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Parameter analyses off"d configurations of rare-earth ions generally result inmeanerrors
in excess of 200 cm when conventional Slater operators only are used. We introduce tensor
operators whose mathematical structure is similar to those of the Slater angular functions f~
and gl„except that intermediate values of k are allowed. We may therefore assume that, for
the fd and f d configurations, if we parametrize four new operators f&, f3, g&, and g4, we will
get a complete description of the ten I.S terms. The orthogonality properties of the 6-j sym-
bols insure that the new operators are independent of the previous ones. We find a reduction
of the mean error to less than 10 cm ' for Pr xv and Ce xxx, and to about 30-60 cm for La xx,

Ybxxx, and Thxxx. The effects of spin-spin and spin-other-orbit interactions are negligible.

When rare-earth configurations of the type 4f 5d
are treated by parametrization of the conventional
Slater integrals, it is usual to have residual errors
in excess of 200 cm '. A similar problem with
equivalent-electron configurations has been solved
in the last decade by application of the theory of ef-
fective operators in which interaction effects be-
tween configurations are replaced by operators act-
ing within the nominal configuration under study.
A transformation to a new set of basis functions is
implied. These will have S and L still as good
quantum numbers, but with the sum over the princi-
pal quantum number n taken in an unspecified way,
in general differently for the various SL states.
Rajnak and Wybourne have discussed the f" case in
some detail, and the new operators are now part
of the accepted convention. Wybourne also dis-
cussed the mal n'E' case, but recommended against
its use for two-electron problems, on the ground
that the number of parameters equals the number
of electrostatic terms. Our view is that in fact this
full description of the electrostatic energy can lead
to a much sharper interpretation of the fine-struc-
ture interactions, such as spin-orbit, spin-other-
orbit, spin-spin, and electrostatically correlated
spin-orbit effective operators induced by configura-
tion mixing.

For inequivalent electrons having orbital angular
momentum quantum numbers l, and l2, the two-
electron configuration /, /2 contains (with /z the
smaller of the two values) 2/&+1 singlet and 2/»+1
triplet SL terms, with the total angular momentum
taking on the 2l2+1 values from l, —/2 to l, +l2 inclu-
sive. A complete description of the electrostatic
energy can be given by the introduction into the
Hamiltonian of 2(2/2+1) independent effective opera-
tors defined through their matrix elements by the
expressions

f (I)=(-()"'~"~,' '
I

0» z,
2 2

(lb)
The independence of these operators follows from

the orthogonality properties of the 6-j symbols (see,
for instance, Edmonds') which for these cases may
be expressed as

(2k+ 1) Q (2L + 1)f»(L)f„.(L) = 6 (k, k' )

(2u+1) Q (2I, +1)g,(S, I.)g„,(S, I ) = 6 (/, u')

for either value of S.
In addition we have

& f»(L) g» (s L) = o
S,I,

for all k and k' because of the phase dependence oi
g~. on S.

For f, with 0 even and g» with 0+/, +/~ even, these
operators have a one-to-one correspondence with
the conventional Slater operators. If the usual fit-
ting procedures are used, the Slater integrals are
treated as freely varying parameters, and the cor-
responding configuration-mixing operators will be
automatically absorbed. We are then left with the
212 additional operators to accommodate the residu-
al effects.

These additional "illegal" operators are propor-
tional to those for the orbit-orbit interaction dis-
cussed by Feneuille and Pelletier-Allard, but the
experimental structures are too large to be attrib-
uted to purely relativistic effects and we have
therefore suppressed the associated sca,ling factors.
This situation is analogous to that for. equivalent-
electron configurations.

The operator f, can be expressed in the closed
form
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TABLE I. Illegal operators for / 1/2 configurations.

dp

fi

erators representing the direct interactions of
course do not have a spin dependence [see Eq. (la)].
Note that for the conventional f» (k even) an addition-
al multiplicative factor

fp
iD
1E

Denom

—6
—2

12~5

3
—5
—2
30

D
1+
16

Denom

—8 —4
—2 ll

6 3
12~14 84

(-1)""(22, 1)(2!e+1)(' ' )(' e

) (k even)

has been used; and for the g„, the factor

ip

ip
1Q

H
Denom

—16
—12
—6

2
12

12~0

fd
f3
—6

3
4

1
14~15

2
—5

7
—5
—5
70

120
—90

—105
—41
—6

1260

1$
ip
iD
iy
ig
'H

Denom

fi f3
—24 —6
—22 —3
—18 1
—12 3
—4 1

6 —3
18 1

168 42

ff
f5

—132
33
55

—66
34

—9
1

924

—24
22

—18
12

—4
—6
18

168

—6 —132
3 —33
1 55

—3 66
1 34
3 9
1 1

42 924

f3
f8'

f5 82 g4 gc

iD
i~
10
1H

1I

E
Denom

—15
—13
—10
—6
—1

5
12

12+105

—55
—11

25
31
1

—35
14

42~165

—143
143

26
—130

95
—31

4
132~273

—15 —275
41 495

-70 —315
90 —191

—85 369
35 315
84 70

1260 6930

—3003
1001
2366
1638

623
131
12

36036

L(L + 1) —l ~(l~+ 1)—l»(l»+ 1)
[l,(2l, +1) (2l, + 2) l, (2l, +1) (2l, + 2)]"'

and is proportional to one of the operators discussed
by Sack in connection with d"p configurations. It
is often seen in the contracted form nL(I +1) in
analogy to Trees's correction operator for d" con-
figurations, but we prefer to keep the full form in
our calculations for more convenient comparison of
magnitudes with the conventional operators.

Matrix elements for these illegal operators are
given in Table I for the commonly occurring cases.
Values for the conventional operators can be found
in standard works such as Condon and Shortley and
(for fg) Shortley and Fried. ' All entries for the
exchange operators g, are for singlet terms, as
noted. The corresponding triplet values are of op-
posite signature, according to Eq. (1b). The f, op-

(-1)"'e(21,+1)(2le+1)( ) (ke)&+le even),

to bring them into agreement with the conventional
definitions (see, for instance, Wybourne" or
Judd")

The coefficient matrices of the direct integrals
F» for the f'»d configuration are related to those for
fd by the relation

(f"d sLIf»If d sL)=( 1) (fd-»I f»I fd sL)

TABLE II. Exchange matrix elements for the f d
configuration.

g'a'

(all other terms)

5

5

12
105
1

45

10
363

4
15

10
33

derived from Racah. ' The new operators are
therefore identical to those of the conjugate config-
uration fd, since for these we take k odd.

The matrices for the g» of f' d are not so simply
related to those of fd, but for this special case the
calculation is also given by Racah. ' These are giv-
en in Table II. Note that this treatment is slightly
different than that given by Condon and Shortley and
Shortley and Fried, in that in their case a constant
has been added to all elements of a given g~ such
that the only nonzero element is that for the I. term
with L =, k.

Table III shows the comparison of these calcula-
tions with experimental energy levels for Larj:, '
Cezu, ' Przv, ' Ybrrr, ' and ThIrr. ' The associ-
ated parameters are given in Table IV. The values
are all in cm ', the parenthetical numbers being the
estimated errors. The quantities v and a & repre-
sent the mean errors as determined with and with-
out inclusion of the illegal operators, respectively.
In the case of Th~rx it was necessary to include the
5f6d 5f7s configura-tion interaction explicitly, but
for the others the residual errors are not great
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TABLE III. Residual errors in f(d+ g) configurations.

Desig
4f5d

3pp
3p

Pi

22 684
22 705
23 247
27 424

La II
0-C

36
10

—38
—5

0-C

11577
ll 613
12 642
18 433

-4
2
2
0

cf (5d+6&)
Ce III

En En

70 843
70 756
72 185
78 776

0-C
—8

2
6
0

En

45 277
39 721
33 386
53 365

37
78

—114
—8

4f "(5d+6~)
Yb III

0-C En

12043
ll 933
14 018
21 035

0-C

1
—1

0
—1

5f {ed+vs)
Th rrr

iD

Di
3D

D3

3F
3F

iG

G3
3G

3G

3H4

3H)
3H6

'H,

18 895
21 442
22 106
22 537

17 212
18 216
19 215
24 523

16 599
20 403
21 332
22 283

17 826
18 580
19750
28 526

11
—97
—9
104

5
—17
—6

5

28

—28
1

6571
8 922
9 900

10 127

3 822
5 502
7 150

12 501

3 277
6 265
7 837
9 326

5 127
6 361
8 350

16 152

3
7

—10
5

4
—2
—3

7
—7

2

0

65 322
66 968
68 412'

68 496

61 457
63 356
66 518
71 725

61 171
64 124
65 640
67 899

63 581
65 239
68 078
75 266

6
9

—15
9

—ll
7
4

—5

3
—5

5

1
0

40 288
50 029
48 415
39 141

51 463
43 019
42 425
53 123

40 160
51 582
53 736
43 623

47 057
37 020
43 623
50 357

2
22

—1
6

—lv
—24

23
—72

65
57

—38
—8

—23
—15
—8
18

7 098
8 731

10 991
11551

1 321
5 637
8 952

16 263

810
5 871
9 790

12 087

3 990
5 299
9 247

18 820

—17
9

—6

40
—38

13

5
—53

36
19

—3
17

—18
—1

4f es

F
3F
3F

14 148
14 375
15 699
15 774

—66
67
36

—36

19236
19464
21 476
21 849

—5
5
2

—2

100268
100544
103271
103 754

44 854
45 207
34 656
34 991

—25
25
22

—22

3 991
3 337
7 121
8 310

0
15

—25
21

enough to warrant this procedure (although further
reduction ot the mean error can in fact be found).
Note the striking correlation of the residuals given

in Table III for CeIII and Priv. Since for Przv the

4f5d and 4fes are well separated from other config-
urations (and from each other), there appears to be

TABLE IV. Parameters for f(d+ s) configurations.

Par

cf5dgg

F2
F4

i

G3
G5

Fi
F
G2

G4

cfear
G

C. I.R2
R3

La II

ss9(16)
415(30)

13 886(159)
12 O2S(258)
11037(67)

9 205(2sc)
4 5vv(ies)
4 252(1vs)
2 sv s(292)
2 SV9(265)

0

414(18)
842(406)

61
511

4f(5d+es)
Ce III

63V(2)
687 (4)

194S5(21)
15vo2(sv)
10 620(9)
10 963(31)

e sve(26)
1 o2v(22)

396(4o)
3 oos(36)
194V (48)

ess(s)
2O85(54)

8
226

Pr Iv

85s(s)
1 oev(4)

22 428 (28)
18 046 (54)
10 520 (11)
11936(42)

v 94v(36)
i oec(29)

158(56)
2 671(50)
232S(6V)

860 (3)
268S(63)

10
211

4f '3(5d+ es)
YI3 III

2923(9)
1151(15)

2O 11V(219)
12 325(49O)

e 965(45)
v 2v2(46o)
4 v65(eoo)

VS9(256)
csv(452)

2 213(337)
3 o75(9is)

292V (19)
2 385(466)

67
179

5f(6d+ 7g)
Th III

1171(s)
i 552(iS)

20 578(118)
1S 175(291)
15 271 (46)
14ov2(is9)

V 5O4(162)
2 445(122)
2 026(285)
3 038 (243)
i 546(3V9)

1 178(17)
3 44S(eiO)

1 792{429)
9 777(544)

33
310

4f6d
Ce III

64i(c)
203(8)

3479(66)
2937(139)
1501(36)
1827(135)

944(112)
1563(s2)

0
0
0

27
139
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TABLE V. Parameters of higher configurations of
Ce xxr.

+2
~4
~6
G

G
G5

G

643. s2(o. o5)
o. 11(o.o5)

424 (1)
45 (3)

(4)
16 (1)

(3)
0
0

Q2

y6
0

G2

G4

G6

4f5f

634(2)
25 (2)

s11o(23)
1S84(62)

960 (80)
1174(3)
1544{25)
1os4(67)

832(62)

4f6f

638(o. 5)
17(O. 6)

164O (16)
94o (so)
232(73)
642(2)
85O (17)
706 (39)
34O (68)

151 (2) I'
~3 29 (3) ~3

9 (4) Z'
G' 9 (4) G'
G' O G3

G6 0 G5

0 ~ 5
10

154(31)
0
0

—112{38)
0
0

9
39

68 (26)
0
0

33 (24)
0
0

no need to introduce specific interactions directly.
The remaining effects, therefore, appear to be
magnetic (or pseudomagnetic) in origin. However,
attempts to include a spin-other-orbit interaction
between the 4f and 5d electrons' have given nega-
tive results. Configuration-mixing effects are too
complicated for a general parametrization to be at-
tempted, but there is an indication in the Ybxxx case
that the leading terms are significantly present (see
below).

Extending this analysis to more complex config-
urations, for 4f (5d+ 6s) of Pr m we get E'= 1000
(100), E =459 (210), G =2456 (192), and G =1671
(258), similar to the results of Feneuille and
Pelletier-Allard6; for the 4f' (5d+ 6s) levels of

Tmxxx reported by Sugar we get in a similar way
E = VSS (120), E = 0, G = 2286 (268), and G = 2141
(429). The fact that the new operators appear to be
fairly constant across the periodic series suggests
that, as a first approximation in dealing with the
more complex cases in between, one may make a
fixed correction by assuming a mean of the values
of the extremes. Similar values would appear to be
appropriate for the fourth spectra. The Laxx re-
sults are probably disturbed by the overlapping 5d6P
configuration, and these results should be extended
to other cases with caution.

Results for some of the higher configurations of
Cern are given in Table V. Note that for 4f@
some of the new operators (especially E' and E')
are more significant than the conventional ones of
high rank.

The Ybnx 4f 5d case requires special considera-
tion, since the interactions with the only known
close configuration (4f' 6s) are not sufficient to ab-
sorb the effects. Electrostatically correlated spin-
orbit operators analogous to those investigated ' for
4f may be generated and tested for efficacy. After
some experimentation we arrive at the conclusion
that only the leading terms of the type E ( fd, fd')
'f(d, d') and G~(fd, d'f) g(d, d') are of significance;
but both take precedence over the conventional con-
figuration interactions R ( fd, fs) and R ( fd, sf) If.
these four variables are added to the previous set,
and the 4f' 6s levels are also included, a. mean er-
ror of some 15 cm ' is obtained.

U these two-body magnetic operators scale ap-
proximately as K& times I'", they will be of vanishing
significance for lef t-hand-side ions. Further study
of the right- hand- side cases is needed before these
results can be taken as definitive.

We wish to thank B. R. Judd for several helpful
dxscussxons.
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Singly auto-ionizing (SAI}states of three-electron atoms below &e first core excitation thresh-
old are defined as eigenfunctions of an operator QHQ. It is shown that a particular type of
multiconfiguration calculation provides upper-energy-bound estimates of such states, subject
to a certain definition of Q (and the assumption that a certain set of equations has a solution).
For SAI states with I & 0, Q is the proper Feshbach operator which projects out all wave-func-
tion components which overlap the exact ground state of the two-electron core. For SAI states
with I = 0, the bound is only established-by adopting a modified, approximate Q which projects
out only those wave-function components which overlap the angle-independent part of the core
grouIld stRte. It is proposed that doubly' auto-ionizing (DAI) stRtes be defined Rs eigenfunctions
of Q'II@', where Q' is the projection operator which eliminates all wave-function components
which overlap the known 1s hydrogenic ground state of the one-electron system. The explicit
form of I"and Q' is given, and a brief summary is given of various upper-energy-bound
computational methods for DAI states; these closely parallel methods discussed previously
for SAI states of two-electron atoms.

There are two general types of auto-ionization
states~ which may be readily distlngu1shed. ' Q lth-
in the nonrelativistic approximation, which is
adopted throughout this paper, these may be classi-
fied as stationary and quasistationary states, re-
spectively. The former present no special theo-
retical or computational difficulty; they can be
calculated with ordinary variational methods such
as used for stationary states lying below the ioniza-
tion threshold. ' In treating quasistationary states,
which are of primary interest herein, one must
first adopt a mathematical definition and then at-
tempt to develop suitable computational methods.
In a previous paper (hereinafter referred to as I)
there was given a discussion of this problem for
two-electron atoms; the present paper describes
attempts to extend the same general approach to
three-electron atoms. It happens that the QHQ
definition which we adopt also encompasses non-
relativistieally stationary states which are subject
to auto-ionization through spin-dependent forces.
This generality is of no practial usefulness, but
should be bolne 1n mind 1n connection with stages
of energy-bound proofs in which the auto-ionization
states are enumerated in order of increasing ener-
gy without regard to symmetry type. In actual cal-
culations, the trial function will usually be restricted
to a selected symmetry type, and the conclusions

to be reached herein are primarily of interest with
respect to those symmetry types corresponding to
quasistationary states. Similar remarks are also
applicable to the two-electron auto-ionization-
state problem, though they were not given in I.

%'e will separately consider singly auto-ionizing
(SAI) states and doubly auto-ionizing (DAI) states
of three-electron atomic systems. Although there
presumably exist SAI states lying between various
discrete levels of the two-electron core, attention
is herein limited to states below the first core ex-
citation threshold. Qf particular experimental and
historical interest is the SAI state of He lying
some 19.3 eV above the core ground state. This
state was first observed by Schulz, e is thought to
be of 3S symmetry, and can be roughly classified
as arising from a ls(2s)~ configuration. 7 There
is also some experimental evidence for a I' state
at slightly higher energy, e and for a number of
other states of undetermined symmetry. '0

The DAI states lie within the continuum of the
two-electron core, i.e. , above the ground state of
the associated one-electron system; for simplicity
we limit attention to QAI states lying below the
first excitation level of the one-electron system.
Resonances associated with DAI states in He have
been observed by Kuyatt et gl. and by Simpson et
aE."Fano and Cooper'3 have argued that these states
are of P' and D symmetry, roughly classifiable
as arising from (2s) 2P and 2s(2p)~ configurations,


