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The semiclassical spectrum, defined by use of WEB wave functions, and the classical ex-
pression of the spectrum are interpreted in terms of Feynman amplitudes. The radiative
electronic transition may be considered to occur instantaneously, and the different times at
which it can occur define different "paths" from initial to final state. During a collision of
the radiating atom with a perturbing atom, the electronic transition occurs preferably when
the relative distance between the two atoms is such that their relative velocity is conserved
in the transition (Franck-Condon principle). In a given collision, there are several such pre-
ferred transition times which define as many preferred paths. Interference between these
paths can result in interference patterns in the spectrum. In general, an interference struc-
ture, associated with the repulsive part of the interatomic potential difference, will appear
in the violet wing of the spectral line. This forms a highly plausible explanation for the violet
satellites observed in the spectrum of various gas mixtures. Not much regarding the shape
of the interference structure can, in general, be deduced outside of numerical computations;
nevertheless, the general dependence of the position of the violet satellites on parameters
such as temperature, reduced mass, and size of the repulsive core of the potential difference
can be inferred in a rough manner, and qualitative agreement with experiment be obtained.

I, INTRODUCTION

In recent years, much work has been done in
formulating and interpreting the semiclassical
theory of scattering phenomena, ' which is derived
from the quantum theory by use of the WKB ap-
proximation, or more generally via Feynman's
formulation of quantum mechanics. In this paper,
we define and interpret the pressure-broadening
analog of semiclassical scattering theory, and
contrast it with the classical theory of pressure
broadening. We restrict ourselves to the adiabatic
theory of pressure effects.

The semiclassical spectrum shall be defined by
the introduction of WEB wave functions in the
quantum-mechanical expression of the spectrum.
This approximation was made long ago by Jablon-
ski'; however, his theory is generally referred to
as a quantum-mechanical theory as opposed to
classical path theories in which the translational
motion of the atoms is treated classically. ' But
WKB wave functions imply classical trajectories,
and Jablonski's theory is really a classical path
theory. What distinguishes it, or equivalently the
semiclassical theory, from the usual classical
path theories is that in the latter, the influence of
the electronic transition on the nuclear trajectories
is neglected; the resulting spectrum is formally
identical to that radiated by a classical charged
oscillator of frequency and amplitude of oscillation
modulated due to the influence of the perturbing
atoms. This may therefore be termed the (fully)
classical spectrum. The semiclassical spectrum
is so called because, even though the trajectories

are classical, the notion of an electronic transi-
tion, which is of purely quantum nature, is ex-
p/icitly contained in its mathematical expression.

The semiclassical and classical expressions of
the spectrum differ more by their external aspect,
which allows one to be interjected classically but
not the other, than by their fundamental structure.
In both cases, the spectrum is constructed in
the manner familiar in Feynman's interpretation
of quantum mechanics: It is the absolute square
of a sum of amplitudes (path integral), each asso-
ciated with a possible manner (or path) for the
system to pass from initial to final states; this is
summed over final states and averaged over initial
states. The semiclassical differential scattering
cross section is constructed in the same way. '
Moreover, the sum over amplitudes, or path in-
tegral, in the spectrum and that entering the scat-
tering cross section are very similar in form; as
a consequence, the special scattering effects which
are directly related to the form of the path integral,
namely, the rainbow and interference effects, '
have analogs in the spectrum. The analog of the
rainbow effect has been known for a long time: It
is a statistical effect whereby an extremum (e. g. ,
the minimum in a I ennard- Jones type of interac-
tion) in the interatomic potential difference results
in a sharp maximum in the spectrum. This effect
is responsible for the red satellite observed in the
spectrum of various gas mixtures, in particular
alkali-noble- gas mixtures. The interference ef-
fect is less familiar in pressure-broadening theory;
it will, in general, result in an interference struc-
ture in the violet wing of a pressure-broadened



500 ANTOINE ROYE R

line, and it constitutes a highly plausible explana-
tion for the violet satellites that appear in the spec-
trum of various gas mixtures. ' It is the same
interference effect which accounts for the oscillatory
aspect of the spectrum when the initial potential
has a deep attractive well above the repulsive part
of the final potential curve, as discussed by Coo-
lidge et a/. for bound-continuum emission and by
Mies and Smith' for continuum-continuum emission.
In this case, the spectrum somewhat "reflects"
the nodal structure of the translational wave function
above the well. For this reason, the interference
pattern appeared to be a purely quantum-mechan-
ical effect not to be expected in classical pressure-
broadening theory. But the interference occurs
equally well in the classical spectrum, and it is,
in general, easier to discuss in that context.

Recently, Takeo" has made a numerical calcu-
lation of the classical spectrum with a Lennard-
Jones interaction; in his results there appear one
red satellite and two violet satellites, in qualitative
agreement with many experimental observations. '

Though it is extremely satisfying to know that the
theory does yield such features, it is useful to
have a simple understanding of why they are ob-
tained and what are the basic mechanisms respon-
sible for them. Margenau's statistical approxima-
tion' ' together with its "rainbow effect" provides
such an understanding as far as the red satellite
is concerned. Our discussion of the interference
effect allows us to understand the formation of
violet satellites in the classical spectrum and also
to infer the general dependence of their position on
parameters such as temperature, reduced mass,
and size of the repulsivecore of the interatomic
potential difference, in qualitative agreement with
experiment.

In Sec. II, the basic quantities are defined and
the quantum-mechanical expression for the spec-
trum is written down. In Sec. III, the semiclas-
sical spectrum is defined and interpreted in terms
of Feynman amplitudes; the classical spectrum
is derived and interpreted in Sec. IV. Finally, in
Sec. V, the rainbow and interference effects are
discussed, and the latter is used to understand
qualitatively some general properties of violet
satellites.

II. BASIC EXPRESSIONS: QUANTUM-MECHANICAL
SPECTRUM

Let us consider an optically active atom, the
radiator, immersed in a gas of other atoms, the
perturbers. Let U, (r) be the interatomic potential,
calculated via the Born-Oppenheimer approxima-
tion, acting between the radiator and a perturber
when the former is in the electronic state e; r is
the distance separating the two atoms (spherical
symmetry is assumed). We shall denote by

(4&@ /3c') f(cu) (c is the velocity of light) the power
radiated at the frequency & as a result of radiative
transitions from initial electronic state i to final
state f, to which correspond the respective poten-
tials U, (r) and U&(r) .The transition energy depends
on the translational states of the atoms before and

after the transition, which results in a spreading
of the radiated frequencies.

At perturber densities sufficiently low that (al-
most) only binary collisions occur, the wings of
the spectrum f(co) are described by the intensity
distribution Z(&u) radiated if only one perturber is
present»; more generally, the full spectrum f(&u)

is usually expressed4' '" (following a set of sim-
plifying assumptions) as the Nth convolution power
of Z((u), where N is the total number of perturbers.
For our purposes, it is therefore sufficient to con-
sider only the one-perturber distribution Z(&u);

this is» (units are chosen such that 8'= 1, and con-
stant factors are neglected)

&(~)= f "dk p(~ )'~ (2&+1)f "dk~l &&» lDIC»;) l'

x 5(++—e&+e,.) . (2. 1)

Here & is the frequency measured relative to the
unperturbed line, that is, relative to the energy
separating the electronic states i and f of the iso-
lated radiator; the plus and minus signs correspond
to absorption and emission, respectively; D(r) is
the matrix element of the dipole moment operator
between initial and final electronic states when the
perturber is (fixed) at a distance tfrom 'the ra-
diator; g» (e =i,f) are radial wave functions of the
radiator-perturber couple, corresponding to elec-
tronic state e, and for angular momentum l and
translational energy», =k,'/2m, m being the re-
duced mass; thus, the g's are solutions of the
Schrodinger equation

where the wave number

k, (r; e„f)—= (2m)'~ [c —U, (x) —l(f+1)/2m' j''»,
(2. 2)

and p(e, ) are the statistical weights for the initial
translational states g»,

Equation (2. 1) is analogous to the spectrum ra-
diated by a diatomic molecule, with the difference
that in the latter continuum- continuum transitions
are excluded; for simplicity, we consider only
continuum-continuum transitions, but the inclusion
of bound states is straightforward and our discus-
sion of the semiclassical spectrum covers that
ca,se also, provided obvious modifications are
made. For definiteness, only absorption shall be



SE MIC LASSIC AL AND C LASSIC AL SPE C TRUM ~ ~ . 501

considered.

III. SEMICLASSICAL SPECTRUM

k, (b, ; e„l)=O. (3. 2)

In Feynman's interpretation of quantum mechan-
ics, a probability amplitude is associated with
each possible manner, or path, for a system to
pass from a given initial state to a given final
state. The total transition amplitude is the sum of
the amplitudes corresponding to all possible paths
connecting the initial and final states; the transi-
tion probability is equal to the absolute square of

that sum. By stationary phase integration, the
sum over all paths is reduced to the sum over only
the classical paths connecting the two states; this
is usually equivalent to the use of %KB wave func-
tions and defines the semiclassical approximation
in general.

For instance, in potential scattering, the initial
and final states for constructing the differential
cross section are, respectively, defined by the
incident and outgoing velocities (i. e. , energy and

direction) of the beam particle; the classical tra-
jectories, for a given incident velocity, are unique-
ly determined by the angular momentum, or equiv-
alently by the impact parameter. The semiclas-
sical amplitude for scattering in a given angle is,
therefore, expressed as the sum over impact pa-
rameters of the amplitudes associated with clas-
sical trajectories having the same deflection
angle. '

In our case we have an analogous situation, with
the main difference that during a collision of the
perturber with the radiator, the latter may suffer
a radiative electronic transition, which changes
the interatomic potential; also, the initial and

final states are not specified in the same manner
as in potential scattering. The initial and final
states, for constructing the intensity radiated at
the frequency &u, are specified by (i) the electronic
states of the radiator; (ii) the initial and final
states of the radiation field which differ by a pho-
ton of frequency &u; (iii) the angular momentum of
the perturber, which is conserved throughout (the

The semiclassical spectrum is obtained by sub-
stituting in the quantum-mechanical spectrum (2. I)
WKB wave functions of which only the parts cov-
ering classically accessible regions are retained,
namely,

(3 wxa(r) = [ke/ke(r; ee, l)]"'
xcos[ f, „dr'k, (r'; e„1)+ 4 m];

(v~3 t)

(3. I)
k, (r; e„l), defined in Eq. (2. 2), is the radial com-
ponent of the classical momentum at r, and b, (a„ l)
is the classical turning point defined by

r(, -r 3,&- exp[ i~
f"'drk, (r)~] (3. 3)

(the dependences on e, and l shall no longer be
written explicitly when obvious). If r3 lies between
x, and x» we have the relation

(r1 r3) ( 1 3)( 3 3& (3. 4)

However, if the perturber passes through the
turning point b in going from x& to r~, an extra
phase factor e" is picked up, that is, e" is the
amplitude associated with passing through a turn-
ing point"; thus we have

(r, -b-r3)=(r, -b) e" (b-r3)

=exp[i f 'k(r)dr+ 3i~+if, 3k(r—)dr].

(3. 5)

The phase factor e "~ is a direct consequence of
the fact that quantum mechanically there is some
barrier penetration at the turning point.

Let us write for instance the amplitude for the
perturber to be at r; this is

&(r) = (("-r&+("-b -r&) [k/k(r)]"', (3. 6)

that is, the total amplitude for coming from infin-
ity to r, both directly and after being reflected at
the turning point, multiplied by the factor [k/k(r)]'~
which, when squared, measures the relative time

radiator is assumed fixed in spa, ce to simplify
the discussion); and (iv) the initial translational
energy && of the perturber, the final energy &&

being determined by energy conservation: && = e;+ cu.

A typical path connecting the states (i, e&, l) and

(f, e&, l) is as follows: The perturber travels from
infinity up to a distance x from the radiator, fol-
lowing a classical trajectory determined by e&, l,
and the potential U;(r); when the perturber is at
r, the electronic transition i -f occurs (instanta-
neously), and the perturber then follows a trajec-
tory determined by e&, l, and the potential U&(r),
and returns to infinity. The amplitude associated
with such a path is equal to the product of three
amplitudes: the amplitude for coming from infin-
ity to r, the amplitude T, &(r) for the electronic
transition to occur at x, and the amplitude for
returning from x to infinity.

We shall denote by (r& r3), the amplitude as-
sociated with the motion of the p~erturber from r,
to x& along the classical trajectox'y determined by
U, (r), e„and l, provided r, and r3 are on the
same side of the turning point b, ; if not, that is,
if the perturber passes through b, in going from
xj to x2, then we write the amplit;ude as
(r, -b, r3),. The amplitude (r, r3), has a
phase equal to the classical acti~on from r, to x&.
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spent at r [k(r)/m i.s the velocity at r] and might
be called the amplitude for staying at x. Now we
can write, according to (3. 4),

Eq. (3. 6) then becomes

A(r) = (~-b ) ((iv-b) '+e "~» (b-r)) [k/k(r)]'f'

= (~ b) 2e (l'wKB(r)

Thus the semiclas!iical amplitude to be at x is
equal (up to a constant factor) to the WEB wave
function, and the nodal structure of I(t)(r) I, which
results from the in.terference between incident and

reflected waves, noway also be interpreted as the
result of interference between amplitudes associated
with the two classical paths available to the per-
turber for reachin. g x.

Let us now construct the amplitudes associated
with different paths connecting the initial state
(i, e;, l) and the final state (f, ef, l). Different paths
are distinguished [by the value of x at which the
electronic transition occurs and also by the signs
of the radial velocity immediately before and after
the transition. We distinguish four cases: In the
first two, the elec:tronic transition occurs before
the perturber has reached the turning point b;,
so that the radial velocity immediately before the
transition is r = —k, (r)/m (a. dot over a, quantity
shall always indicate differentiation with respect
to time); immediately after the transition, the
perturber is still at x, but its radial velocity has
been changed to either (a) r' = —kf(r)/m, in which
case the perturber will pass through the turning
point bf before heading to infinity, or (b) r =+kf(r)/m;
that is, the sign of the radial velocity has been
reversed, and the perturber heads directly to in-
finity.

The associated amplitudes are

where T; f(r) is the amplitude for undergoing the
electronic transition at x. In the third and fourth
cases, the electronic transition occurs after the
perturber has gone through b;, that is, when it is
on its way back to infinity and its radial velocity
is +k, (r)/m; again, the radial velocity immediately
after the transition can be either (c) outgoing,
r'=+kf(r)/m, or (d) incoming and equal to —kf(r)/m
The corresponding amplitudes are

(r bf )f (r bf)f e (bf )f

)f (b f r)f (bf )f

and drop the constant phase factor (~-b,); (bf- ~)f
common to all amplitudes. We further express
the amplitudes (b,-r), by means of (3. 3) and the
amplitudes (a)-(d) take the form

T; f(r) exp[i f, (+)k;(r')dr' —i f, (+)kf(r')dr'+ 2inw],

where n is the number of times the perturber pass-
es through a turning point; the signs preceding
k;(r) and kf(r) are the respective signs of the ra-
dial velocity immediately before and after the tran-
sition; the signs and the values of n are (-, —,1),
(-, +, 0), (+, +, 1), and (+, —,2) for the respective
cases (a)- (d).

In order to construct the sum over paths, we

integrate the amplitudes (a)-(d) over r from b* to
~ where b

* is the maximum of b; and b&, and sum.
The integral is from b* rather than from b; to ,
for if r is smaller than bf(ef, l), the final state

(f, 6f, l) is Ilo't accessible, 'tllat ls T; f(r; e;, Ef, l) = 0.
There results exactly the overlap integral

(g» wKs ID I(l)„,. wKS), Provided T; f(r) is identified
with D(r)[k; kf/k; (r) kf(r)] "3. This identification
agrees with one s intuitive feeling for the probabil-
ity for the transition to occur at r is then

ID(r)I k;kf/k&(r)kf(r): ID(r) I' represents a transi-
tion probability per unit time, so that it must be
multiplied by the relative time spent at t', namely,

k;/k;(r). kf/kf(r) plays the role of a density of

final states: Among all the final states (f, ef, l)
available, those for which the perturber stays
longer at x are chosen preferably. In particular
if the state (ef, 1) is such that bf &r, the perturber
spends no time at r in that state and T; f(r) = 0.

Thus the four terms in the overlap integral
(()» „„BID I(I)», wKS), obtained by writing the cosines
in the wave functions as the sum of two exponen-

tials, have been interpreted as corresponding to
the possible signs of the radial velocities imme-
diately before and after the electronic transition,
and the integration variable x as the position of the

perturber when the transition takes place. A sim-
ilar analysis would apply if either the initial or
final, or both, states are bound.

We note that in the four integrals

~~

~~

~~

00 r r

Cheek i (e)k;(h )Ch' —i (e)ke(h')Ch' ~'ieej
b bi

We make use of the relations
(3. '7)
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the integrands are oscillating functions of r, of
varying frequency equal to (+)k, (r) —(t) kt(r), that
is, to the difference of the radial momenta im-
mediately before and after the electronic transi-
tion. The main contribution to the integrals comes
from the regions where the phase of the integrand
is stationary, that is, where (+)k, (r) —(+)kz(r)=0,
or, in other words, the dominant transitions are
those which conserve the instantaneous velocity
(Franck-Condon principle). The terms correspond-
ing to a reversal of the sign of the radial velocity
[cases (b) and (d)] are accordingly small; they
contribute the integral

r
CO r
dress k;(r')dr ~ ( kr(r' ')dr' ~ 'c)

b by

x cos, (sr —s; —(((r ))).k;r

Introducing the time t defined by dr/dt =k;(r)/m and
the condition that t = 0 when the perturber passes
through the turning point b„we obtain

m (k&k;) t J dtD(r(t))cos J)J dt'[e& —e& —U(r(t'))]],

(4. I)

where r(t) is the trajectory followed by the perturb-
er. The spectrum is obtained by substituting the
overlap integral (4.1) into (2,. 1); there results the
classical spectrum4' (constant factors are ne-
glected)

Z(&d)= f e " " v dv 1 2mbdb~ f d'

which is usually neglected. The two other terms
contribute

J
00 r r
dress k;(r')dr' — kr(r')dr')

bQ b ~ by

u, uyx B(r)(, (k. 8)

xD(r(t; v, b))exp(t f dt'[&d —U(r(t'; v, b))]]
~

(4. 2)

where we have introduced the incident velocity v

=k;/m and the collision impact parameter b defined
by I =mvb; we have taken p(~d, )-e '&~' .

In order to interpret (4. 2), we can, without

changing the value of J(&d), rewrite the integral over
the time t as

an expression familiar from Jablonski's theory.

IV. CLASSICAL SPECTRUM

The semiclassical spectrum may be simplified
by assuming the kinetic-energy difference

[ky (r) —k, (r)]/2m = &g
—t, —U(r), U—= Ug —U,

small compared to k; (r)/2m, and treating it as a
perturbation . One then sets

k, (r; ~„ I)= fk, '(r; ~„ I)+2m[e, -~, —U(r)]pl'

=k;(r; e;, I)+ [a~ —e,. —U(r)]~/k, (r),

b,(e„ I) =b, (e, , I)

in the phase of )I)„' «a(r), and k&(r) =k, (r) in its
amplitude; this is essentially the Born approxima-
tion' to the %'KB wave function for a perturbation
Ey —&; —U'. One also neglects the terms for which
the sign of the radial velocity is reversed by the
electronic transition. The overlap integral is thus
given by (3. 8) modified by the above approxima-
tions, that is

(k, k,)'" D(r)
b ~ r

T2

lim dt exp -i
Tg, T2 ')o Tg d

kg

ds 'dr(C ')) B(C)
r&

T2

x e~ -& dt'Z, t'

where E,(t) is the total energy of the radiator plus
radiation field before the radiative transition, and
it depends on time through the influence of the
perturber; Ez(t) is the total energy after the tran-
sition, and it differs from E;(t) by the energy —&u

of the absorbed photon in addition to the atomic
energy difference U(t). Thte first exponential in the
integrand is the amplitude I',time evolution operator
in the adiabatic approximation) for the system to
evolve from time —T, to t in the initial state, D(t)
is the amplitude for the radiative transition to occur
at t, and the last exponenti:al is the a,mplitude to
evolve from t to time T2 in the final state. Through-
out the entire process, the perturbed follows a
trajectory determined by c„ I, and U, (r), so that
the effect of the electronic transition on the pcr-
turber trajectories has been effectively neglected
in de;iving Eq. (4. 2). Actually, the notion of a
transition i;f is not really explicitly contained in
(4. 2), which can also be interpreted as the spectrum
radiated by a classical cha, rged oscillator of fre-
quency U(t) and amplitude of oscillation D(t) which
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vary in time due to the influence of the perturber.
The expression (4. 2);may therefore be called the
(fully) classical spectrum

In general, the fundamental difference between
semiclassical and classical transition probabilities,
such as the scattering cross section for instance,
is that in the former, the amplitudes corresponding
to different paths are first added and the result is
then squared; whereas in the latter, they are
squared and then added; that is, the interference
between different path a(mplitudes is neglected. The
difference between the semiclassical and classical
spectra is not of that fu]ndamental character: In
passing from the former to the latter, it is not the
way of manipulating the amplitudes but the ampli-
tudes themselves which are altered through dynam-
ical approximations. T.his causes a quantitative
change in the spectrum, but none of the qualitative
features of the semiclassical spectrum, in particu-
lar the interference effects, are lost in the classical
spectrum. The classica. l spectrum is not funda-
mentally more classical than the semiclassical
one, but itso happens that it can be interpreted in
purely classical terms; in particular it is not the
analog of the classical differential scattering cross
section: The analog of the latter is the statistical
distribution of Margenau.

V. INTERFERENCE AND RAINBOW EFFECTS

In the semiclassical spectrum and especially in
the classical spectrum, t:he integral over paths
(i.e. , over r or f) is very similar in form to the
integral over paths (i. e. , over angular momenta
or collision impact parameter) occurring in the
semiclassical expression for the differential scat-
tering cross section. In both cases, the path inte-
gral is of the form

f dP 64(Ps &

TABLE I. Parallelism between the classical spectrum
and the differential cross section.

Observed quantity Q

Classical spectrum

Frequency M

Cross section

Scattering
angle 0

Variable parametrizing Transition
different paths P time t

"Path differential" dP dt

Action A(P, Q) M t —f0 U(t ') EN
'

U= potential difference

Angular
momentum l

(l+ 1) dl

Bl —f() e(l ') dl '

e= classical
deflection angle

e'"/D, li U. 'I, '" (5. l)

where the sign in front of —,
'

7/ is the sign of dU/df-
at the point of stationary phase and D; is the cor-
responding value of D(r). The absolute square of
(5. 1) is [D(x) is assumed real]

~ ID/I 'I ~ U'(~)
I
'+» D/cos[~ (~) -~«")]

(5. 2)

The spectrum is obtained by averaging the above
expression over angular momenta and initial ener-
gies. One may note that the semiclassical and
classical expressions differ only by the values of
the phases q, (~), which equal

A(r or f, (u) =A/((u)

- [-,'(t &,)'U-(&, ) or —,'(~ ~,)'U-'(~, )/ ~(~,)],
where U'=dU/dh, U—= dU/dt= U'i, andi k, (=x—)/m
is the radial velocity; j labels the different values
of x or t at which the velocities in the initial and
final states are equal, that is, where &u —U(r or f)
=0; A/(u&) is the corresponding value of the action.
The resulting value of the path integral is

where A(P, Q) is the action along the classical path
P, and it depends on the observed quantity &f&. Table
I brings out the parallelism between the classical
spectrum and the different;ial cross section. As a
consequence of the above, similarity, the two special
features of the semiclassical cross section directly
related to the integral over paths, namely, the in-
terference and rainbow effects, have analogs in the
spectrum.

The main contribution to the path integral comes
from those paths at which the action is stationary
and which correspond, in t:he case of the spectrum,
to the values of ~ or t at which the velocity of the
perturber is unchanged by the electronic transition.
Stationary phase integration is performed through
the usual expansion of the phase, that is the action,
in a Taylor series about the points of stationary
phase, with only the first two terms kept:

f,,'d~[k, (~; ~, +~, f) -k,.(~; e„ f)]

in the first case, and fo'/dt [&u —U(t)] in the second.

A. Statistical Approximation and Rainbow Effect

&(I'd) = ~ (~) =~/47/~/~e """ ID(~/) I I
U '(r/)

I

'

(5. &)U(r/) =&@ .
It is immediately apparent that a local extremum
in the slope dU/dr, at r for example, will result

The analog of the classical cross section is ob-
tained by neglecting the second term in (5. 2), which
represents the interference between different paths.
In that case, the average over angular momenta and
over initial energies is easily performed, provided
one takes p(e;) -e "/'; there results the statistical
distribution of Margenau
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utt)

FIG. l. Shape of U(t) for a typical
trajectory of the perturber, vrhen

U(~) is a Lennard-Jones type of inter-
action.

in a local maximum in the spectrum at the frequen-
cy &u= U(w ); for instance the minimum of a Len-
nard-Jones type of interaction will cause a sharp
spike in the spectrum which is the analog of rain-
bow scattering. Actually, since in that case the
slope U'(w) vanishes at the potential minimum, the
stationary phase integration in that region should
be performed by including the third term in the
Taylor expansion of the phase; the result is then
expressed in terms of Airy functions and the spike
is finite rather than infinite as according to (5.3).
The mathematical procedure is exactly the same
as in the treatment of rainbow scattering, and it
has been given in detail by Ford and %heeler' for
that case. The spike associated with the minimum
of a Lennard-Jones type of interaction is responsi-
ble for the red satellite observed in the spectrum
of various gas mixtures. '

2m= —(q —n ))aw
d

dc'

8 8$ ~ 8t ~ 8'g ~ 8$ ~

8'—(q, -q, }+ ' ~+ '- ' &(u
8)~ 8~ 8t; 8Q)

[note that Bq&/Bt& = v —U(t&) =0 by definition of the
times of stationary phase]. Thus the wavelength

&(u - 2w/
~
f; —t,

~

(5. 4)

is the inverse of the time separating the two veloc-
ity-conserving transition times.

At room temperature, the velocity of the atoms
(atomic weight between 2 and 200) is of the order
10'-10' cm/sec; the range of the interatomic po-
tentials is measured in angstroms; the time re-
quired to travel 10 cm is 10 '~-10 ~ sec. Thus
the order of magnitude of the wavelength Ae is
2w(10' -10 ) cps, that is 200-2000 cm '. In the
case of alkali-noble-gas mixtures, the depth of the
potential well is of the order of~ 5-50 cm '; the in-
terference pattern therefore has no room to show

up on the red side (v & 0) of the resonance line, and

only the rainbow spike at &u = ~, appears (red satel-
lite). On the violet side on the other hand, the in-
terference structure can appear, and the order of
magnitude of the wavelength 4' agrees with the
separation of the experimentally observed violet
satellites. The interference effect therefore con-
stitutes a plausible explanation for violet satellites,
provided the average over angular momenta and
over velocities does not obliterate the interference
structure.

In order to estimate the effect of the average over
angular momenta, rectilinear trajectories w(t)
= (v f + b ) of uniform velocity v and impact
parameter b are assumed. Only the case + & 0 is
considered, so that there are two times of station-
ary phase t, and t2-——f, ; dU/dt has the same abso-

B. Interference Effect

Let us restrict ourselves to the classical spec-
trum for simplicity. In case the potential difference
U(w) is a Lennard-J'ones type of interaction, the
time-dependent fretiuency U(r(t)) for a typical tra-
jectory of the perturber is of the general shape
shown in Fig. 1. It is seen that for ~ &~&0, there
are two values of f at which U(t) = &u, and for &u, &

co &0, there are four. The phase difference from
t) to t~ 1s

where n is the difference of the signs of U (t&) and
U(t, ); ri; —ri; —&nwisthealgebraic area between the
curves U(t} and &u in the interval f, to f&. The in-
terference terms are proportional to cos[q;(&u)
—ri, (&u)]; the wavelength of the oscillation, that is,
the frequency increment ~(d separating two succes-
sive maxima of cos[r);(~) —ri;(~)] in the vicinity of
m, is given by

t&(co)
ri, ((u) -ri, ((u) =(u[f;((u) -t;((u)] —f ' U(t)dt+ ,'nw, -



506 ANTOINE RGYE R

time t

FIG. 2. Vertical time
axis separates the plane
into regions represent-
ing the initial and final
states, respectively. The
system can pais from one
state to the other only at
times t~and t2 at which the
velocity of the perturber
is conserved in the transi-
tion. The wiggly lines
represent the time evolu-
tion of the system, and
show the two paths which
cause the interference pat-
tern.

lute value at these two times, but opposite signs,
so that the phase difference g, -g& is

q&
—7}2=2) dt(v —U[(v f +b ) ~ ]]+-,'v .

The integral over b in (4. 2) ranges from b = 0 to
b= 8(&u), where B(~) is defined by U(B) =&a. Because
of the relation r (tz) = b~+v tf = B, the integration
variable b can be replaced by t&. Noting that

x(ti) =v tt/B, bdb = vtidti, -
we have

Z(~)- f, 2~bdb~U(f, (b))~ '[ 2+2co(qs, n,)]-
= 4qB'~ U'(B)

~

' [l+ r(&u)]

(averaged over velocities). The first term is the
statistical distribution; the interference term is

v'((u) = B ' J dt's

x sin(2 J dt(&u —U[(v t +B v&f) ]j);-

it is clear that v'(~) will, in general, be an oscil-
lating function of B(ur) and therefore of the frequency
co. Thus the average over angular momenta does
not, in general, destroy the interference structure.
This is confirmed by Takeo's numerical calculation"
of the classical spectrum with a I ennard-Jones in-
teraction, in which two violet satellites appear
(note that with a square well interaction, which has
no repulsive branch as such, no violet satellites
are obtained" ). The effect of the thermal average

is harder to estimate, but one may expect some
structure to survive.

Because the integrals are so complicated, not
much, in general, can be deduced concerning the
shape of the violet satellites, outside of numerical
computations such as that of Takeo. ' Nevertheless,
some general properties may be inferred from
formula (5.4) according to which the separation of
the violet satellites from their parent line should
be roughly inversely proportional to the transit time
of the perturber through the repulsive core of the
potential difference U(r) One. may then write

(5. 5)

where B is the radius of the repulsive core of U(r),
T is the temperature, and m is the reduced mass
of the radiator-perturber couple.

There is no sufficient experimental data to verify
the temperature dependence. In the case of alkali-
noble-gas mixtures, the separation of the violet
satellite decreases with increase of both the mass
of the alkali and that of the noble atom; at constant
reduced mass, the satellite separation decreases
as the mass of the alkali increases, indicating that
the repulsive radius R increases with the mass of
the alkali, which seems reasonable. When the or-
dinal number of the member of the series, n, in-
creases, the radius of the alkali increases roughly
as n, so that the same may be expected of the re-
pulsive radius R, with the result that &~-g; ac-
cording to the data of Ch'en and Wilson, the violet
satellite separation goes roughly as n ~ with p be-
tween 2 and 3. The above qualitative agreement of
the very simple formula (5.5) with the experimental
data tends to confirm the interpretation of the violet
satellites as an interference structure.

In the special case that the initial interatomic po-
tential has a deep attractive well above the repulsive
part of the final potential curve, the shape of the
interference structure can be deduced in a fairly
simple manner. This has been considered by
Coolidge et a/. for bound-continuum emission, and

by Mies and Smith' for continuum-continuum emis-
sion in relation with the collision-induced spectrum
of metastable helium. In these cases, the inter-
ference structure somewhat reflects the nodal struc-
ture of the wave function above the well, and for
this reason it appeared to be a purely quantum-
mechanical effect not to be expected in classical
pressure -broadening theory. '0

VI. DISCUSSION

When interpreted in terms of Feynman amplitudes,
the semiclassical and classical expressions of the
spectrum become more meaningful and their mutual
relation appears more clearly. The interference
structure discussed by Coolidge et al. and by Mies
and Smith, and the seemingly unrelated one ob-
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tained numerically by Takeo" appear to belong to a
very general type of effect, namely, the interference
resulting from the existence of several paths, in
this case two, connecting initial and final states.
This "two path interference, " the archetype of which
is met in the diffraction of particles (or waves)
through two slits, is also responsible for the nodal
structure of the wave function, as seen in Sec. II,
and for interference fringes in the differential
scattering cross section. What is perhaps partic-
ular to the case of the spectrum is that the different

paths are distinguished by a temporal parameter
rather than by a spatial one as is more common,
and one might speak of a "two slits in time" inter-
ference effect, as is suggested by the pictorial
representation of Fig. 2.
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By recording the absolute number of K x-ray quanta emitted from a thin graphite target
bombarded with electrons of energy E between 2 and 30 keV, the quantity coE' QE (E) for car-
bon has been measured, where co+ is the X-shell-fluorescence yield and Qz(E) the ionization
cross section for the K shell. QE(E) was calculated with the formula of Gryzinski, and the
fluorescence yield of carbon was obtained as E = 0. 0035. This value is much higher than the
two other experimental values, but in agreement with a semiernpirical formula of Byrne and
Howarth and in near agreement with a recent calculation of McGuire. It is shown that this
formula and this calculation seem to be valid for elements with atomic numbers down to Z = 6.

I. INTRODUCTION

The K-shell-fluorescence yield ~~ is defined as
the number of radiation transitions per vacancy in
the K shell of an atom. The method of production
of this vacancy is of no significance. Measure-
ments of &~ for elements of atomic numbers Z ~15
give a uniform picture, ' but for low-Z elements

the measured values in part differ greatly from
one another (by a factor of 5 for Ne and Al). The
recent tabulation of ~ data for elements with Z —13
is given by Dick and Lucas.

Formulas for the evaluation of w~ are always
fitted to experimental values, ' ' and therefore
they cannot give additional information. We note
that these formulas contain parameters which low-


