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A new and more accurate numerical solution has been obtained to the differential equation
which determines the first-order quantum-mechanical corrections to the Thomas-Fermi model
of the atom. When used to calculate the diamagnetic susceptibility and atomic polarizability
of the inert gases, it leads to a substantial improvement over the Thomas-Fermi model alone,
and hence lends support to the validity of the quantum-mechanical corrections.

I. INTRODUCTION

The basic assumption of the Thomas-Fermi
statistical model! is that the electrons surrounding
the nucleus of an atom can be treated as a degen-
erate gas of noninteracting fermions at 0 °’K which
occupy all the cells in phase space below a cer-
tain energy level and leave unoccupied all re-
maining cells. This is a semiclassical model of
limited validity® because it neglects, among other
things, an exchange correction due to repulsion
among electrons of like spin because of the ex-
clusion principle, an inhomogeneity correction
due to the rapidly varying potential near the nu-
cleus, and a correlation correction due to Coulomb
repulsion among electrons of opposite spin. In an
attempt to account for these effects, quantum-
mechanical modifications have been introduced
into the model, which involve expansions in powers
of a small parameter that depends on Planck’s
constant and the atomic number. These effects
were first properly calculated by Kompaneets and
Pavlovskii? and Kirzhnits, ® using the Hartree- Fock
self-consistent-field method and a modified elec-
tron-density matrix. They were then recalculated
by Baraff and Borowitz, 45 ysing a Green’s-function
method.

The model was used by Schey and Schwartz® to
numerically calculate values for various properties
of atoms, such as energy eigenvalues and diamag-
netic susceptibilities. These results showed little
or no improvement over the values calculated using
the Thomas-Fermi model alone, and, hence, the
authors asserted that the quantum corrections may
not be completely valid. However, an error has
now been found in the solution of Schey and
Schwartz, and so two of the most inaccurately pre-
dicted atomic properties, namely, the diamagnetic
susceptibility and atomic polarizability, have been
recalculated in this paper by using the correct
solution, as obtained by a new numerical method,
which shall be described. Substantial improve-
ment over the Thomas-Fermi model and good
agreement with the experimental values have been
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obtained, lending support to the validity of the
quantum-mechanical model.

II. CALCULATION OF THE POTENTIAL

According to the above theory, the Coulomb po-
tential about a spherically symmetric neutral
atom of atomic number Z, namely, V()=- Ze?/r,
is replaced by the modified potential

Vr)=— (Ze?/bx)[¥(x)+ay (x)], )

where 7 =bx, a=%672)%¥*, b= (6m)"%a,/82"3,
ap =712/me? is the Bohr radius for hydrogen, (x)
is the solution of the Thomas-Fermi equation
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subject to the boundary conditions $(0)=1 and
P(~)=0, and y (x) is the solution to the quantum-
mechanical equation of Kompaneets and Pavlovskii

d%y 3 172 \V2/q 2

e a(%) y=4°‘”“(af) (z; %) @
subject to the boundary conditions ¥ (0)=0 and
y(~)=0.

We now solve (3) by using a procedure devel-
oped earlier to solve the Thomas-Fermi equation
(2)." We assume the solution near the origin has
the form of a semiconvergent power series

o

y(x)= 23 bx™?. 4)

n=0

In addition, we know the Thomas-Fermi equation
has a power series solution near the origin given
by7y5

P(x)= 25 apx"?, ®)

n=0
where

8i(G-2)a,
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i=5
-2 (G+2)(+4)=j=3)E =] - 1)81u4Gisjur
i=0
(6)
fori> 6, withay=1, a;=0, ay=%, a,=0, as=%a,,
ag=%, and a,=- 1. 5880710.!
Using (2) we can rewrite (3) as

d2yp ( d? 3 y? d 2
Wﬂiﬁ-‘“’%”)ﬁ i‘y'é‘aﬁ) ’ (")

and substituting (4) and (5) into (7) and equating
terms of equal powers in x, we obtain a recursion
relationship for successive coefficients b; in terms
of a, and b,:

4i(i - 2)b; = 24b ;5 + 16(10i - 9)( — 3)a,_,

+24 E b,-,_s(i a,-m)
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for i > 6, where by= 0, b, = 4, by=2a,, by=%,
bs=%b,~ 3a3, and bg=%Fa,.

We obtain the complete solution to (3) by using
standard numerical integration techniques. We
initiate the solution by using a power series formed
from the first several terms in (4), where we as-
sume an arbitrary value for b,. We continue the
solution by simultaneously integrating the dif-
ferential equations (2) and (3). The integration of
(3) can be simplified by using an approximate
analytic form of the well-known solution to (2),!
such as’®

v = 1+1.81061x2+0. 601 12¢ )2 ©)
‘<1+1.81061x1/?+1.39515x+o.77112x3’2+o. 214 65¢%+0.04793x"2/

[
which has a maximum error of 6y <1.2x107. d 1dy vz, _ 2 1 ( a4y )2
Since the integration procedure is most sensitive vt~y ay ~ STy =1600% - 0 \Vay ~ 2

to error near the origin, we introduce a change of
variables, ¥ =v% and rewrite (3) as

(10)
From (4) we see that this means y and its derivatives

-16 1 | I T 1 | L1 1 | 1 1 1 | 1 | L | 1 | 1 |
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4
FIG. 1. Solution to the quantum-mechanical equation (3), y(x) vs x.
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FIG. 2. Thomas-Fermi shielding function (x) and total shielding functions [¢¥(x) +ay(x)] for neutral sodium and
cesium as functions of x.

with respect to v are now continuous near the ori-
gin. In order to satisfy the boundary condition
y(*)=0, it is necessary to vary b, until the solution
converges to the axis. If b, is too negative, y ()
=—o_ and if b, is too positive, y(©)=+x, We ob-
tain a solution which satisfies y(©)=0 by using a
value of b,=-22.56590, with an error of
8b,<5X10°, The range of validity of the power
series (4) is obtained by determining the ratio of
successive coefficients R,=b,/b,.,. This has a
limiting value of R,~- 1.5 for large », which
impliesa radius of convergence of x,= b, /b,l?
=R;2~0. 44, which is the same as for the series
(5). 8

In the limit of very large x, the Thomas-Fermi
equation has the exact solution!

=144/x% (11)
which is valid for x> 12¥3, Assuming an exact
limiting solution of (3) of the form y = sx?, where
s and / are constants, and substituting it and (11)
into (3), we obtain

y=—348/x . (12)

TABLE I. Quantity— 108 x, where x is the diamagnetic
susceptibility in cm3,

Note that for large values of x, y becomes the
dominant term in the total potential shielding func-
tion ( +ay), which hence becomes negative. Also
the x dependence of the solution (12) differs from
that of the asymptotic solution obtained by Vis-
wanathan and Narashari Achar'®and Venkatarangan,!!
which decreases as ¥x™"/2, but it agrees with the
x dependence of the rederived solution of Tietz and
Krzeminski. 2

We have plotted y (x) vs x in Fig. 1. Note
that our solution is in basic agreement with the
one obtained previously by Kompaneets and Pav-
lovskii using a different integration procedure, if
their plot of y (x) vs x is understood to be
y(x)/8(6m%°% vs x, as pointed out by Kalitkin. **
However, our solution is valid for much larger
values of x. In Fig. 2 we have plotted the Thomas-
Fermi shielding function # (x) versus x, along with
the total shielding function [¢(x)+ay (x)] versus x
for the neutral atoms of sodium and cesium. Note
that the total shielding function becomes negative
at a radius x,, which depends upon Z. It remains
negative for all ¥ larger than x,, as noted from

’

TABLE II. Quantity 10* &, where « is the atomic
polarizability in cm?.

Thomas-  Former Present Thomas-Fermi Quantum
Fermi quantum Radii quantum Exper- Atom model® s b
Atom model* model*  x, xy model iment® model Experiment
Ne 64.1 46.1  6.32 10.5 14.7 6.74 Neon 43.5 . 0.392
Ar 78.1 63.3 8.23 13.2 22.3 19.6 Argon 35.8 2.91 1.65
Kr 89.3 86.6 11.1 17.4 35.5 28.8 Krypton 28.4 3.67 2.50
Xe 113.0 103.0 13.2 20.2 45.7 43.9 Xenon 24.8 4,06 4.10
2Reference 6. PReference 14. 2Reference 15. PReference 1.



4 SOLUTION OF THE THOMAS-FERMI MODEL. .. 463

the asymptotic solutions (11) and (12). We define
the radius of a neutral atom as the radius x,,
where the electric field E (*)=—dV(»)/dr first van-
ishes, or from (1),

L ), (i;ﬂ)l . (13)

The radius x, is dependent on Z and is always
larger than x, for a given Z. Our solution is in
disagreement with the similar calculations of Schey
and Schwartz, ® as shown in their Fig. 1, since
their shielding functions for sodium and cesium
appear to remain positive for all x. Furthermore,
their value of @ = (2471Z)#? is much larger than our
value of a=5(67Z)"%®, which is obtained from

the original solution of Kompaneets and Pavlovskii.

III. CALCULATION OF ATOMIC PROPERTIES

Using our potential (1), we have calculated the
diamagnetic susceptibilities of the inert gases.
The diamagnetic susceptibility x is a constant
which determines the energy shift produced in a
spherically symmetric charge distribution by the
application of a uniform constant magnetic field, !
and it is given by

x== (Voe’/bmc?) (r?), (14)
where N, is Avogadro’s number and
2\ _ 2 _ © 4
()= [vPpdv=4n [“ripar, (15)

where p is the electron charge density, which is
given by Poisson’s equation

pr)=— (1/4me®)VV ) . (16)
Schey and Schwartz obtain

2N Z [ 5 dP
X== e , x 3;2[¢(x)+ay(x)]dx

=-3.72x107 Z1/3 fo”x[zp(x)my (x)] dx cm®.
aam

For our solution this becomes

2

=-0.62x10"° z“afxlaﬁ —”—IT
: 0 dx

X[9(x)+ay (x)]dx cm® . (18)

In Table I we have summarized the susceptibilities
for Ne'%, Ar'® Kr® and Xe’*. The second and

third columns show the evaluation of (17), according
to the Thomas-Fermi model (@ =0) and according

to the quantum-mechanical model [a = (2412) %3],
respectively, as given by Schey and Schwartz.

The fourth and fifth columns show the radii x, and
x, at which the potential and field, respectively,
vanish. The sixth column shows our evaluation of
(18) using a=$(672)"¥3. The final column shows

the current experimental values.* Note that,
except for neon, our values for the susceptibility
are within 20% of the experimental values, and are
a very substantial improvement over the values
given by the Thomas-Fermi model. The quantum-
mechanical values given by Schey and Schwartz
are invalid because of their incorrect evaluation
of the total shielding function.

We have also calculated the atomic polarizabilities
of the inert gases using our potential (1). The
atomic polarizability @ is a constant which deter-
mines the energy shift produced in a spherically
symmetric charge distribution by the application of
a uniform constant electric field,! and it is given
by

a=(4/9Zagy){r?)?, (19)

which with (15) becomes!®
4zp* { *
A= X
QaB 0

2
=1.4565X% 10'242'”3{J; x[zp(x)+ay(x)]dx} cm?® .

(20)

& ?
s L () ray (x)]dx}

For our solution this becomes

a=0,04046%x102t 213

" 2
x{'/(; 'yl %—[zp(xhay(x)]dx} em®.  (21)

In Table II we have summarized the polarizabilities.
The second column shows the evaluation of (20),
according to the Thomas-Fermi model (@ =0), as
given by Kumar and Jain. '* The third column shows
our evaluation of (21) and the last column shows

the experimental values.' Note that our values

for the polarizability are a substantial improve-
ment over the values given by the Thomas-Fermi
model, and the agreement with the experimental
values becomes very good as Z increases.

Based on our results above and on the other suc-
cessful predictions of the model, such as the total
energy of an atom® and various thermodynamic
properties, ** this quantum-mechanical model is
shown to be a valid first-order correction to the
Thomas-Fermi model. The conjecture made by
Schey and Schwartz and others® that the model
lacks certain important terms appears to be un-
justified.
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The problem of obtaining field isotope shifts for light elements is discussed, and it is shown
to be possible, in principle, to extract this information solely from an optical-isotope-shift
experiment. We attempted such an experiment with the even-even calcium isotopes: Ca 40,
42, 44, and 48. We found that an accuracy of ~10°° cm™! in the measurements would be re-
quired to effect the separation. Lacking that accuracy, we considered the conditions under
which optical-isotope-shift measurements may be combined with those of other isotope-shift
experiments. The even-even calcium isotopes fulfill these conditions, allowing the desired
separation of optical mass- and field-effect isotope shifts to be accomplished by drawing on
the results of muonic x-ray and electron-scattering experiments. The optical field-effect
shifts thereby found are shown to corroborate the picture of the calcium nuclei derived from
those experiments. A correlation between the relative isotope shift and the binding energy
per nucleon, proposed by Gerstenkorn, is shown to apply to the calcium isotope shifts.

Isotope shifts in atomic spectrum lines of heavy
elements are attributed mainly to isotopic differ-
ences in the nuclear charge distribution. ! The
shifts in a single line for a series of isotope pairs
show the changes in the mean square radius of the
nuclear ground-state charge distribution. Since
there appear to be sharp changes in intrinsic nu-
clear shapes at magic neutron numbers, ? it is par-
ticularly valuable to make such measurements on
a series of nuclei containing a magic-number nu-
cleus.

The same consideration applies to light elements,
but both the experimental and interpretational prob-
lems are more difficult. For these elements the
shifts due to mass differences in the nuclei cannot
be neglected, and it is exceedingly difficult to sep-
arate the mass- and field-effect shifts. In fact,
these can be opposite in sign, resulting in a net
shift smaller than the Doppler widths of the spectral
lines. However, it seems worthwhile to attempt
this separation for calcium since the series of even-
even isotopes both starts and ends with a doubly
magic nucleus. Further, since the behavior of the

mean square radius of the nuclear charge distribu-
tion of the calcium isotopes is known (from muonic
x-ray and electron-scattering experiments), we
can determine when we have achieved a valid sepa-
ration of the optical mass- and field-effect shifts.

Interest in calcium was spurred in 1963 when a
measurement® of the 2p-1s muonic x-ray transition
suggested that the addition of four neutrons to the
Ca 40 nucleus results in a smaller proton volume—
contrary to the widely held assumption (at that
time) that the nuclear charge radius is proportional
to AY3, Although later experiments*~® have shown
that Ca 44 does indeed have the larger charge ra-
dius, it is not so large as predicted from the A3
law.

1. DEPENDENCE OF ISOTOPE SHIFTS ON ATOMIC
AND NUCLEAR PROPERTIES

In isotope-shift calculations for hydrogenic
atoms, the fact that the nucleus has finite mass is
easily treated by use of the reduced electron mass
t. The result is that E(u), the true energy eigen-
value, is equal to (u/m,)E (n,), the energy eigen-



