-known theory, ! we
account for straggling by dividing up collisions into
a large number of basic statistically independent
processes ¢, each process corresponding to an en-
ergy transfer lying in a small interval around 7.
This leads to the following formulafor the straggling:

Q2=2,T2w,; . (14)

Here, the number of collisions of the ith kind only
appear through their average value w;.

It was by means of formula (14) that Lindhard
arrived at his expression for Q2 for the free elec-
tron gas.

The Lindhard-Scharff treatment of straggling for
an atomic target material is justified if we are
concerned with the same basic statistically inde-
pendent excitations in the atom as in the electron
gases by means of which we describe the elec-
tronic cloud. In these circumstances, one can
attempt to express atomic cross sections in terms
of excitation probabilities for the electron gas.
Such a simple situation should occur if the average
total number of single collisions, as calculated
from the electron-gas picture, is small for a pro-
jectile penetrating the electron cloud of an atom.
The number » of single collisions will, of course,
depend on velocity v and impact parameter p. An
upper bound to z can be found by means of the
formulas on pp. 43-46 of Ref. 4. For v=2v,,
such an upper bound, generous enough to apply for
all values of p, could be set at ~3Z3/3Z%. However,
for most impact parameters, » will be well below
this value. This makes it seem reasonable to ap-
ply the deduced formulas for proton energies down
to ~100 keV. But notice thatn increases as Z3.

As discussed elsewhere, 8 a calculation based
on results from a perturbation treatment of an
electron gas should, in any case, be limited to
proton energies above ~ 100 keV.

A calculation similar to the usual derivation of
Bethe’s stopping formula gives the following asymp-
totic formula®!;

Q2 4 (K) 2mv?
—_—= - - . 15
Ry 1+ 3 mo? 1n I , V= (15)

Here, (K) is the average kinetic energy of a target
electron and I, is given in terms of transition fre-
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quencies w,, and corresponding dipole oscillator
strengths f,, by

lnII =Z>n fnnoﬁwnno lnﬁwnno /En.frmo hwnno . (16)

Equation (15) can only be used if the logarithm is
somewhat larger than 1, i.e., at somewhat higher
energies than those corresponding to the maximum
in Eq. (15).

Evidently, an evaluation of the quantities ap-
pearing in Eq. (15) can be made with most confi-
dence for the lightest materials. For heavy sub-
stances, Livingstone and Bethe'? have tried in a
semiempirical way to rewrite Eq. (15) in terms of
ionization potentials and effective nuclear charges
for the various electronic shells. In the Lindhard-
Scharff description, such difficulties are avoided.

III. EXPERIMENTAL

Reference has already been given to experimental
investigations of energy straggling in solid targets.
Such materials present difficulties, however, be-
cause foil inhomogeneities and crystalline struc-
tures tend to increase the ‘straggling in an uncon-
trollable way.

Mason et al. ** and Raminez et al. ** have avoided
this problem by using gas targets, but the mean
energy loss in their experiments is considerable
compared with the initial energy. This means
that condition (iii) in Sec. II is not fulfilled and
that a comparison with.simple theory becomes
difficult. (The measured straggling per path length
will be larger than the one calculated for negligible
energy loss, when the stopping power is a decreas-
ing function of energy; see, e.g., Briggs'® and

Tschalir. °)

In the present experiment, we have measured
stopping power and energy straggling of protons
at energies from ~ 100 to ~500 keV in hydrogen,
helium, air, neon, argon, and krypton. In order
to overcome the problems mentioned above, we
have used differentially pumped gas targets and
an analyzing magnet with an energy resolution of
0. 1%.

Since details of the experimental procedure were
presented in a previous publication, !” only a brief
description will be given here.

A magnetically analyzed proton beam from the
Aarhus 800-keV accelerator was passed through a
differentially pumped, 828-mm-long gas!chamber
via 0. 3-mm-diam apertures. Having traversed
the gas chamber, the ions which scattered to angles
within a small solid angle around the forward direc-
tion were analyzed by means of an analyzing mag-
net and detected by an open electron multiplier.

Figure 2 shows a momentum spectrum taken with
and without gas in the target chamber. In all cases,
a pressure sufficient to give a Gaussian distribu-
tion was chosen (normally 0.3-1.5 Torr). In or-
der to confirm this experimentally, the distribu-
tions were plotted on probability paper, where they
appeared as straight lines.

From a momentum spectrum like the one in
Fig. 2, the average energy loss can be found direct-
ly because the distributions are symmetric. Since
the distributions are Gaussian, the straggling is
found by means of the formula Q%= QZ- Q2, where
2, and ©, are the standard deviations of the energy
distribution corresponding to measurements with
and without gas in the chamber.
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FIG. 3. Experimental values of L(x) compared with
theory (cf. text). In all cases, the curves represent
the theoretical expressions.
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IV. RESULTS AND DISCUSSION

A. Stopping Cross Section

The stopping cross section S =(1/N)XdE/dR is
found as AE/N AR at the energy E =E ;- 3AE, where
E; is the initial energy. In all cases, the average
energy loss AE is less than 20% of E; .

The experimental data are listed in Table I and
represent points read off the smoothed-out curves
through the measured values. The random errors
in the individual measurements are estimated to
be ~4%, the uncertainties in the determination of
AB in Fig. 2 and of target pressure amounting to
1.5 and 3%, respectively. Systematic errors are
due to uncertainties in target length (0.5%), in
McLeod-gauge calibration (0.4%), in magnetic field
(0.5%), and in energy (0.1%). The contribution of
random errors to the uncertainty of the reported
stopping cross sections is reduced by the process
of drawing a smooth curve through the points from
at least two experimental runs. The uncertainty
of the stopping-cross-section values in Table I
is therefore estimated to be ~4%.

TABLE I. Experimental stopping cross sections in units
of 10715 eVem?/atom.

Proton
energy
(keV) H, He Air Ne Ar Kr

100 5.60 7.02 16.7 14.6 30.5 37.5
200 3.82 5.60 13.8 14.0 22.7 29.0

300 11.0 12,1 17.7 23.8
400 9.1 10.6 14.8 20.0
500 8.0 9.6 13.0 17.4

|

The stopping cross section may be compared
with the results of Reynolds ef al.'® The agree-
ment is within a few percent, except for argon and
krypton, where the present data are 6-10% lower.

Figure 3 shows the stopping-power data, plotted
as L(x) vs x [cf. formula (5)]. As can be seen,
the measurements are in good agreement with
formula (6). In a more detailed treatment than
that of Ref. 2, L betomes a function of the two
variables ¥ and Z,. It is customary to split up
the stopping power as follows:

2,4
dE _ 4nZie’NZ, L, Z

S E—— g2 2)s
dR muv )

2mvy  Clr, Z,)
1(Z,)/Z, Zs

The so-called shell corrections C(x,Z,)/Z, are
defined in a way so as to vanish in the mathematical
limit x - o,

A calculation within the Lindhard-Scharff model
should be more reliable for C(x,Z,)/Z, than for
InI(Z,), the latter quantity being rather sensitive
to the detailed distribution of the outermost elec-
trons.® Using the shell corrections as derived in
Ref. 8, a value of I(Z,) was chosen so as to give
the best fit of formula (17) to the experimental
dE/dR values. The fit was made visually and is
shown in the form of L (x,Z,) vs x in Fig. 3. A
change by 1% in I(Z,) will shift L (x,Z,) by 0.01.

Values of I(Z,)/Z, thus determined are listed in
Table II and are compared with estimates made
by Fano'! on the basis of high-energy experiments.
For H, and He, theoretical values exist, and these
are in agreement with experiments.!! As Fano’s
listdoes not contain Ne, we quote the value 1(Z,)/Z,
=13.1 eV recommended by Turner. !*

Lx,Z,)=Inx + In

B. Energy Straggling

Although electronic collisions account for prac-
tically all of the average energy loss in the present
velocity range, the nuclear contribution might still
be important for the straggling because the more

TABLE II. Comparison of values of I(Z,)/Z, from this

work and from Ref. 11.

Gas I(Z,)/Z, (eV) I(Z,)/Z, (eV)
(this work) (Ref. 11)

H, 19.4 19 (theory)

He 20.0 21 (theory)

N, 12.6

Air 12.4

o, 12.6

Ne 12.9 13,12

Ar 10.6 10.6

Kr 9.7 10.0

2Taken from Turner, Ref. 19.
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FIG. 4. Experimental energy straggling for various
gases.

violent collisions have a greater influence on the
straggling than on the stopping power.
If electronic and nuclear collisions are consid-

ered to be independent events, and if the Rutherford-

scattering law is used, it is found that the nuclear
straggling Q2 and the electronic straggling 2 are
related by the following formula:

Qﬁ/95=(M1/M1+M2)2Z2, (18)

where M, and M, are the mass numbers of the pro-
jectile and the target atom, respectively. From
formula (18) it is seen that for protons in hydrogen
the electronic straggling is only four times the
nuclear straggling. However, before we compare
with measurements, it is important to notice the
difference in energy-loss distributions resulting
from electronic and from nuclear collisions, re-
spectively. For our target thicknesses, the
spectrum corresponding to electronic collisions
alone would be a Gaussian distribution (many col-
lisions with small energy transfers), whereas the
nuclear encounters would give rise to an asym-
metric distribution with a low-energy tail (few col-
lisions with large energy transfers). According
to Bohr, ! the total spectrum can be described as

a sum of a Gaussian distribution resulting from
electronic and soft nuclear collisions and a tail of
very low intensity resulting from violent nuclear
collisions.

According to formula (2.4. 7) of Ref. 1, the nu-
clear contribution QF to the width of the Gaussian
distribution amounts to less than one percent of
Q, for the target thicknesses in question.

Further-.
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more, all the recorded energy spectra were Gaus-
sian. We therefore feel confident in attributing

the measured straggling to pure electronic slowing
down. A more detailed treatment of such problems
is given in Ref. 17,

The experimental straggling values are listed in
Table III, and Fig. 4 shows a plot of Q%/NAR versus
energy for different target gases. Each point rep-
resents the average of at least two measurements
taken in two runs. The uncertainty of the quoted
average values is estimated to be ~8%. In addition
to the error sources listed in Sec. IVA, pressure
fluctuations (less than 0. 1%) contribute with 1%
to the uncertainty of £Z.

Figure 5 shows the experimental values of 0%/
92 as a function of x, and a comparison is made
with the original Lindhard-Scharff expression as
given by formulas (3) and (6), and with the present
calculations. Figure 6 is a similar plot in the
variable x,.

Values of (K ) and I; have been calculated by Bell
and Dalgarno, 2° and for He they found (K )=39 eV
and I, =81 eV. Using these values in formula (15),
one obtains £2/Q%=1.47 and 1.41 at 94 and 192

TABLE III. Experimental straggling values.

Proton 1012Q%/NAR
energy eV’ em?

Target gas (keV) atom
Hydrogen 90 0.355
190 0.315

Helium 94 0.535
192 0.606

Air 45 0.93
75 1.40

82 1.60

95 1.70

187 1.85

270 1.80

374 2.15

473 1.95

Neon 97 1.25
193 2.15

287 2.60

386 2.40

486 2.50

Argon 92 2.35
194 2.50

291 2.75

386 2.85

478 2.85

Krypton 93 3.20
190 3.90

283 4.50

387 5.10

485 5.00
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keV, respectively, where the corresponding experi- el. As can be seen from Fig. 5, the difference

mental values are 1.03 and 1. 16. This discrepancy,
not only in magnitude, but also in energy dependence,
indicates that formula (15) fails at energies where
the logarithm is close to one. Apparently, no theo-
retical values of (K ) and I, exist for molecular
hydrogen, where one would expect the logarithm

to be somewhat larger than one at our energies.
Actually, the experimental curve for hydrogen

shows an energy dependence like the one expected
from formula (15).

At the time the measurements were made, only
the original Lindhard-Scharff curve was available.
For the heavier elements, the experimental re-
sults agreed qualitatively with theoretical predic-
tions. The question therefore arose whether one
could obtain a better agreement by repeating the
calculations with more accurate expressions for
the various quantities entering the theoretical mod-

between curves based on new and old calculations
is relatively small when compared to the difference
between corresponding experimental and theoreti-
calresults. The measured curves do not agree too
well with the theoretical prediction that Q2/Q% is
almost independent of Z, when expressed as a func-
tion of ¥ or x,. Figures 5 and 6 even show experi-
mental curves that are somewhat different in shape.

In conclusion, the Lindhard-Scharff model gives
a fair account of the over-all dependence of elec-
tronic straggling on energy. However, in a more
quantitative comparison between theory and experi-
ment, some discrepancy is revealed.
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A modified close-coupling formalism has been applied to the electron—atomic-hydrogen
system. We investigate various possible choices of pseudostates which are used to augment
the eigenfunction expansion. As a test of the appropriateness of these choices we have evalu-
ated various bound and scattering properties of the electron—atomic-hydrogen system and
have computed photodetachment cross sections for H- as well. We find that pseudostates
which emphasize short-range interactions are superior to those which incorporate long-range
polarization effects when one computes elastic scattering phase shifts in the nonresonant re-
gion below the » =2 threshold. Excellent photodetachment cross sections for H- are also ob-
tained using initial and final states obtained from a modified close-coupling formalism which

includes these short-range pseudostates.

I. INTRODUCTION

The difficulty of the slow convergence of the
close-coupling eigenfunction expansion for elec-
tron-hydrogen scattering was first discussed by
Burke and Schey.! They observed that in all chan-
nels short-range correlations dominate the long-
range polarization of hydrogen. Since the further
addition of bound eigenfunctions into the expansion
affects predominantly the long-range interactions,
their inclusion leads to a slow convergence of the
phase shifts. These observations were based on
the following results. In the 'S channel the 1s-2s
expansion gave a larger correction to the static

phase shift than did the 1s-2p expansion. Since
the 2s state contributes nothing to the polarization
of the ground state, the inference is clear. In the
3S channel the static result itself is in good agree-
ment with the “exact” result of Schwartz.? For
multipoles higher than L =0 one would expect the
difference between the exact phase shifts and the
static exchange phase shifts in both the singlet
and triplet channels to agree if polarization ef-
fects dominated. Burke and Schey' showed that
this is not the case away from threshold (£%>0. 02).
The eigenfunction expansion, therefore, is not
appropriate for incorporating these short-range
correlations, since the inclusion of continuum



