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Many-Body Calculations for the Heavy Atoms*
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Corrections to the Hartree-Fock {HF) theory which arise as a result of electrostatic
configuration interaction are calculated for a heavy ion Prs'. The effect of configuration
interaction upon the 4f configuration is represented by effective two-body operators of the
form g~azC q C 2 . These operators are evaluated using perturbation theory and graphical(x) (n)

methods. The effect of the operators of even rank is to depress the values of the Slater E~
integrals below their HP values. The two-body operators of odd rank do not appear withinthe
ordinary HF theory. The Trees parameter 0' is the coefficient of an operator of this kind.
It is found that the corrections to the Slater integrals converge slowly. The contributions to
the operators of odd rank converge properly, however, and we obtain the values o'= 28, P
= —616, and p=l611. This may be compared with the empirical values &=24, P= —586, and
&=728. The value of p is determined empirically by the position of a single level, S. It is
suggested that the free-ion 'S level has not been properly identified.

I. INTRODUCTION

The most accurate first-principles calculations of
the properties of rare-earth ions have been carried
out within the framework of the Hartree-Fock (HF)
or self-consistent-field method. Extensive HF cal-
culations have been reported by Freeman and

Watson, ' Froese Fischer, Mann, ' Clementi and

Raimondi, and others. More recently a number of
relativistic Hartree-Fock (RHF) calculations have
been reported. ' '

The optical and magnetic properties of the heavy
elements are due mainly to. the outer electrons,
which are usually quite nonrelativistic. The fact
that the HHF calculations of interaction constants of
the outer electrons are often significantly more ac-
curate than the nonrelativistic HF calculations may
be attributed to differences in the relativistic and
nonrelativistic Hamiltonians. For instance, the
spin-orbit interaction is contained implicitly in the
Dirac Hamiltonian which is used in relativistic self-
consistent-field calculations, while it is added as a
first-order perturbation to the nonrelativistic HF
calculations. This is probably the reason that rel-
ativistic calculations of the spin-orbit constant of
5f electrons' are oi'ten considerably more accurate

than nonrelativistic calculations. On the other
hand, the effects of electrostatic configuration in-
teraction are not included in HF or RHF calcula-
tions, and may be expected to give rise to the same
kind of discrepancies in both cases. Figure 1
shows the energy levels of Pr ', which has two 4f
electrons moving outside a xenon core. There is an
obvious correlation between the HF and the experi-
mental levels. However, the energy scale is differ-
ent in the two cases, and there are a number of
crossovers. If instead of using HF values of the
integrals we regard them as parameters, we may
fit the experimental levels. Table I shows the HF
and the empirical values of the Slater integrals.
The fact that the HF integrals are much larger than
the empirical values corresponds to the fact that the
HF energy-level scheme is expanded with respect
to what is actually found experimentally. The fit is
improved considerably by adding to the Hamiltonian
effective operators of odd rank. The qualitative
features of these discrepancies may be understood
in terms of configuration interaction. The HF cal-
culation assumes that the ground configuration is
a pure 4f configuration, but the 4f electrons spend
part of their time in higher-lying configurations
where they move in large orbits and interact less
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Hartree-Fock
Is

Experimental (in cm ') will be represented by one- and two-particle per-
turbed functions in a way which is analogous to
Sternheimer's treatment of the quadrupole prob-
lem.
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II. PERTURBATION THEORY AND EFFECTIVE OPERATORS

Using the Bayleigh-Schrodinger form of perturba-
tion theory, the effect of a higher-lying configura-
tion may be taken into account by adding to the first-
order Hamiltonian the effective operator
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FIG. 1. Comparison of the energy levels of the 4f 2

configuration of Pr ' calculated with a HF 4f radial func-
tion and the experimental energy levels.

strongly. So the real integrals, so to speak, are
smallel than the HP lntegrals.

For a, heavy atom such as a rare earth, it is
clearly not possible to calculate the effect of
configuration interaction upon quantities such as the
ground-state or correlation energy, which are prop-
erties of the atom as a whole. In order to calculate
a correlation energy one would, in principle, have
to consider correlations between all possible pairs
of electrons. It is only possible to calculate the ef-
fect of configuration inte"action upon the relative
structure of the lower levels. Effective operators
which represent the effect of configuration inter-
action upon the structure of the ground configuration
have been introduced by a number of authors, ' '
and they have been added to empirical fits of energy
levels. However, few attempts have been made to
alc»ate the values « these pa~~~~t~rs is, ie

The purpose of this paper is to give the results
of a calculation of the bvo-body scalar operators for
Pr '. Some of the preliminary results of this calcu-
lation have already been presented. "

In a future paper the effect of Coulomb excitations

is the largest of the terms in the perturbative
Hamiltonian, and is mainly responsible for mixing
the configurations. In our calculation we used as
the central potential the HF potential seen by the 4f
electron. i~'i In this potential we generated all of
the single-particle functions (including the continu-
u1I1 fuIlctiolls), and so tll18 18 the potential, of
course, which we should use in the perturbation.
The angular part of the Coulomb interaction may be
written in terms of the angular momentum graphs
of Jucys

x(EJiC'~'iiE, ) It (E„EgE„E,)]G, (2)

where 6 is the angular momentum graph given in
Fig. 2(a). The creation- and annihilation-operator
part of the Coulomb interaction is represented by
the Feynmari graph given in Fig. 2(b). This graph
shows what the initial and final states are, and how

they are joined together in the interaction.
The calculation of a particular effect begins typi-

TABLE I. Comparison of Hartree-Pock and experimental
parameters 4n cm ).

P y Q2

Hartree-I'ock ~ ~ . 104 Q89 65 507 47 192
Experimental 24 —586 728 "'2 549 53 874 35 973

where ~E is the energy separation of the two config-
urations, V is that part of the perturbation which

joins the ground-state configuration to the excited-
state configuration, V joins the excited-state con-
figuration to the ground-state configuration, and V'

operates within the excited-state configuration and

V within the ground-state configuration.
The noncentral part of the Coulomb interaction
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FIG. 2. Graphs of the Coulomb interaction: {a) angular
momentum graph of Jucys; {b) Feynman graph.

cally with two or three graphs of this kind, and lines
are joined together to form the final graph.

III, SECOND-ORDER CALCULATIONS

/IL /kL

FIG. 3. Second-order graphs.

The five graphs which occur to second order are
shown in Fig. 3. The first graph corresponds to the
excitation of one or two electrons from the f shell
or of two electrons from the core into the f shell.
The second, third, and fourth graphs correspond to
the excitation of a single electron from the core.
They may be attributed physically to the polariza-
tion of the core by the open-shell electrons. This
polarization then interacts back on the open-shell
electrons to give an effective two-particle interac-
tion. The contribution to the Slater integrals and to
n, P, and y from the bound-state configurations
which interact most strongly with 4f are given in
Table II. The most important single process is the
one in which two electrons are excited from the 4d
core into the 4f shell. Several other core excita-

tions are large. The total contribution to n, P, y,
and the I' integrals from 32 bound-state configura-
tions is given at the bottom of Table II.

The next general class of processes which we
have considered are those for which a single parti-
cle is excited from the ground-state configuration
into the continuum (see Table III). The HF 4f po-
tential which we used to generate our single-parti-
cle states was obtained by averaging the interaction
of the two 4f electrons over all possible m, states.
So Brillouin's theorem, which rules out single-par-
ticle excitations arising from the nonlocal Hartree-
Fock residual interaction, does not apply. The
most striking feature of these contributions is the
importance of the continuum states for which / & 3.

TABLE II. Second-order contributions to ~, P, y, and E~ from the bound-state configurations (in cm ').

4s04f 4

4s4d'4f'
4d84f 4

5s'4f 4

4p44f 4

5p44f 4

3d 4f
3d'4d'4f 4

3p44f 4

3p54p54f 4

4d 4f 5d
4p'4f'
~p'4f'
5p54f 26p

~p54f 3

4f6p
p2

5d
4f5f
5f 2

6d

Total

2. 737
52. 389

3.793
4. 448
0. 613
l. 421
0. 098
0. 124

0, 168
13.179
5. 106
0. 534
0. 338

0. 240
0. 033
5. 135

-0.388
-0.007

0. 076

90. 38

—65. 679
-760.760

—145.894
—160.964

—8.406
-16.112
—3.842
—5. 173

3.612
23. 611
68. 210

-18.411
2. 756

l. 138
—1.098

—93.570
—32. 046
—0.452
—l. 523

—1223. 26

87. 586
—54. 733
1508.373

93. 109
426. 667
540. 047
16.227
28. 652
10.771
12.511

-3.633
—685. 602
—310.612

68. 569
—19.232

—13.014
4. 445

211.031
190.118

3. 062
3.732

2122. 13

—93.842
—111.420

—3550.458
—99.760

—658. 532
—821.143
-40.741
—89.553
—16.704
—19.736

6.503
-457. 720
-440. 561

57. 343
—21 ~ 449

16.106
—6.628

—385.283
—272. 963
—50. 753
-6.066

—7161.04

—247. 742
464. 447

—5563. 173
—263. 365
-777.752

—1024. 314
—59.696

—104.536
-19.373
-21.363

-13.717
4195.703
1647. 940
133.582
108.850

—25. 392
—8. 829

-786. 681
-426 ~ 481
—40. 524
—13.979

—2831.90

—279. 123
—436. 064

—5110.607
—296.725

—1404.308
—1921.414

—53.749
-86.251
—34.455
—35.430

—23. 036
1206.433
402. 413
255. 678
28. 538

—21.138
—17.099

—773. 089
-460. 346
—33.106
—14.190

—9169.97
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TABLE III. Contribution from excitations of one particle to the continuum (in cm ).

4s ks

4p —kp

f
I2

k

4d ks
d

2

l

4f kP

f
I2

k
yn

5s ks

5p kp

f
I2

k

3s ~kS
d

3p kp

f
I2

k

3d ks

Total

0. 049
0. 950

-l.422

0. 070
1.713
7. 959

-0.778

0. 034
0. 157

-76.978
—1.597
—0.431

0. 376
—0. 983
—3.960
—0.503
—0. 224

0.836
0.406

-0.528

0.801
2. 305

—1.998
-0.229

0. 033
0. 061

-0.110

0. 034
0. 296

—0. 581
—0. 049

0. 009
0. 290

-3.778
—0. 078

—93.77

—1.179
—22. 798

34. 125

—2. 560
-9.965
150.296
18.674

-0.817
—2.471

1087.984
21.731
10.346

—0. 951
—76. 961

93.221
5.768
5. 382

—20. 061
—9.750
12.662

—27. 274
—22. 389

38.795
5. 507

-0.787
—l. 464

2. 641

-1.163
-0.468
10.680
1.175

-0.206
-5.545
48. 836
0. 999

1340.01

1.433
—0. 982-52. 245

-44. 688

8. 661
—78. 807

—255. 068
—24. 455

—0. 681
10.411

—1883.102
—62. 288
—13.549

—18.264
474. 544

—303. 968
—25. 212
-7.048

27. 947-16.718
—22. 343
—16.582

104.663
—98.830
—68. 241
-V. 211

1.070
-0.656
-3.356
-3.459

4.407
—14.624
—17.676
—l. 539

—0.172
12.801

-78.366
—2.828

—2477. 02

l.536
—149.903
—167.930

119.700

6.000
—253.708

537.500
65. 504

—20. 812
-71.667

—5694.771
69.594
36.291

21.965
—1508.382

-85.594
—12.548
—18.878

29. 943
—2087. 062

—Vl. 816
44.415

137.755
—1311.457

133.767
19.316

1.147
—83.995
-10.786

9.265

4. 172
—137.299

39.323
4. 121

-10.500
-77.210

-339.219
3.447

—10868.10

4. 055
—8.335

—796.009
34.474

16.569
563, 568
973.076
18.865

—5.778
-11.746

—2449. 713
—878. 404

10.452

—33.705
—1645. 651
—245. 322
—102.412

—5.437

79.050
—141.860
—550. 230

12.791

205. 387
790. 200
283. 645

5. 563

3.028
—5. 562

—5V. 726
2. 668

8. 622
102.340
61.888
1.187

—1.455
1.689

—99.622
-42. 807

—3902.66

4. 568
7.826

45.408
-362.582

30.405
172.291

1013.234
192.962

5.425
39.223

—4540. 156
—509.837
—282. 472

-36.331
—1625.290
-430.937
—10.039
—0. 079

89.063
133.191
19.419

—176.388

394 ' 817
243. 007
333.238
64. 648

3.411
5.222
2. 916

—26.483

16.546
28. 289
66. 154
11.604

1.366
47. 056

—179.588
—23. 156

—5232. 05

The largest single contribution comes from 4d- kg.
The excitations 4P- kk and 4f- kk are also impor-
tant. As we have already shown, the importance
of states with large angular momenta is easy to un-
derstand in physical terms if one considers the
form of these continuum functions.

Table IV shows the contributions from two-parti-
cle excitations to the continuum. Again the g states
are the most important. The excitation of two 4f
electrons to continuum g states gives a contribution
which is about one-half of the single-particle exci-
tation 4d- kg. The factor of —,

' may be understood
physically in terms of the exclusion principle. Be-
cause two g electrons are equivalent, only about

half of the available states may actually be occu-
pied.

The largest contribution from the excitations
4f- kf come near the ionization limit, ' so it is
clear that we must sum the contributions coming
from the bound nf series. For large r the radial
function of an electron with quantum numbers nl can
be written

P„,(~) = A" (u„, l) W„„,&2 (2Zx/v„),

where W is a Whittaker function and p„ is the effec-
tive principal quantum number. v„can be written

p„=n —u,
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TABLE IV. Contributions from excitations of two particles to the continuum (in cm

4f~ —kdk d

4f2 kg& g

4f kik' i

Q. 599
l. 597

—1,131

3.030
-4.261
-0.453
—0, 228

—0.707
-0.475
—0. 279

37.604
0.154

—0. 280

9.619
0. 284

1.426
0. 193

—18.357
—23. 633

23.839

-68.477
91.797
7.837
5.462

-31.852
20. 292
4. 216

—559.860
18.598

3 ~ 572

—212.696
2. 999

—37.651
—0. 240

88.458
-61.501
-47. 992

201.096
—210.170
—25. 186
-V. 153

311.315
—99.899
—18.640

1163.329
—113.641
—20. 152

540. 980
-44.439

115.015
-21.020

E'
—129, 545

64. 873
—Vl. 558

—280. 164
—348. 311
—16.928
—19.159

—3284'. 623
—65.4VV
—5. 172

—3094. 880
—28. 778- l. 569

—1128,022
—15.182

-182.390
—85. 298

—116.596

—754. 813
—147.879
—90.195
—5.518

-3008.511
—33.688
-76.637

—3165.335
-13.914
-88.924

—1406.812
12.341

-306.146
11.787

—357.623
—179.790

—9.755

—811.135
—199.223

-8.486
—0. 080

—2665. 899
—174.265

—7.416

—3142.346
—222. 368

-8.V32

-1511.302
—102.300

—345. 809
-54. 049

46. 69 1750.40 —8645, 86 —9458. 53 —9800. 58

where u is the quantum defect. For large n, P„,(r)
assumes the form

2g3 1/4
&.g(~) = (~.) "'

„3 (&)"'

&& cos[(6Zx)'i —v„v+ v/4]. (4)

where N& is the last n value calculated by discrete
summation. We solved for the nf functions for
'I = 6 7, . . . , 12. Q approaches the limiting VRlue

1.112. The total contribution to e, P, and y from
the excitations 4f-nf is n= —0. 394, P= —31.466,
and y =+ 190.034.

IV. HIGHER-QRDER GRAPHS

From Eq. (4) we obtain the sum rule'

C 1
" v„' dn = C/2(N~ —u+ l),

Ny+ g

(b)

In order to be confident that the perturbation se-
ries converges properly it is necessary to consider
higher-order terms. In Fig. 4 are shown the direct
Feynman graphs which describe the third-order in-
teraction of the configurations l" and i' '

E
' .

Each graph describes a process in which two elec-
trons are excited from the L' shell into the l shell,
an E and E' electron interact within the configuration
E' ' l"' by means of the direct part sf the Coulomb
interaction, and two electrons return to the l' shell.
Other graphs occur for which the electrons interact
wlthln the excited coIlflgurRtlon by means of the ex-
change part of the Coulomb interaction and for which
they interact entirely within the l or E' shell. The
third-order contributions from the most important

TABLE V. Third-order contributions to O', P, y, and
I'~ integrals (in cm ).

(e)

I'IG. 4. Direct Feynman graphs which describe the
third-order interaction of the configurations E and
)'4l' )X+2

4d84f 4

4P44f 4

5p44f 4

4P54f 3

—6. 27
0;03
0, 1.8

-0.44
—1.77

Total —8. 27

7. 33
—0, 02

0. 14
V. 34

-7.61

-64.30 3251.72
4. 56 153.63

41.81 1451.05
26.42

119.05

3121,23
—0. 67
—0. 51

~6

1025.72
—30, 11

-116,61
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FIG. 5. Ladder diagram.

All of the contributions to n, P, and y which we
have obtained are summarized in Table VI. The
second-order contribution from the bound states in-
cludes the effect of the excitations 4f-nf discussed
previously, and the contributions from single-parti-
cle excitations to the continuum include a family of
higher-order diagrams which have been summed to
all orders of the perturbation theory. ' The HF 4f

configuration of the type E' ' l"' are given in Table
V. The large contributions to the Slater integrals
come from graphs such as Fig. 4(c), which consist
of a removable portion and a Coulomb line. These
graphs modify the values of the Slater integrals, but
they do not contribute to o. , p, or y. The contribu-
tions to n, P, and y indicate a satisfactory conver-
gence of the perturbation theory. For instance, the
third-order contribution to n from the configuration
4d'4f is about one-eighth of the second-order re-
sult. All other contributions are considerably
smaller. However, the large third-order contribu-
tions to the F integrals raise serious doubts about
their convergence properties. The third-order con-
tribution to the integral F from the configuration
4d 4f is nearly as large as the second-order con-
tribution. In Table V the third-order contributions
to e, P, and y from two configurations for which a
single electron is excited into the 4f shell are also
shown.

The most important ladder diagram is expected19

to be one in which two 4f electrons are excited into
continuum g functions which in turn scatter from
another pair of g states. This diagram is shown in
Fig. 5. It is difficult to evaluate since it involves
a fourfold integration over momentum space together
with a single space integration. For this purpose,
we used a rough grid in momentum space having 13
points and a Herman-Skillman grid in position
space with 60 points. The effect of this diagram
was found to be very small. For instance, the con-
tribution to a was —0.006. The contribution to n,
P, and y from the hole-particle diagrams is also ex-
pected to be small.

V. DISCUSSION

function was used to calculate the effect of the mag-
netic orbit-orbit interaction within 4f .

The values of n and g which we have obtained
agree quite well with values of these parameters ob-
tained by fitting the experimental energy levels.
Our value of y is far from the empirical free-ion
value; however, it is important to realize that the
value of y is determined empirically by the position
of a single level, S, which lies far above all of the
other levels of 4f and is near the energy levels of
other configurations. The S level is observed in
the absorption spectra of Pr ' in the LaF3 crystal,
and the value of y which is obtained in the fit of the
crystal data is 1411, which agrees very well with
our result T.he 4f wave function in Pr" is shielded
from the crystal environment by the outer-lying 5s
and 5P electrons, and so one usually finds that the
free-ion parameters change by a very small amount
in going from the free ion to the crystal environ-
ment. ' If the free-ion value of y were a, factor
of 2 smaller than the value of y for Pr ':LaF3, it
would represent a definite anomaly. The free-ion
levels of Pr ', which has a 4f configuration, have
also been fitted empirically, ' and one obtains the
values n = 30. 4, P = —801, and y = 1940. All of these
results taken together very strongly suggest that the
free-ion 'S level has not been properly identified.

VI. CONCLUSION

TABLE VI. Summary of results (in cm ~).

2nd-order
bound states 87 ~ 67 —1221.00 2260. 45

Modified 2nd-order
single-electron
excitation to continuum —93.77 1340.01 —2477. 02

2nd-order two
electrons to continuum 46. 69 -774. 15 1750.40

3rd order -8. 27 7.18 127.54

Magnetic orbit-orbit
interaction within 4f 2 -4.38 32. 05 —49.84

Total calculated

Experimental

~Reference 26.

27. 94 -615.91 1611.53

24~ " 586& b 728"

"Reference 27.

We have calculated configuration-interactionpa-
rameters which do not appear in the ordinary HF
theory, and which have been determined in the past
only by empirically fitting the energy levels. Other
first-principles calculations of this kind should be
most helpful for ions such as U

' which have not been
properly understood.

The most difficult part of the calculation was to
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carry out the integrations over the continuum states.
In a future paper, the single-particle excitations to
the continuum will be represented by a perturbed
function which satisfies an inhomogeneous differen-
tialequation, and the two-particle excitations will be
represented by a pair function. This should facil-
litate future calculations of this kind, and it may
yield insight into the nature of these Coulomb exci-
tations.
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