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The atomic-beam magnetic-resonance technique has been used to measure the magnetic-
dipole hyperfine-interaction constantsA for the 8613-cm D2 metastable atomic state of
Sn ' . The results are A(Sn, D2) =-1269.650(3) MHz and A(Sn, D2) =-1328.745(4)
MHz. These results, together with the previous measurements of A for the P~ and P2 states,
are considered (a) nonrelativistically, (b) relativistically, with Casimir correction factors,
and {c)with relativistic Hartree-Fock radial wave functions. Procedure {c) is shown to be
relatively successful in accounting for the hfs observations, and leads to a predicted mixing
coefficient for the states P2 and 'D2 which is within 13% of the mutually consistent values
found (i) by consideration of the P2- D2 energy separation and (ii) from the precisely mea-
sured g'+values for the P2 and D~ states.

I. INTRODUCTION

The ground configuration ns np~ of the group-IV
elements is the simplest nontrivial two-electron
configuration and has consequently been studied in
detail by many authors' over the years. In addition
to its simplicity, it is relatively well isolated from
other even-parity configurations. In the atoms C,
Si, and Ge, for which n=2, 3, and 4, I.S coupling
is a good approximation, while for Pb (n= 6), jj
coupling is a better approximation and relativistic
effects become very important. The Sn atom is
transitional between these extremes, both with re-
gard to coupling and to the importance of relativ-
istic effects. The present experiment completes
the measurement of the hyperfine structure (hfs)
of the odd-A stable Sn isotopes, and considers the
excitation energies, g factors, and magnetic-dipole
hfs constants A together for all J40 states of the
configuration. A recent paper by Lurio and Land-
man dealt with the corresponding situation in Pb ~

High-precision measurements of the g~ values
of the three 8 40 5s'5pa states of SnI ('P„'Pz, and
'D2) have shown~ that ~P, is an almost completely
pure state, and that the 'P~ and 'D& states are
strongly intermixed. The perturbations of the g
values of these two states were shown'to be equal
and opposite to within 0. 2%. Subsequent experi-
ments were performed to measure the hfs of the
SP, z states of the odd-A isotopes Sn"5'"7'&9, but

at that time the sensitivity of the detector was in-
adequate to permit measurement of the hfs of the
third J40 state, D2. Improvement in sensitivity
has now led to measurement of the hfs of the 'D2

state in Sn"~'", and improved values were obtained
for the g values of the three Jwo states as well.

With knowledge of the three A values, it is now

possible to determine three parameters; those
chosen are in effect (pl/I)(r ')», the degree of
core polarization, and the degree of mixing between
the J= 2 states. The deduction of parameter values
from the hfs observation is done (a) nonrelativ-
istically, (b) relativistically by means of the
"Casimir correction factors, " and (c) with relativ-
istic Hartree-rock radial wave functions. The
results of the three treatments are somewhat dif-
ferent, since the way in which relativistic effects
are treated is important (the SP, state, for example,
should have no hfs at all nonrelativistically and in
the absence of configuration interaction). The
value obtained for the mixing coefficient from study
of the hfs is also compared with the values obtained
from observation of the J= 2 energy splitting and
from the measured g~ values.

II. EXPERIMENTAL DETAILS

The atomic-beam magnetic-resonance technique
has been described' too many times to need further
discussion here. The apparatus used for the pres-
ent experiment has aI.so been previously describeds;
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FIG. 1. Zeeman effect in the hyperfine structure of
the 8613-cm D~ metastable atomic state of Sn . The
corresponding figure for Sn~~~ differs only in scale. The
relevant quantum numbers are indicated.

it is basically the same one used for earlier atomic-
beam magnetic-resonance investigations of stable
Sn isotopes. Two modifications of the data-han-
dling techniques are responsible for the required
improvement in sensitivity: the use of a swept rf
signal in conjunction with a multichannel analyzer, ~

and a digital noise filter' for eliminating nonrandom
bursts of counts arising from instabilities in the
apparatus. Both modifications have been described.
The improvement in sensitivity they made possible
was only just adequate for the experiment on the
metastable 'D~ state at 8613 cm ' in Sn""".

The Hamiltonian used to describe the magnetic
field dependence of the magnetic-dipole hfs of an
isolated atomic state is

K= hAI J +gq p,~HJ, + gq p,NHIg,

in which A is the magnetic-dipole hyperfine-inter-
action constant, I and J are the nuclear-spin and
electronic-angular-momentum operators, respec-
tively, I, and J, are their z projections, g~ and gi
are the electron and nuclear g factors, p,~ and p,~
are the Bohr and nuclear magnetons, and H is the
external magnetic field. Only the magnetic-dipole
term of the hfs is included because I= —,

' for the
stable odd-A Sn isotopes considered. The eigen-
values of this Hamiltonian have been given4 analy-
tically but are normally calculated digitally by
computer. Figure 1 is a plot of the eigenvalues for
the 'D2 state of Sn" on which most of the present

TABLE I. Excitation energies and Boltzmann factors
{calculated for the oven temperature of 1412 'C) for the
5s~ 5p~ atomic levels of Sn i. For a given isotope, the
relative intensities expected for hfs transitions are ap-
proximately proportional to the Boltzmann factors.

Atomic state

sp
Sp
Sp

D2
ig

Excitation energy
{cm ~)

0. 0
1691.8
3427. 7
8613.0

17162.6

Boltzmann factor
{T= 1412 'C)

1.00
0.24
0. 054
0. 0006

very small

experiment was performed.
The excitation energiese for the 5s35p~ states of

Snz are given in Table I, along with the Boltzmann
factors for the approximate oven temperature of
1412 C. Since the relative intensities observed
for hfs transitions in the odd-A isotopes are pro-
portional to these factors, observation of such
transitions in the 'D3 state was expected to be very
diff icult.

With data-collection times on the order of 45
min, reproducible resonance curves could be ob-
tained for the E, M= —,', —,—E, M = —', , ——,

' double-
quantum transition in Sn"9 at H = 200 6, although the
signal-to-noise ratio was typically only about 4.
At 400 G, the double-quantum transitions could not
be seen, and efforts were therefore made to mea-
sure the ~M~ = +1 intervals. The normal procedure
for integral-J atoms such as Sn is to remove the
central obstacle and to search for single-quantum
flopout transitions. This procedure is difficult be-
cause of the large background of undeflected M~ = 0
atoms. Eventually these transitions were observed,
but the high background kept the signal-to-noise
ratios below 1.3-2. 0.

The two-frequency technique of Prior, Dymanus,
Shugart, and Vanden Bout' was then tried in an
effort to get better-looking resonances. Since this
technique was designed to induce two single-quan-
tum transitions (of different trequency) succes-
sively, the flop occurs between states which have
opposite values of M& at high field and consequently
a central obstacle can be used to reduce the beam
background. In addition, because the transitions
sought are single quantum, modest rf power may
be used to reduce the likelihood of "frequency
pulling. " Since all of the relevant single-quantum
intervals were previously measured to within less
than a linewidth (though with considerable scatter
of data, points), there was no danger of misinter-
preting a two-quantum (v, + vz

——hE jk, v 4v~) tran-
sition as arising from two successive single-quan-
tum transitions. " Figure 2 shows the appearance
of such a two-frequency observation in Sn", name-
ly, the —', , ~ ——,', —,

' transition of 'D~ at H=400 G.
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FIG. 2. The 2, 2 2, 2 transition in the D2 state of
Sn~~e as observed at H=400 G. The two-frequency tech-
nique of Prior, Dymanus, Shugart, and Vanden Bout was
used to enhance the signal-to-noise ratio. About 2 h data
collection were required to obtain the spectrum shown.

For the spectrum, tmo rf signals were applied to
the same loop through a hybrid junction. One
signal was held fixed at 473. 174 MHz, the approxi-
mate frequency for the —,', —,

' ——,', ——,
' interval, and

the other was swept repeatedly through the interval
shown on the abscissa. Two hours of data collec-
tion were required for the curve.

Similar measurements were made for all four
observable ~M~ = 1 intervals in this way, and the
results are summarized in Table II. On the basis
of these observations, the zero-field 4F = 1 interval
could be predicted mith a small enough uncertainty
to justify a search. Accordingly, the field was set
to about 1 6, and the 2, —,

' ——,', ——,
' direct transi-

tion was observed as expected. A phase-locked
magnetron was used to induce the transition. It

was then assumed that the ratio of the zero-field
hyperfine interval for 'D~ in Sn"~ to the known in-
terval for 'D, in Sn'" would be equal to the known'

ratio A( P2, Sn"7)/A(sPz, Sn"~) =0.95552. This
proved to be true, and the 'Da 4F= 1 interval was
observed in Sn'" at 1 6 as shown in Table II. Be-
cause the interval happens to be almost identical
to that of the 'I'~ state in Sn", it was possible, by
use of the predicted field dependences of the two
transitions, to predict that at H = 0.757 6 they
should appear side by side. A run at this field,
with the mass spectrometer of the detector set for
A. = 117, produced the spectrum shown in Fig. 3.
Although (from Table I and the relative abundances
of the isotopes) the peak at the left is expected to
'be about 100 times stronger than that on the right,
they appear about equal in intensity because of the
strong mass discrimination used. The results for
the 'Pz state of Sn'" are in agreement with the pre-
viously published results. 4

Values of the magnetic-dipole hyperfine-inter-
action constant A deduced from the observed zero-
field hyperfine intervals must be corrected for per-
turbations caused by other atomic states. The re-
quired corrections are discussed in Sec. IIIK; the
corrected and uncorrected results are compiled in
Table III. Corrected values are also given for the
previously published, but uncorrected, values of
A for the P, states of Sn'"'"'"

1

It should be mentioned that the algebraic sign
of A('Dz) was not determined for Sn"' '" in the
present experiment. The signs of A('P, ) and A('P2)
were measured, however, for Sn '"7' pre-
viously, and both nonrelativistic and relativistic
theoretical predictions of A('D2) (based on these
measured signs) are strongly negative for all three
isotopes. That A('D2) is negative is assumed
throughout in what follows.

Table IV presents various ratios betmeen the cor-
rected values of the hfs A constant of Table III.

TABLE rr. Summary of observed transitions in the metastable D2 atomic state of Sn ~ '~ 9. The magnetic field at
which each observation was made was measured by observing resonances in an auxiliary atomic beam of K39.

Isotope

Sn'"

Sn~~~

Atomic
state
1
D2

Tr ansition
(s, m—s", I')
(— —~— ——)
5 3 5 1
2& 2 2f 2

(— —~— ——)
3 1 3 3
29 2 2S 2

(5 3 5 1)2t 2 2p 2

(— —~— —-)
(- —-~— ——}2s 2 2p 2

(— —~— —)
3 1 3 1

(— —~— ——)29 2 2P 2

(— —~— ——)
3 1 5 1
29 2 2t 2

(- -~— —-)3 1 5 1
2% 2 2t 2

(— -~— ——)
3 1 5 1
2$ 2 29 2

200
200
400
400
400
400

0. 996
0. 987

0. 757
2. 011

Observed reso-
nance frequency

(Mr-rz)

236. 922 (12)
354. 284(V)
480. 423(15)
4V3. 182(15)
V14. O36(22)
VO5. 116(2O)

3323.340(10)
3323.318(10)."1V5.233(1O)
31vv. 1oo(v)

&obs &calc

0
—7
—2

2
7
8



J. CHILDS

Sn ', H 0757G
3 I 5 I l

pj

TABLE IV. Ratios between various corrected values
of the magnetic-dipole hyperfine-interaction constants
A. for the isotopes Sni

Ratio sn"' sn'"
I-
(A

LLI

I-
Z

II9Sn, P

A( Pp)/A( Pi)
A ('D2) /A ( Pg)

Ratio 3p 3p i
Dp

—2. 194 66(ll) —2. 194 75(10) —2. 194 88(9)
1.046 76(1) 1.046 75(1)

tLI

tLI

a OOe
~ ~

e
~P ~ e ee

A(sn )/A (Sn 5)

A(Sn"5)/A(Sn ')
1.089 01(1)
1, O4649(1)

1.089 05(1)
1.O46 55(1) 1.046 54(1)
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FIG. 3. Observation of the~=1, (2, 2 2, —2) tran-
sition in the iD2 state of Sni and in the 3P2 state of Sn ie

at II = 0. 757 G. Although the number of atoms undergoing
the transition at the left is about 100 times greater than

for that on the right, the peaks appear comparable because
the mass spectrometer of the detector, set for A=117,
discriminated strongly against Snii9 atoms.

TABLE III. Summary of magnetic-dipole hyperfine-
interaction constants A for the P& 2 and iD2 states of
Sn i 'i & ie. The final values (on the right) have been
corrected for hyperfine interactions with other atomic
states; the quoted uncertainties include the uncertainty
in the corrections applied. The uncorrected values for
the Pi and P2 states were published previously.

Isotope

Sn119

Atomic
state

3P

'P2
D2

3p

'P2
ID

P
3P

D2

Uncorrected A
(MHz)

507.445(4)'
—1113.77O(4)'

552. 608(4)'
—1212.956(3)'
—1269.652(3)

578. 296{4)
—1269.419(3)
—1328.747 {4)

Corrected A
(MHz)

507. 483 (25)
—1113.752 (10)

552. 653(25)
—1212.935(10)
—1269.65O(3)

578. 345 (25)
—1269, 396 (10)
—1328.745 (4)

~H,eference 4.

Although the general consistency is good, two points
appear puzzling. First, although the differences
in the ratio A('P~)/A(SP, ) from isotope to isotope
are within the quoted uncertainties, this consis-
tency is deceptive. Most of the uncertainty in the
ratio arises from the fact that different methods
of calculating the correction to A('P, ) (see Sec.
IIIK) result in different values for the corrected A.

value. If the correction is made in the same way
for each isotope, however, then the variation in the

ratio A('pa)/A('P, ) from isotope to isotope is de-
finitely larger than the experimental uncertainty.
Second, both for A(Sn'")/A(Sn"') and for A(Sn'")/
A(Sn'"), the differences between the ratios for dif-
ferent states are also larger than the experimental
uncertainty. These effects appear to be due partly
to differences between the three nuclei and partly
to the fact that the three atomic states 'P„P2,
and 'D~ contain different amounts of the deeply prob-
ing p»~ electron, as viewed from the jj scheme.
This may be seen from Eq. (5) of Sec. IIIA.

In addition to the gz value obtained for the 'Dz

state through hfs studies of Sn"', gJ was remea-
sured in all three states at fields to 1000 0 with the
even-even Sn isotopes for which there are no hfs

complications. The results are presented in Table

V, along with the I.S-limit values and the differ-
ences. The results are discussed in Sec. III.

III. THEORY AND DISCUSSION

A. Description of Ss 5p JCO States

The lowest electron configuration in the neutral

Sn atom is 5s35P~, which comprises the five levels

Po, 1,2 D3 and ~o Of the two levels with J= 0,
Po lies lower and is the atomic ground state, and

'So lies at 17162 cm '. The three levels with non-

zero angular momentum, P„P2, and 'D~, lie at

1691, 3427, and 8613 cm ', respectively. Since
no other J c0 even-parity levels lie within 35000
cm ' of them (the lowest even-parity configuration
above 5s~5p~ is 5s25p6p, which lies above 42000
cm '), they may be expected to be rather free from
configuration mixing. The excitation energies of

the 5s 5p levels are given in Table I.
Within the 5s~5p~ configuration, however, levels

of the same J can mix. Thus, in the absence of
configuration interaction, we may represent the

'P2 and 'D~ states of the atom as being linear com-

binations of the I.S basis states of the same name.
That is, we have

~

3P ) (I ~2)1/2~ 3PL )+ (y~ D )

~

~D ) = —Q~ ~p~~)+ (I —n ) ~
~

D~ )
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Atomic state
Value of gJ

Observed I.S limit

TABLE V. Values of g~for the states P&, P&, and

D& of Sn z. The observed values are weighted averages
obtained from observations in both even-even and odd-A.

isotopes at a variety of values of the field II. The final
column lists the departures of the observed g values from
those calculated in the I.S limit. The very small depar-
ture for the 3P1 state and the (nearly) equal and opposite
departures for the P& and D& states are discussed in the
text.

in which

(5)

From Eqs. (4) and (6), we expect $ =- 0. 80.

8. Determination of 0.'from Zeeman Effect of JXO Levels

One can predict the g~ values to be expected from
the descriptions of the states given above. From
Eqs. (1) and (2), we expect

3P1
3p

D2

l. 50106(3) 1.S0116
1.44870(5) 1.50116
l. 05229(3) 1.000 00

—O. 00010(3)
—0. 0~2 46(5)
+ 0. 052 29(3)

g~('Ps) = (1 —&') g~(' P, )+ o"g~('D, )

gz( Ps ) [gJ( Ps ) gJ( Ds

g~('Ds) = + g~('Ps ) + (1 —H)g~('Ds ) (7)

where in this and following equations a superscript
LS is used to distinguish the I.S basis state from
the actual state of the atom. There is a similar
mixing of the 'S~ and sPs states, although the
mixing coefficient is not the same as n. In the
same approximation, the 'P, state of the atom is
pure; i. e. ,

lsp& lsp s& (2)

('P, ~IX,.I'D, ~& &„/W2
E('P,) —Z('D, ) E('P,) E('D,)—

The mixing is caused a.lmost entirely by the spin-
orbit interaction; i. e. ,

2

K„=Espial; s;.
5=1

The remaining magnetic interactions (spin-spin,
orbit-orbit, and spin-other-orbit) are very much
smaller than the spin-orbit interaction, and Lurio
and Landman have recently shown that taking ex-
plicit account of them for the Gs26p ground config-
uration of Pb z (for which the departure from the
I.S limit is still more severe then for Snr) does
not lead to improved understanding of the mixing.
To the extent that all of the mixing arises from the
spin-orbit interaction, the value of the mixing co-
efficient & may be estimated from perturbation
theory to be

=gz('Ds ')+ &'[gz('Ps ') -gz('Ds ')j,

g ('P ) =g ( P ) .

n = —0. 323 . (8)

The electron g factors g~ have been measured for
these states with high precision, and the results
are presented in Table V. As can be seen from the

last column of the table, the observed value of g~
for the 'P, state is almost exactly that of a 'P, LS
basis state. In addition, the g~ values for the
J= 2 states depart from the LS-Limit predictions by

amounts that are almost exactly equal and opposite,
as predicted by Eq. (7). The very small differences
between these predictions of Eq. (7) and the num-

bers in the right-hand column of Table V probably
arise mostly from failure to take into account the
relativistic and diamagnetic corrections to the theo-
retical g values used for the basis states. The
small differences could also be due in part to
higher-order configuration- interaction effects.

Thus for the measured values of g& for 'P2 and
'Ds one obtains from Eq. (7) the results I o'('Ps) I

=0. 3235 and I u( Ds)I =0. 3230, respectively. If

one assigns the negative sign (the sign of n is shown

to be negative from considerations of both spin-
orbit mixing and hyperfine structure) and takes an

average of these results, it is found that

= —0.30, (4)

lsPs&= &l pigs, uses, 2&+ (I- & )
'

I psis, ps&s, 2&,

I
Ds&=(1 —&') IPiss~ &sss~2& —&l&sn &su'2&

(5)

in which the value f» = 2171 cm ' is used.
The atomic states may alternatively be expressed

in the jj scheme as

It may be noted that small contributions from
states of higher configurations may be mixed into
5s 5p P, and 'D2 by the Coulomb interaction. Since
this interaction is diagonal in S, I., and J, how-

ever, nearly all of the admixture will be charac-
terized by the same value of gJ, and thus any shift
in g~ will be very small —particularly since the
closest even-parity states with Z= 2 lie 35000 cm '
away. The effects of configuration interaction wiLL

be discussed in more deta. il in Sec. IIIJ.
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C. Determination of n from Energy Splitting of J=2 Levels

The simplest approach to understanding the en-
ergy spacings in the 5s 5p configuration is to ignore
any possible configuration interaction, and to ne-
glect the smaller magnetic interactions (which have
been shown to be very much smaller than the spin-
orbit interaction). Condon and Shortley' give the
results of such a treatment. Since there are four
excitation energies to be fitted ('P„'P2, 'D2, and
'So) and only two relevant adjustable parameters
(Fz and f,~), it is clear that there are several pos-
sible ways of proceeding. The way adopted here
is to fit the excitation energies of the two J= 2
states exactly (i. e. , to fit the energy splitting and
the excitation energy of either state). From Condon
and Shortley's expressions for the eigenvalues, we
write

E('Dz) —E('Pz) = 2F2(9 —2 x+ —,6 x )' ~ = 5185. 3 cm ',
„, (9)

E('D,) —E('P,) = F, [ ——', + —.'x+ (~+—", x+-', x')'"

+ (9 ——,'x+ —,', x )'t']=8613.0 cm-',

in which F2 is the relevant Slater integral, x= g»/
I"~, and g» is the spin-orbit constant for the con-
figuration. The solution is

[1 (g10)(sx C(2))(t&]. 1 (12)

for l&0, where C' ' is a second-rank tensor op-
erator proportional to a spherical harmonic of
order 2. It is convenient to characterize the dipole
hfs between any two LS basis states g= ~t &SL)
and g'=

~

t"o! S L ) of the same J by a generalized
magnetic-dipole hyperf ine-interaction constant
A(g, g'} such that

«"oSLJIF~
~
X„„~t"~'S'L 'JfFtif)

=(F~[l J ~Ftvt)A(q, q') . (13)

The form of A(g, g ) is completely specified by
Eqs. (12) and (13), and the result is

A(0, 0') = A(O', 0)

isotopes except that the hyperfine energies are
scaled by the ratio of the nuclear g factors, '

pz/I
The description given will therefore be limited to
the single isotope Sn" .

The nonrelativistic Hamiltonian for the magnetic-
dipole hyperfine interaction of an atom with a
single partially filled electron shell /" is„ in the
absence of configuration interaction,

$5p 2225 cm

+&=872.3 cm ',
x=2. 551 .

(10) = (2-Z")5(o.SL, ~'S'L')

For the value x= 2. 551, consideration of the matrix
given for the J= 2 states by Condon and Shortley
leads to the result

1 x-12
energy g2

+ [3(3x2 8x+ 48)]1/2

= —0. 320

30(2J+ 1)t(t+ 1)(2t+ 1) 'i~

J(J+ 1)(2t —1)(2t+ 3)

x (l"nSL II
y""

II
t"o'S'L')

S' 1
I L 2 ant ~

1
(14)

This result is in remarkably close agreement with
the value o., = —0.323 obtained from the observedJ
values of gJ. Since the two determinations of &

arise from different physical interactions, they are
completely independent. The result of Eq. (11) is
not independent of that of Eq. (4), however, since
the latter deduces an approximate value of & from
the same physical considerations (spin-orbit mix-
ing) as did the more rigorous result of Eq. (11).

D. Nonrelativistic Treatment of Hyperfine Structure

The hyperfine structure of the I'„'P2, and 'D2

states has been measured in Sn"', Sn'", and Sn"9
(except for the ~D2 state of Snu', for which the
available intensity was inadequate). Since the nu-
clear spin I is —,

' for all three isotopes, only the
magnetic-dipole interaction need be considered.
The situation is virtually identical for the three

in which

g~~= 1+ [ J(J+ 1)+S(S+ 1) —L(L+ 1)]/2J(J+ 1)

(15}

is the Lande value of the g factor, and we define

&
~

= 20a M~(IJr/f)(& (18)

Because the dipole hyperfine interaction for a
given nuclear dipole moment is basically a measure
of the magnetic field at the nucl. eus, it is extremely
sensitive to even a very slight admixture of states
containing unpaired s electrons. This effect is
known to be important in Snr. It has been shown'

that these effects, regardless of their origin, may
be taken into account by adding to the Hamiltonian
of Eq. (12) a contact term
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CI ~ S

The result is that a cox responding term

C(gI* —I)6(nSI., n S I ) (18)

~( 3P,)+~('D, ) = ~('p,", 'P,").~('D,", 'D,")
=f a»+ —,

' C= —2598. 141(11)MHz .
(22)

is added to Eq. (14). This contribution to the hfs
of Sn may be viewed as arising from polarization
of the inner electron orbits (core polarization).
The quantity C may be regarded as a constant to be
determined empirically.

From Eqs. (1) and (2), the A values expected
for the states I'1, I'3, and '03 may be written

g(3P ) g(3pLS 3pLS)

Il(3P ) (1 122)II(3PLS 3PI, S)+ ~2g(1DL8 lDLS)

+ 213(I 122)1/2/1(3PLS 1DLS) (19)

It(1D ) (32g(3PLS 3PI s)+ (1 (12)/1(1DLS lDLS)

2 II(1 II2)1/2g(3PLS 1DL S)

and tile required expl esslolls fol' A($, $ ) 1Ylay be
found from Eqs. (14) and (18) to be

g(3PLS 3PI S) 1 C

/1(3PLS 3pLS) 1 C

~(1DLS 1DLS)
(20)

~('P,", 'D,")= —[3/10 &2]s„.

We may collect these results by writing

A('P, ) = —,
' C=+ 578. 345(25) MHz,

Il('P2) = (I —o")[~3I1»+ lC]+ 6"/13,

(2la)

+ 2II(l —o2)'/2 [ —3/10 v2]a»

= —1269.396(10) MHz,

A('D2) = 12 [—', t3»+ 3 C] + (1 —CP)g»

(21b)

—»(I —~')'"[-3/10']a„

(2lc)

where the experimental results for Sn"3 (from
Table III) have been included on the right-hand
side. Several features of Eqs. (21} should be noted.
First, the hyperfine structure of the 3P, state
should be precisely zero nonrelativistically and in
the absence of core polarization (C= 0), but is
found experimentally to be large and positive. Sec-
ond, the mixing coefflclent & drops out 1f one
forms the sum

Hence a» and C can be evaluated independently of
n from Eqs. (22) and (2la), with the result

a»= —1985 MHz, C=+ j.157 MHz . (23)

Finally, the value of n may be found by combining
the results of Eq. (23) with either Eq. (21b) or
Eq. (21c), tile I'eslllt be1ng

&non re1
' hfs

This value of & is seen to differ markedly from the
value found from consideration of the fine-structure
energies and from that found from the observed
values of g~. In addition, the value of a» is much

larger than the value predicted by substituting the
Hartree-Fock value" of (3 3}» and the known value'2

111(Sn'13}= —1.04611„ into Eq. (16). The extremely
large value found for C is also subject to question.
It would appear that in permitting the three param-
eters a», C, and & to vary freely to fit the observed
values of A(3P,), A('P2), and A('D2), the effects
of relativity must be taken into account.

Befoxe passing on to a discussion of the rela-
tivistic effect8 1t 18 of 1ntex'est to ask what value
would be predicted from the nonrelativistic theory
for A('D2) from the previously known3 values of
A(3P, ) and A(3P2). If the value &= —0. 323 obtained
in Eq. (8) from the observed gI values is used, one
predicts A('D2) = —1859 MHz, which is 40% larger
than the experimental result —1329 MHz.

E. Relativistic Treatment of Hyperfine Structure

Breit and Wills" gave given the relativistic theory
of the hyperfine structure of the p configuration in
terms of the natural. jj-coupling scheme for the two
electrons. More recently, Schwartz'6 has dealt in
detail with relativistic effects in hyperfine struc-
ture. The theory has been summarized and applied
to Pb 0'(Gs 6P ) by Lurio and Landman. 2

It has been shown by Sandars and Beck' that hfs
calculations can often be made more conveniently
by using effective operators between nonrelativistic
1.S basis states, and this approach is used here.
These authors have shown that all of the xelativistic
effects predicted by use of the classic jj-coupling
scheme can be reproduced exactly if one uses the
effective operator

[F011 (+10)F12(«s x C (23)(13+ o10 «s ] .I

acting between the nonrelativistie I.S basis states.
This Hamiltonian replaces that of Eq. (12). In the
absence of configux ation interaction, the quantities
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a ', a', and a' in this expression have the values

a01= D(2l+ 1) [2l(l+ l)F„+2l(l+ 1)F +F, ],
(26a)

a' = ,'D(—2l+1) [ —4l(l+ l)(2l —1)E,„+4l(l+ 1)

&(2l+ 3)E —(2l+ 3)(2l —l)E, ], (26b)

a"= —', Dl(l+ l)(2l+ 1) [(l+ 1)E„—lF —E, ],
(26c)

in which D= 2ps p, „iII/I, the signs + and —refer to
the cases j=l+ —,

' and j=l ——,', respectively, and the
quantities

F,I = —2[na0(K+K +2)] ' J (PQ + QP')y d3.
0

are the relativistic radial integrals required. Here
a is the Bohr radius; K and K' are associated
with j and j and are given by K, K'= —(l+1) for
j, j'= l+ —,

' and by K, K =l for j, j =l ——,'; and, in
Eq. (27) only, n is the fine-structure constant in-
stead of the mixing coefficient. In the integral, P
is the large component of the relativistic radial
wave function and Q the small component as dis-
cussed by Sandars and Beck. " It can be shown that
in the nonrelativistic limit F,,' approaches (3 )„,
for all j, j' and consequently the quantity DF&&.
= 2l1S p„(III/I)F, ,' ,approaches a„, [defined in Eq.
(16)] in the same limit. Examination of Eq. (26)
shows that in the nonrelativistic limit,

a"-a
nl t

a' -an» a -0. (28)

It is convenient to express the coefficients a", a',
and a' in terms of correction factors defined by

a01 a R01 a12 a R12 a10 a R10 (29)

in which a„, retains its nonrelativistic definition,
Eq. (16). Although the values required empirically
for.these parameters may, in principle, be dis-
torted from the predictions of Eq. (26) by configura-
tion interaction, "such effects are normally very
small for a ' and a' . As discussed in the nonrela-
tivistic treatment in Sec. IIID, however, any 8 ad-
mixture can lead to a substantial contribution to the
hfs and must be explicitly taken into account by
adding the term CI ~ S [Eq. (17)] to the Hamiltonian
of Eq. (25). Although this term has precisely the
tensor cha.racter' of the final term of Eq. (25), it
is nevertheless convenient to introduce it explicitly

I

A( P1) = 2 (R —R +R )a31, + 2 C=+ 578. 345(25) MHz

A(0, 0')=A(4, 4)=(2 II.")5(n-SL, n S L )a"

30(2J+ 1)l(l+ 1)(2l + 1)
j(Z+ 1)(2l —1)(2l+ 3)

&& (l"nSL IIV' '
ll l "n S L')

S S' 1
x L Z, '2 g"

lz

+ (gI" —1)5(nSL, n'S'L') (a"+ C), (30)

where we have added the core-polarization term
in C to take explicit account of possible s admix-
ture, as in the nonrelativistic case.

The A factors for the required LS basis states
may be evaluated from Eq. (30). The result is

A(P P ) ——'(R —R'+R')a + —', C,

A(3PLs 3PLs) L (R01~ & R12+ R10)a

A(1DIs 1DL 2) R01a

A('P D ) = —[3/10v2 ]R' a

(31)

These expressions, which reduce to those of Eq.
(20) in the nonrelativistic limit, are given in terms
of E„, E, F, , and C in Eq. (50) in the Appendix.
Finally, the relativistic equivalent of Eq. (21) for
Sn" may be written as

as in the nonrelativistic case, and to regard a' as
due solely to relativistic effects and as being given
by Eq. (26c). With this interpretation, the extent
of relativistic effects may be measured by noting
the departure of R ', R', and R' from their non-
relativistic limits of 1, 1, and 0, respectively. Al-
though C may be much larger than a' and is inde-
pendent of it, only the sum of the two can be deter-
mined experimentally; the relative size (and sign)
of a' and C must be obtained from theoretical con-
siderations.

In calculating the hyperf inc-structure constants
A expected relativistically for the states 'P„'P„
and 'D2, we use the eigenvector descriptions of
Eqs. (1) and (2) and the definition of A implied by

Eq. (13). We therefore retain Eqs. (19); but when

we replace the nonrelativistic Hamiltonian of Eq.
(12) by Eq. (25), we must modify Eq. (14) to contain
a different + for each of the three terms. Thus we
have

A ( P2) = (1 —n )[ 2 a» (R0'+ 3 R'2+ R' ) ~ 2 Cj + n [R 'a ] + 2n(1 —n ) I [ —(3/10 v 2 )a» R 2]

= —1269.396(10) MHz,
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A ('Da) = + [ ,' a»—(R '+ 5 R' + R' ) + —,
' C]+ (1 —n )[R 'a»] —2o'(I —o )' ~ [ —(3/10 v 2 )a» R'a] = —1328.V 45(4) MHz .

Equation (32) could have been written in terms of
and F instead of Roc Ria and R o by

making use of Eqs. (26) and (29). Also A(~P2) and
A('D2) can be expressed in terms of $ and the A
values of the jj basis states of Eq. (5). Some of
these expressions are given in the Appendix.

In comparing Eq. (32) with the nonrelativistic
equivalent, Eq. (21), it is seen that instead of the
three unknowns g», C, and n of the nonrelativistic
case, we now have five unknowns R 'a», R' a»,
R' a», C, and e—but still only three equations.
Two procedures are used to introduce additional
constraints by approximating the relativistic in-
tegrals of Eq. (2V): (a) the Casimir approximation
and (b) the use of relativistic Hartree-Fock radial
wave functions.

DE„=F~()=l+ 2, Z,gz}~t,
DF =F„(j=l ——,', Z,«)a„»
DE, = G„(l, Z„,)a„, .

(33)

These "Casimir factors" have been tabulated by
Kopfermann. It has been found empirically that
the best value to use for Z,« is less than Z because
of screening effects. The value used depends on l,
and is commonly taken~' to be Z - 4 for P electrons.
When this is done, the results are E„(P~~z, Sn)
=1.0458, F„(p, (2, Sn) =1.2493, and G„(p, Sn)
=1.0511. These can be used in Eqs. (26) and (29)
to give R =1.1368, R =1.3463, and R = —0. 0619
for the p electrons of Sn.

If these numerical values are put into Eq. (31),
it is found that

A( P P )= —0. 135Va»+ ~C,

A( P P )=+0.6V2la»+ 2C,

(S4a)

(s4b)

F. Casimir Approximation

For an atom with a known nuclear magnetic-
dipole moment, theoretical prediction of the quan-
tities a ', a', and a' is equivalent to evaluation of
the integrals F„,F, and F, as can be seen from
Eq. (26). The Casimir approach' to evaluation of
these integrals is to approximate the relativistic
radial wave functions near the origin analytically
with suitable Bessel functions, normalized to fit
the observed fine-structure splitting, and then to
carry out the integrals. The details have been
summarized by several writers, and it is suffi-
cient here to give the pertinent results. The pro-
cedure usually followed is to express the integrals
DF,,' in terms of the nonrelativistic limit a„, by
use of correction factors F„and G„(normally near
unity}. The expressions are

A( Da, Da ) =+ 1. 1368a», (34c)

A( P 'D ) —+1.3463 [-3/10&2]+» . (34d)

a»= —1634 MHz, C=+ 714 MHz, ~= —Q. 4Q5 .

(s5)

These results appear considerably more reason-
able than do those of Eqs. (23) and (24), which were
obtained nonrelativistically. The magnitude I a» l

= 1634 MHz, though still larger than the Hartree-
Fock estimate, ' is 18% smaller than that obtained
nonrelativistically. The quantity C, which mea-
sures the amount of core polarization which must
be invoked to account for the observed hfs, has
dropped 38%. Most impressive, perhaps, is the
fact that the value required for n has moved 45%
of the way from the nonrelativistic value —0.472
toward the (presumably more physical) value
—0.323 obtained from the Zeeman effect. There
is still, however, considerable room for i.nprove-
ment. It is indeed disappointing to find that the value
of n obtained from the hfs is still about 25% larger
than the mutually consistent values found from the
energy splitting and the Zeeman effect.

Another method of assessing the validity of the
relativistic treatment using the Casimir correction
factors is to use the previously known values of
A( P,) and A(. P2), together with the Zeeman result
n= —0. 323, to predict the A value of the 'D~ state.
In this way, itispredictedthat A('D2) = —15V1 MHz,
while the value observed in the present experiment
is —1329 MHz. Although the prediction is off by
18%, it is 46% closer to the observed value than
was the nonrelativistic prediction given above.

In comparing these results with the nonrelativistic
equivalent [Eq. (20)], the most striking difference
is the appearence of the new term —0. 1357a» in

the hfs constant for the 3P, state. Thus, even in

the absence of core polarization, relativity predicts
hfs for the I'& state, while the nonrelativistic theory

predicts none at all. Perhaps the next most strik-
ing change produced by relativity is the 34/0 in-
crease in the strength of the cross term given by

Eq. (34d).
With these results, Eqs. (32) are reduced to three

equations in three unknowns (a», C, and n) as in

the nonrelativistic treatment. The solution for
a» and C is again independent of n, as was shown

in the nonrelativistic treatment above. The results
for Sn'" are
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G. Use of Relativistic Hartree-Fock Radial Vfave Functions

F„=6. 778ao

F = 9. 117ao

F, = 7.408ao

(36)

[If one uses Mann's' nonrelativistic Hartree-Fock
result (r ')»-6. 747a03, it follows that the equi-
valents of the Casimir correction factors (which
are just F,,' j(r )nl) are F„(p,&~, Sn) = l. 005,
F,(P, &z, Sn)=1. 351, and G„(P, Sn}=1.098. These
may be compared with the Casimir values 1.0458,
1.2493, and 1.0511, respectively. ]

When the results of Eqs. (36) and the known
value of the dipole moment of Sn 9 are used in
Eq. (26), the results are

a '= —1574 MHz= a pR ',5p

2= - 2021 MHz= a

a' =+ 176 MHz = a» R'o

(3V)

If these three values are used in Eq. (32}, it is
seen that the two remaining unknowns (C and o) are
overdetermined by the three measured A. values.
Indeed, no values of C and n can be found which
allow Eq. (3V) to satisfy Eq. (32). In view of this,
it was decided to relax one constraint by allowing
the relative sizes of a ', a', and a' to be given by
the calculated integrals as in Eqs. (36}and (37),
but to allow a single free scaling factor for all
three a' s.

Thus, from Eq. (37) we find

R' =1.284R ' R' = —0. 112Ro' . (38)

With the advent of modern high-speed digital
computers, it is no longer necessary to rely on
analytic approximations to the relativistic radial
wave functions. Mann has recently calculated
relativistic Hartree-rock radial wave functions for
the 5p electrons of Sn in each of the configurations
5p1/25p1/2, 5pi /25p3/2 and 5p3/25p3/2 It can be
seen from Eq. (5) that only the last two sets are
required for the states of interest. From these
wave functions, the value of F„was calculated for
each of the configurations 5P1/2~ps/2 and. 5P3/25~3/2

and found to be the same to within about 0. 5/g. The
5pi /25p3/2 configuration was then used to obtain the
ValueS 2

which may be compared with the corresponding
numbers obtained with the Casimir procedure,
namely, 1.1368, 1.3463, and —0. 0619, respective-
ly. Qn using the result R '=1.169 we find that the
value of a» required to fit the observed hfs is

a»= —1535 MHz . (41)

It may be noted from Eqs. (29), (40), and (41) that
the value required for the relativistic contact pa-
rameter a' is + 201 MHz. This is by no means
negligible in comparison with the core-polarization
parameter C=+ 447 MHz in Eq. (39).

The results just obtained for a», C, and n are
presented in Table VI, along with the corresponding
values obtained both in the nonrelativistic limit
and by the use of the Casimir factors. The column
at the right, labeled "experimental, " needs a word
of explanation. The value given for & is that ob-
tained from measurement of the g~ values (Zeeman
effect), since this method of determining n appears
to be the least susceptible to such distortions as
configuration interaction. The value given in the
table for A('Dz) is indeed the experimental result,
and the "experimental" value given for 8'2/R ' will
be discussed in Sec. IIIH.

It can be seen that the value obtained for n from
the relativistic Hartree-Fock treatment is indeed
considerably closer to the "experimental" value
than is the value obtained with Casimir factors. It
may also be noted that the amount of core polariza-

TABLE VI. Comparison of the results of treating
the observed Sn 9 hfs (a) nonrelativistica]ly, (b) relativ-
istically, with Casimir correction factors, and (c)
with relativistic Hartree-Fock wave functions, Use of
the relativistic Hartree-Fock wave functions leads to
values of & (the P2- D2 mixing coefficient), A(D&), and

/p which are considerably closer to experiment than
are those obtained either nonrelativistically or with the
Casimir correction factors.

Quantity
Nonrela-
tivistic

Casimir
approxi-
mation

Relativistic
Har tree- Fock

"Experi-
mental"

a nonrelativistic quantity, Mann's nonrelativistic
Hartree-Fock result" (r ')» = 6. 747ao' for Sn may
be used in Eq. (3V) to obtain

R '=1.169 R' =1.501, R' = —0. 130, (40)

When these values are put into Eq, (32), we now
have three equations in the three unknowns R 'a»,
C, and a. The solution for the first two is again
independent of n, and we obtain

a» (MHz)
C (MHz)
A ( D2) (MHz)
R12/ROj

—0, 472
—1985
+ 1157
—1859

1

—0. 405
—1634
+ 714
—1571

1. 184

—0. 366
—1535
+ 447
—1446

1.284

—0. 323

—1329
l. 399

a» = —1795 MHz,

C=+447 MHz, &= —0. 366 .
%'hile the relativistic theory says nothing about a»,

The values of &, a5p, and C are those that fit the mea-
sured values of A for all three states. The values of
A( D2) are predictions based on fitting the A's and gz's
of the Pi and P& states. The ratios R /R are pre-
dicted.
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a '=R 'a» ———1727 MHz, (42a)

a =R a»= —2416 MHz,

tion (measured by the value of C) required is much
smaller than for the other treatments. The true
value cannot be determined with assur ance because
it is indistinguishable experimentally from a' . The
value found for R 'a», as given in Eqs. (39), is
also smaller and is in fact only 14% larger than the
Hartree-Fock value as given in Eqs. (37). Finally,
if the value expected for A('Dz) is predicted on the
basis of the relativistic Hartree-Fock treatment,
by making use of the previously measured' values
of A('P, ) and A. ('Pa) and the Zeeman value
o = —0.323, one obtains A('Dz) = —1446 MHE. This
is within 9%%up of the experimental result.

yaIue of Ri2yA01

The basic equations which describe the hfs con-
stants of interest are Eqs. (32). If one requires
that n= —0. 323 as required to fit the known J=2
energy splitting and the observed g& values, and
if it is further noted that R'oa»+ C may be replaced
by a, single parameter, the three equations (32) in-
volve only three unknowns a5&

Roi a» R, and
a»R' + C. The solution is

support for this assumption. Excitation energies
are considerably more sensitive to configuration
interaction than are g values, however, and no
values of the Slater integrals Fo and F3 and the spin-
orbit constant g» for the 5s 5P configuration can
be found' which will satisfy the precisely known
energy separations to better than about 2'%%uo if con-
figuration interaction is ignored; the experimental
uncertainties are very much smaller.

It is known' that to first approximation the effects
of configuration interaction on the hfs can be taken
into account by treating the radial integrals as pa-
rameters, free to vary to permit a fit to the ob-
served A values. While this procedure allows
better fits to the experimental results, it may lead
to distorted values for such quantities as a» and
n. Thus, the difference between the value
n= —Q. 366 found from experiment by use of rela-
tivistic Hartree-Fock radial wave functions and the
value n= —O. 323 found by consideration of the en-
ergy splitting and Zeeman effect might be due to
distortions of configuration interaction.

The lowest-order effects of configuration inter-
action on the 5s 5p eigenvectors of interest may
be considered by letting

l
'P, ) = (I - ~' - Q. ~'.)' "

l

5s'5p' 'P", )

a' + C= R' a»+ C=+ 468 MHz . (42c)
5s 5p 'D2 ) +~, ~,

l
(config), 'P },

By dividing Eq. (42a) by (42b), we see that to fit
the energy splitting, g~ values, and hfs simulta-
neously, we must have

l'D.) =(I- 4-Z~ ~~)'"I5"5p' '~~')

—o., l

5s'5p' 'P ) +Z; u;l (config)~ '~&'), (44)

~"/f~" =1.3986 . (43) l'P, ) = (1 —Q y )'
l
5s 5p' 'P~ )

This is called the "experimental" value of the ratio.
The experimental value may be compared with the
theoretical values: (a) the nonrelativistic value 1,
(b) the Casimir value 1.184, and (c) the relativistic
Hartree-Fock result l. 284. Again, the relativistic
Hartree-Fock wave functions appear to give much
more realistic results than does the use of the
Casimir correction factors; both procedures are
a great improvement over the nonrelativistic treat-
ment —as expected.

J. Further Examination of Configuration-Interaction Effects

It was pointed out in Sec. IIIA that the importance
of configuration interaction for the states of the
58 5p configuration of Sn z should be very small
because of the high degree of isolation of the levels
Therefore, both in Eq. (1), which defines the mix-
ing coefficient o., and in Eq. (2), it was explicitly
assumed that the only impuriti. es in the 5p 5p
eigenvectors are due to other states of the same
configuration. The comparison (Sec. III B) of the
theoretical and experimental gJ values gives good

+ Q ( x(
l
(conf lg)( Pg )

in which cross-configuration mixing that is off-
diagonal in I. and 8 is ignored as likely to be much
smaller than the diagonal mixing. The configura-
tion-mixing coefficients X; and p, ; obtained from
first-order perturbation theory are

(5s 5P P II H„c Il(config), . 'P s}
E(5s 5P P,,) —E((config), P )

(5s 5p 'D II HNc li(config), 'D~s)
E(5s'5P' 'D, ) —E((config), 'D,)

(45}

where II„c is the noncentral part of the Coulomb
interaction.

In Eq. (44), the sum over i omits the configura-
tion 5s 5p, which is considered explicitly. The
values of g, X2 and g, p, f are likely to be very small,
probably not more than 1-2%, since (a) the excita-
tion energies of the 5s 5P levels can be fitted to
within about 2/o without invoking configuration in-
teraction at all, and (b) the value found for n from
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t"e ~= 2 energy splitting agrees to within 1/o with
that found from the g values.

From Eq. (44) and the measured gz values, it
follows that &~ = &~ = —0. 323 as before. Thus, as
mentioned above, configuration interaction does
Dot affect the g~ values in lowest order.

In order to calculate the effects of configuration
interaction on the energy separations or the hyper-
fine structure, it is necessary to consider each
perturbing configuration individually. Morrison~3
has pointed out that the largest cross-configuration
admixtures (except for core polarization, for which
the effects on the hfs have already been considered)
will very likely be from the 5P configuration be-
cause the principal quantum numbers are the same
as for 5s 5p Rnd consequently the radial integrals
in X and p. may be x elatively large. The change
in the J'= 2 energy splitting is given by

5Z('D, ) —5E('P,)

=+(p'»l. Ii
v""

II p'~'s'J. } .

'@faith these considerations and the knowledge that
X = p, , as shown by Morrison, it can be shown that
as p, is allowed to increase from zero, the mag-
nitude of Q.' required to fit the observed A. values
departs still further from those found in Eqs. (24),
(35}, and (39) for p, =o.

It would therefore appear that the difference be-
tween the value n= - 0.366 found by using the rela-
tivistic Hartree-Fock radial wave functions and the
presumably more physical value & = —0. 323 found

from the Zeeman effect does not arise primarily
from interaction between the 5s 5p and 5p config-
urations. It may well be, however, that the cu-
mulative effect of configuration interaction with

many configurations is responsible for the differ-
6Dce.

)(5 25pl 1~La )) y a/ )) 5p4 lDI 8) (a

Z(5s'5P' 'D,) —Z(5P' 'D,)

Morrison has shown that the matrix elements in
Eq. (46) [and consequently those of Eq. (45) for the
case in which the configuration labeled i is 5P ]
have the same value. The energy denominators are
on the order of 80000 em ' and probably differ by
a few thousand cm ', so that ~ and p, for the admix-
ture of 5P' into 5s 5P are probably the same to
within a few percent, and the change in the J= 2 en-
ergy splitting is most likely much smaller. The
actual shifts in excitation energy caused by con-
figuration interaction probably arise from many
configurations rather than from a few dominant
OQ6S.

In calculating the hfs A values expected for the
eigenvectors of Eq. (44) for the case in which only
the one perturbing configuration i = 5p is consid-
ered, we first note that the cross terms of the hfs
operator between the two configurations vanish
because the hfs Hamiltonian is a single-particle
operator. The A. values for the JS basis states of
5p differ from those of 5s 5p only by an over-all
radial scaling factor. This may be seen by con-
sideration of the angular parts of the three oper-
ators of the dipole Hamiltonian of Eq. (25) sepa-
rately. The angular part of the T L and I S con-
tributions to A (i.e. , the first and third terms of
the Hamiltonian) depend only on 2 —g~~ and g~ —1,
respectively, and are therefore identical for P~

and p . The corresponding contribution of the mid-
dle term to A is al.so unchanged since p~ is eon-
)ugate to p and

K, Perturbation of g~Values and hfs Constants by Other
Atomic States

It is well known that each hyperfine level in one
atomic state xnay be perturbed by hyperfine inter-
actions with levels of the same F in other states.
Since levels of different E are perturbed by differ-
ent amounts, the observed size of the zero-fieM
separations 4v, and consequently of the A values
inferred from them, is affected by these second-
order effects. Suitable corrections should be made
before the measured A values are compaxed with
theoretlca. l predictloDs in which such effects ax'6

1gnored.
The situation is further complicated when ob-

servations are made in nonzero magnetic field,
since th6 Zeeman oper Rtox' cRQ px'oduce similar
perturbations which may be coherent with the hfs
perturbations and therefore cannot be COQSidered

independently. For a magnetic substate F, M of
the state 4', the enex gy shift due to perturbations
caused by other atomic states +' may be expressed~4

at arbitrary field H by the relation

I,(e, fSm I X I vj', fF m) I

5E{4',I%M) = 2 2 '
@(@) E(@

I
)

(48}

where K„„is the hyperfine Hamiltonian defined in

Eq. (25) and X, is the electronic Zeeman operator

K, = p, a H ~ (L+ 28) . (49)

in which the nuclear sp&n I xs —' for Sn" '" and

5, M represents the particular combination of zero-
fieM basis states I', M for the real state Rt the
field H. The Ha.miltonian in Eq. (47) is
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TABLE VII. Shifts in hv and A as a result of hfs in-
teractions with other atomic states in Sni~3. They were
calculated for three sets of parameter values: (a) the
nonrelativistic set, (b) the relativistic set, with Casimir
correction factors, and (c) the set obtained by using re-
lativistic Hartree- rock wave functions.

Calculation

Parameter
values

used

C aleulated
shift
in b, v

(MHz)

Resulting
shift in
inferred
A value

(MHz)

Nonrela-
tivistie

Casimir
approxi-
mation

Rel ativis tie
Hartree-
Fock

a5p=- —1985 MHz

C = + 1157 MHz

~=-0.405
a5p= —1634 MHz

C =+714 MHz

~ =- —0. 366
a5p-= —1535 MHz

C - +447 MHz

—0. 174(3&t)
+ O. 125(3y,)

—0. 100(3P&)
+ o. o74('p, )
+ 0. 005(tD2)

—0. 074(3&t)
+ 0. 057(3P2)
+ 0. 004( D2)

+ 0. 116(3p()
+ 0. 050(3J,)

+ o. o67(3J,)
+ o. 030(3p,)
+ 0. 002(~D2)

+ 0. 049(3Pl)
+ 0, 023 (3&2)
+ 0 002( D2)

The energy shifts m3y be calculated even for states
far removed from the I.S limit by using the inter-
mediate-coupling eigenvectors for + and +' ex-
plicitly in Eq. (47).

Although the calculation of shifts according to
Eq. (47) has been automated, there remains the
problem of mhat numerical values to use for the
parameters a ', c', and C in the Hamiltonian, and
for & in the eigenvector. It has been shown above
that for Sn"~, the three observed A values (those
for 'P2, 'P„and 'D2) may be fitted by a variety of
choices of the parameter values. Because of this
amibguity, the corrections to the &v's and A. 's were
calculated separately for each of the sets of values
of a,~, C, and o!, i. e. , for (i) the nonrelativistic
set given in Eqs. (23) and (24), (ii) the "Casimir"
set given in Eq. (35), and (iii) the relativistic
Hartree-Fock set given in Eqs. (39) and (41). The
results are shown in Table VII. Although the values
calculated from the relativistic Hartree-Fock set
(at the bottom of the tabl .) are probably the most
realistic, the uncertainty assigned to each correc-
tion is chosen to be large enough to overlap that
calculated mith the Casimir set. The major source
of uncertainty in the corrected values of A('P, ) and
A('P2) is the uncertainty in the correction. The
corrections for the isotopes Sn"'"' are scaled
from those for Sn ~ in proportion to (pi/f) . For
the relativistic Hartree-Fock parameter set, Table
VIII gives a breakdown of the contributions to
hv(Sn"~) from the different states of the 5s 5p con-
figuration. Contributions from higher states were
ignored.

IV. COMPARISON OF RESULTS FOR Sn VGTH THOSE FOR
OTHER GROUP-IV NEUTRAL ATOMS

It has been demonstrated that the 5s35p configur-
ation in Snr appears to be mell isolated to a high

order. The excitation energies and g~ values may
be accounted for to within about 2%%u( without invok-

ing configuration interaction. Although the coef-
ficient that describes the mixing between the P~
and 'D2 states appears 46% too large when deter-

TABLE VIII. Breakdown of the calculated shifts of
the 4v's of Sniie into contributions from each state of
5s25p~ separately. The calculations were made with the
relativistic Hartree-rock parameter set (n = —0. 366,
g5&

———1535 MHz, and C=+447 MHz). As expected, the

D2 Pf
~ 2 interactions are much smaller than those

for Pg Pg~.

State
in which

+v ls
observed

3P

Perturbing
state

3P
3P

ig

P
3P

'~o
3P
3P

'lg

Perturbation
of Dv

(MHz)

—0. 014
—0. 059
—0. 001

0. 000
0. 000

+0. 059
—0. 002

0. 000
0. 000

+ 0. 001
+ 0. 002

0. 000

Total change
in Av

(MHz)

—0. 074

+0. 057

+0. 004

The 1.omest-lying configuration of the group-IV
neutral atoms C, Si, Ge, Sn, and Pb is ns nP, with
n=2, 3, 4, 5, and 6, respectively, and it is int;cr-
esting to compare the present results for Sn with

corresponding results for other atoms of the series.
The value of n, as determined from the 4= 2 energy
splitting, is about —0. 002 for C and —0. 017 for Si,
and the I.S limit is clearly an extremely good ap-
proximation. The situation for Ge, Sn, and Pb is
compared in Table IX. In Ge, as in Sn, the value

of & deduced from the J= 2 splitting is in excellent
agreement with that found from the g~ values. 3 The
4'%%uo difference in the corresponding valuesa'for Pb

probably reflects the increased importance of con-
figuration mixing. Deduction of n for pb 07 from
the hfs must certainly be done relativisticaBy, and

a treatment using Casimir factors, though much

better than the nonrelativistic treatment, still ives
a result 46'%%up larger than that found from the gz
values. No value has been obtained mith relativistic
Hartree-Fock wave functions, but it would pre-
sumably lie closer to that found from the gvalues.

V. CONCLUSIONS
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YABI,K IX. Comparison of the value of the 3/2-~D2
mixing coefficient n for the group-IV ng2ygp2 atoms C,
Si, Ge, Sn, and Pb. Both C and Si are virtually nonrela-
tivistic I S-limit atoms with o,' =- 0. 002 and —0. 017, re-
speectively. For Pb, a jj atom, the hfs is highly rela-
tivistic, and the effects of configuration interaction are
evident. Although the Sn atom falls between these ex-
tremes, relativistic effects are of great importance in
understanding the hyperfine structure.

Ge
4~24p 2

Eqs. (31) giving the /1 values of the I,S basis states
could have been expressed as

/l(RE,",RE", )=-sD[E„E-]+-.'C,

W(RE" 'P") =~4RD[22E.,+1OE —SE. ]+ —,'C,
(so)

~('D" 'D")=-,'D[4E,.+4E +E, ],
~('E" 'D")=(—'D/WZ)[8E -4OE +SE ]

I.S purity P())

+enex'gy

+hf 8

Nonrel atlvis tic

Relativistic, with
C as 1mlr approx.

Relativistic
Hartree- Fock

99
—0. 111
—0. 114

90
—0. 320
—0. 323

—0.405

55
—0. 646
—0. 672

—0. 978

Thus Eq. (32), which give the A values as calculated
in the L,S scheme in terms of the correction factors
8 ', R', and 8'0, could have been written in terms
of E„,E, and E. if Eq. (50) had been used in-
stead of Eq. (31).

The equations for the A values of the jj basis
states al e

+(P1/2PR /Rl 1 r P1/2 PS /Rl 1)

= —2' (It"- It"+ If")a»+ —,
' C

mined by a nonrelativistic treatment of the observed
hyperfine structure, the difference drops to 13%
when relativistic Hartree-Fock radial wave func-
tions are used. It is not clear whether the remain-
ing discrepancy is due to slight deficiencies in the
relativistic wave functions or to the cumulative ef-
fect of configuration interaction with many configur-
ations.
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APPENMX

Many of the Ms equations in the text could have
been expressed in other forms because of (a) the
equivalence of the I.Sand jj schemes for calculation
and (b) the correspondence between (E... E , E. )
and (a"/D, a12/D, a"/D) given in Eq. (26). Thus,

=-,'D(E„-E )+ —.'C,

/i(P1/RPR/Rl 2t Pl /RPS /Rl

= —,
' (5R"+ zs-It12+ R10)a„+—,

' C

=~12 D(SE„+5E )++~ c,
~(PR/RPR/2~ 2~Ps/RPR/2~

= -: (It" -~sft12+ —,'If")a»+ —,
' C

S 1=—DI'„+ —C,

~(P1 /2PR/Rl 2t Ps /2PR/2& 2)

= (—,
' &2)(ft" ——,'It12-It")a„- (~svY)C

= (~W~)DE. (/WE) c . —

The A values of the real states may be calculated
in the jj scheme, and either set of radial integrals
may be used. Thus by combining Eqs. (5), (13),
and (51) we may write the equivalent of Eqs. (32)
in the jj scheme as

A(sP, ) = s D(E,.—E )+ —,'C=+ 578. 345(25) MHz,

~('&2) = t'[(AD)(3E„+ 5E )+~sc]+ (1-&')[%DE..+ -'c] —2~(1- &')'"[(~»~~)DE. - (~s~~)c]

= —1269.396(10) MHz,

A('DR) = (1 —$2)[(~1sD)(SE..+ 5E )++C]+ $'[—,', DE,.+-,' C] +2)(1 —t')' '[(~12v2 )DE. —(+~2C]
= -1328.74S(4) MHz .

(s2)
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These expressions contain five unknowns (DF„,
DF, DF, , C, and $) just as do Eqs. (32), and
two additional constraints must be imposed as was
done in Secs. IIIF and IIIG. If the ratios F /F„
and F, /F, .are assumed to be given correctly by
Eqs. (36), for example, the values found for ao'

and C are those of Eqs. (39), and in addition we

find

(= —0.836,
from which, by Eqs. (6), we have n= —0. 366 as in
Eqs. (39). Thus, the two calculational schemes,
though entirely different, lead to identical results
as expected.
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