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By the superposition of Bethe's wave functions, using the Lieb's solution for the system
of identical bosons interacting in one dimension via a ~-function potential, we construct the
wave function of the corresponding system enclosed in a box by imposing the boundary con-
dition that the wave function mus t vanish at the two ends of an interval. Coupled equations for the
energy levels are derived, and approximately solved in the thermodynamic limit in order
to calculate the boundary energy of this Bose gas in its ground state. The method of super-
position is also applied to the analogous problem of the Heisenberg-Ising chain (not the ring).

I. INTRODUCTION

I et us consider the system of N identical bosons
in one dimension interacting via a two-body 5-func-
tion potential of strength 2c. In the repulsive case

c & 0, the extensive properties are obtained by en-
closing the system in a finite region of space. In

one dimension, the simplest way of enclosing the
system is to put the N particles on a circle of
length I., avoiding boundary considerations, which
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For the Bose system, an elementary solution is a
continuous symmetric function of the coordinates
x, , . . . , x„(or x(=-R„) obeying the Schrodinger
equation (1) in R„. Bethe's method gives us a
continuous set of elementary solutions ()(»„»(x) para-
metrized by a set fk) of N distinct numbers k„
A3, . . . , k„:

p(, )(x)=Ex(p)exp (Z pxx)
P 1n1

(2)

in the domain D, x1 & x3 « ' ' ' x„.
The sum is taken over all the permutations P of

order N. The coefficients a(P) are given here in a
rational form:

are replaced by periodicity conditions. This prob-
lem has been solved by Lieb and Liniger' using
Bethe's wave function. A more "physical" way of
enclosing the system is to enclose the particles in
a box; in our case this means that the wave function
must be zero at the two ends of an interval L. This
problem too can be solved using Lieb and Liniger's
and Bethe's method. An application is made by
calculating the boundary energy of the boson gas in
its ground state. Boundary energy will be defined
as the energy difference between the box system
and the periodic system of same length and density
in the thermodynamic limit. This coincides with
the usual definition of boundary energy as the coef-
ficient of L in the development of the energy as a
function of the length L of the interval.

II. ELEMENTAL, Y SOLUTION

We recall briefly the known results and introduce
the notion of "elementary solution" of the Schro-
dinger equation:

x»»2y
—Zs 2-+2c P 5(x» —x&)/=ED.

&=1 X&

a(PC)e' J"z=a(P) for all P, (6)

where C is the cyclic permutation (12 ~ N). From
Eqs. (3) and (6), we obtain I ieb and Liniger's sys-
tem of coupled equations

k»L= 2', +Pyg, q, i =[1,Nj (7)

with n& integers and the following definition of the
phases $»g.'

tan-,' g, z =c/(k, —k~),

III. QUANTUM NUMBERS

(6)

- &n1&nm& ~ ~ &nN &

For n» p» nz, we choose the sheet of g,j which in the
neighborhood of c =0 behaves like

g„~ [c/(n, n, )]L/2v. —

It remains to examine the case where some n are
equal. Choose, for example, the ground state of
total momentum zero:

n& =0 for pili, (lo)

In the vicinity of c=0, we look for a solution of the
type

k, =(2c/L)' q»+O(c), i = [1,Nj

where all the q& have to be distinct. Hence we find
the possible sheet

Yang and Yang' have shown the uniqueness of the
solution of Eq. (7) for each given permissible set
of quantum numbers. We give here an intuitive
argument based on the continuity in c in order to
determine the integers ln) simply. We will show
that there exists a continuous sheet of the function
g, ~(c) which goes to zero with c. There the integers
n, = iImkL /2»»as c -0 are the quantum numbers of
a noninteracting Bose gas with cyclic boundary
conditions and the permissible sets must be the
sets of N nondecreasing integers:

which shows clearly the continuous transformation
of ()(»„» from a permanent (c = 0) to a determinant
(c =0) when c increases from zero to infinity. The
corresponding energy eigenvalue is

()(„~(2cL)'~'(q, —q, ) + O(c) .

From Eqs. (7) and (10), the q, must satisfy

1
q, =+ Z

q(~~) 0'& —9'q

(12)

(13)

N

E»((» —Q k j
i=1

The periodicity conditions are expressed by the
following relation:

»i((x»=0, xq, . . . , xx) =$(xg( xq, . ~ ~, x„,xq=L),

This gives us a precise idea of the distribution of
the pseudomomenta A in the limit c-+0. From
Eq. (13) we recognize the q, as the zeros of Hermite
polynomials of degree N, which satisfy

a "(q) —2qz'(q)+ 2+a(q) = o .

x cD. (5)

It turns out that () can be chosen as a particular
t/)»~» if the coefficients a(P) satisfy

Thus the q» are distinct real numbers and the ()(,
&

all have the assumed behavior g,&-0 when c-o.
The density of zeros of H„(q) is asymptotically

given by the semicircle law,
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This gives us the density of pseudomomenta k;

Therefore we define the 2" sets

(k] =(kg, ka, . .. , kN) with k»=e»ik»I, e» =+1 .

p(k) = (I /»c)(4cp -k')"', (16)

with p=N/l, in the limit c very small. This dis-
tribution is very peaked. The corresponding leading
term for the ground™state energy is

E/N = fk'p(k) dk ~ (cp) (is}
o1ea" e&

&(e»e~ ~ ~ ~ e.)C».»(x) .

All the states g), ) have the same energy and we

look for a solution of the form

(21)

(22)

The limit c-0 has to be understood for a finite
system before we take the thermodynamic limit.
Nevertheless, it coincides with the dominant ter'm

in the energy per particle of the corresponding in-
finite system. ~

Finally we give here the correspondence between
the (nJ and the (I] introduced by Yang. Since the
noncrossing of the k has been proved by this author, '
we have

g,) = —2 tan"'(k» —k))/c+»»e(k» - ki),
and thus we write Eq. (t)

k»I, = 2'»- 2+)tan (k» —k))/c,

I, =n, +i —,'(N+1), z =—[1,N],

Thus the quantum numbers I, are integer or half-
integer according to the parity of N, with the con-
dition

I) &Iq& ~ ~ &IN.

IV. ELEMENTARY SOLUTION ON SEMI-INFINITE
AXIS

The boundary conditions for the Boson wave func-
tion ((x) in a box are twofold:

The condition (18) gives us

z a«c«r, »I (&+„-- "„:)
»(kpg gli ~ ~ ~ + Apg r»»« —0 (22)

Thus we are only free to sum over a~ when I' and

also the other e are fixed. This gives the 2" ' re-
lations

2C
A(e| ~ ~ ~ ep» ' ' ' eN) II 1+

S(~P~) kP~ -kS

2C
pg(eq ~ . ~ —e p»

~ ~ ~ e„) II 1+— = 0,
y(~s»)

-kP~ —ks

(24)

which must be true for any (k) and P. It is suffi-
cient to choose

2C
~(s»e»»' e«««)= ~ 1 e~e2''' e»«»

k] +kg

x(k»+k, =-e»ik»i +e, ik, i) . (25)

Thus we obtain the desired elementary solution

2c 2C
q»„))=Z Ze, " e„ II 1- „1+„-

(6} P f(g f+ g Pi Pgi

g(x» —Oi xai ~ xn) —0,
g(xg, xa, ~ ~ ~, xI»«) 0, -

(is)

(ie)
x exp[j(k ~ xg + ~ ~ ~ +k p«««x«««) ], (26)

where the x& are in the region D, 0 & xq & xa & ~ ~ ~

Xg IJ ~

The idea is to construct elementary solutions of
the Schrodinger equation on the semi-infinite axis
x, & 0, or x(=-8'„, solutions which have to verify
Ec). (18) on the boundary xi =0 of the fundamental
domain D

y 0&xp &xp«' ' ' xN & . Using Mc-
Guire's optical analogy for the general problem of
particles in 5 interaction, it is natural to construct
the wave function g by superposition of all the ele-
mentary waves»i«),

»
obtained by reflection at the

wall x =0. Such an elementary solution is written
«I«»», » «(x) and is associated with a set of N distinct
"positive" numbers I k; I . "Positive" means only
belonging to the same complex half-plane. If the
k are real, we can choose

(20)

with k~= &~lk~l, kP~= &P~l kP~l .
We notice that in expression (26), the sum is

taken over the 2"N ! elements of the N-dimension-
al cube reflection group. This remark leads to the
generalization developed in Sec. V, which appears
as a digression.

V, BETHE'S WAVE FUNCTION ASSOCIATED WITH
REFLECTION GROUP

In the two cases previously studied, the ele-
mentary symmetric solutions on the whole real
axis and on half the real axis have the following
common mathematical definition.

Let G be a finite reflection group acting in a,

Euclidean vector space B„with scalar product
(x, y). The group G is generated by a set of re-
flection generators g„(g„=1}. Let D„be a funda-
mental region for G, in other words, an open do-
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2=
gv «t 8 v +v ~v& gv'~v '+v ~

D„ is defined by

(28)

main of R„with the properties

gD„A D„=O for gcG (g&1), U gD„=R„.
(2V)

Coxeter' has shown that D„ is a spherical simplex,
bounded by a set of N planes 8„, with normal vec-
tor n„, associated with the generator g„such that

g u= —»3» (-c» is a root) . (36)

On the other hand, if p is a root, g p= e+ p is a
root (»). »»P). Now, if c» is a positive root, g„o» is
also a positive root, because from (29)

simple group I' ["positive" is defined with respect
some fixed arbitrary vector $ in D„such that

($, c») &0]. The root o» defines a reflection g„with
respect to the hyperplane perpendicular to a at the
orlgln:

(n„, x) &0 for all »), xcD»» . (29) (», () &0 and (c», t) & 0 ~ (c»+ v, t') &0 .

g)», )(x)= Z a(g)e' "'"', (so)

In our previous examples, the elementary wave
function appears as a sum over the elements of
the reflection group G:

Thus, if we choose

.=»/[(, )]"', ,=c/[(, » )]"', (37)

we can easily verify the following solution of Eq.
(35) for a(g):

g„x= x, xc.B„. (32)

The coefficients a(g) are determined by some
conditions at the boundaries of D„, which are not
arbitrary and have to be consistent with the group
property of G.

In the cases studied so far the conditions are of
the form of a linear relation between the function
»I) and its derivatives on the plane boundary B, for
instance,

(a) disc = 2c„((x), „=(n„V)dy(x)
gp x+8 +p

(33)

(b) )I)(x) =0, xcsome 8 . (34)

From (30) and (33), we obtain the sufficient rela-
tions for the coefficients a(g):

with kcD„and xcD„. In the "symmetric" case the
solution is easily extended to the whole space R~
by the relation

4(»)(gx) =4))»)(x) ~

The continuity of g at the boundary 8, is ensured
by

(38)

—n»1)+2c Z O((x, »).))g=()», k)g .
fM &0

(39)

Thus with each semisimple I ie algebra can be as-
sociated at least one symmetric (invariant by G)
Bethe wave function. It results from the invariance
of the Hamiltonian (39) by G that this equation ad-
mits solutions belonging to other types of symme-
try. More precisely, since the reflection group
G is in some sense the commutator of I', the co-
variant solutions g will be representations of the
corresponding semisimple X'. But here we restrict
the study to the invariant solution.

We illustrate briefly these general considerations
with our two examples. First consider the sim-
plex AN. » corresponding to Sfj(N). Let e» be an
orthonormal basis in R„; the "positive" roots of
SU(N) can be taken as

»x=e» —e», i &j, i,j =[1,N] .
We have

From the choice of our boundary conditions (33)
and (3V), the function ( is an elementary symmetric
solution of the following Schrodinger equation in
Rg.

a(g„g) (g)'», n„) + ic„
a(g) (gk, n„) —ic, (s5)

(x, e, ) =x„5((x,o»)) = 5(x» -x,),
(gk, »).) = (gf»)» —(g)'», ) .

for all g and generators g„.
We will show that these relations give a(g) in

terms of all the reflection operators g (g = 1) of
G. (Note that the set of g is larger than the g„,
which are only the generators. ) This can be done
by using the known properties of the finite reflec-
tion group in RN, which are nothing else than the
reflection group of the root diagram of the semi-
simple Lie groups. 6 Let us call n (vector in some
R„) a "positive" root in the diagram of a semi-

g =P,
&

= reflection with respect to the plane x&

-x& = 0 or transposition of the permutation group
G = S„. The fundamental region with normal vec-
tors

n„=e»,g
—e„ i = [1,i)i]

and generators g„=P; „& is determined by the in-
equalities

(n„, x) &0 ~ x», »
—x, &0
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e) for Bg or Re] for Cg ~

The generators of C„can be taken as

(40)

aegtSea-eg~ ' ' '
~ CeN-eg g

and this gives the fundamental region 0 &xq &x&

& ~ ~ ~ &x
In fact, our wave function satisfying g(x) = 0 for

x& = 0 is a limiting solution of the following more
general Hamiltonian with potential function de-
pending on two coupling constants b and c:

I (b, c) = 2bp 5(x, ) + 2c 5 5(x, —x,) + 5(x, +x,) .

The solution in this case is given by

(41)

a(g)= II 1—
(g). , e, +e,) (ja, e, -e,))

As in formula (38), one recognizes the product
over the reflection defined by the roots (40), but

with the freedom in the choice of the coefficient
corresponding to the roots +e&.

This corresponds to the fact that the reflection
group does not completely determine the length of
the roots: We can have B or C. One verifies
easily that the double product II«~ in (42) is un-

changed by the transformation g-g, g. Thus

a(genug) (gk, e»}+ib
a(g) (g k, e,) ib-

On the other hand, the roots e„+e, and e& ~ + e, are
exchanged by the generators g. . ., unless
e~ —e&» which changes its sign. Finally, gey 8y f,

exchanges the e~ and e» factor in the simple prod-
uct II, in (42). Hence the conditions (35) which

express boundary conditions corresponding to the
Hamiltonian (41) are satisfied by the solution (42).
Now our problem with the strict zero-wave-func-
tion condition at x&=0 corresponds to the limit
5- ~, and we recognize exactly the wave function

—oo &xg &x~& ~ ~ ~ &xg &m .
We recover the familiar relations (2) and (3) of
Sec. II.

The second example concerns the elementary
solution on the semi-infinite real axis, constructed
with the 2"N I elements of the group of the hyper-
cube or of the Cartesian frame. Two root diagrams
are possible: C„corresponding to Sp(2N) and 8„
corresponding to SO(2N+1) with the same reflec-
tion group (Coxeter's simplex C»)(). The positive
roots of D„are e» +e& and e, —e&, i &j, with the

supplementary roots

where each particle interacts with the center of

gravity of the other two.
We do not think that the models corresponding

to the ezceptional reflection groups are physically
interesting. These group considerations would

be fruitful, if they lead to the explicit construction
of the covariant solutions g„(x) with yxcD„be-
longing to a given irreducjble representation of the

reflection group G.

VI. COUPLED EQUATIONS FOR SPECTRUM

Now we go back to our specific problem. With

the knowledge of the elementary solution g»» g»»(x)

in the region 0 & xq s ~ ~ ~ & x„, we are able to im-
pose on the wave function the second boundary
condition, E»I. (19}:

y(x„x„.. . , x„=f.}= 0 .

This gives the relation

Z II 1 — ' 1+ ' e"J)»z =0,
6 f (g kpf +Ape Qg~ Qpy

which has to be valid for al.l P and fe).
Setting PN= 0., we obtain

3»») z g k»» k~ iC k») + k~ +iC

g(go ) kg kfg +zc kg +kl zc
(43)

which must be satisfied for all n, and all possible
signs of k. This last point becomes clear if we

write our system in the form

8»») L w (kl+ lc) k»»
e ~ g Q ~

»)tg ) (-k„+ic) -k,

Thus, writing k instead of lA;~l, we obtain the
system of coupled equations

(26) in the limit form of (42). The wave function
restricted from the whole space to the region
xq & 0 for all i does not see the part of the poten-
tial 5(x, + x»), and thus on the half-axis. x» & 0, in
the limit b- ~, potential (41) is e(luivalent to the

original one. For three values of the constant

b/c, b/C=0, g, 1, the solution (42) coincides with

(38) corresponding to the Schrodinger e»luation

(39), and the corresponding groups I' are, respec-
tively, SO(2N), Sp(2N), and SO(2N+1).

Unfortunately the tranSlational invariance is lost
in most of the new Hamiltonians. There is one

exception corresponding to the group G&, for which

the reflection group is simply Doa. The corre-
sponding potential function is

V= 5(x, -x,)+5(xa-xs)+5(x, -x,)+5(x, +x, —2x,)

+ 5(xg + xg —2xa)'+ 5(xg+ xg —2x»),
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k I = vs + 5 tan —- - —+tan
g(We) I +

(44)

and the surface energy

ka=}}m 0 (b -k,'})
i~i

(52)

with k &0, a = [1,N].
As in Sec. DI, by applying the continuity prin-

ciple in the coupling c, we deduce that the set of
integers J}n) is a system of quantum numbers for
free bosons in a box I:

&&~~&n, &" &n„. (4s}

The system (44) is very similar to the system
(7) and here we make the analogy precise. Con-
sider (a) the N bosons system in the box [0,L],
and (b) the 2N bosons system periodic on [0, 2L].
Both have the same density. For the periodic sys-
tem we look for a solution of the form

(k},„-=((-k]„,fk]„), k, &0, f = [I,N]

[s]w '[( s]N} (+s]N]k sl & 0 f [1 N] ~

(46)

Thus we get exactly Eq. (44) for N bosons in the
box [0,L]. We conclude that the energy levels of
N bosons in a box L are one-half the energy of a
class of levels of 2L - (periodic system at same
density):

E bIkx( ) Eky lai cxtc( ] (47)

The existence of real solutions for (44} is a cor-
ollary of the corresponding result for Eq. (7).
The ground state in the box corresponds to the ex-
cited level ((-1]„,$+ I}„)of the periodic gas. This
allows a direct calculation of the difference

We put

k, -k, =. (I/L) k(k, )+O(1/L')

and we deduce from Eqs. (50) and (51) that

c + k(k, ) -k(k, ) k(k, )+k(k,)
c +(k) -kg) c +(k(+kg)

(ss)

(54)

g
kx = lim —2 k, k (k,}) (55)

We know that in the limit L- ~, den sit yp= 2N/2L
and the asymptotic number of k& on the interval
[k, k+ dk] is 2L p(k)dk, where p(k) is the solution of
the Lieb integral equation

P(k) —— — —
p x- P(k')dk'=

2
. (56)

The yarameter E is related to the density by the
equation

p= J p(k)dk . (s7)

k( k)=-k(k), (s6)

The limiting form of (54) is clear. Extending for
convenience the definition of k(k) to negative values
of the argument by

(Eh}x 5 k Ec}kalkc RI
) (46) we obtain

Moreover, it is shown in the Appendix that for
the ground state we get

EN"""=N (energy per particle)+O(l/N) . (49)

k(k)=wc(k) —2c, p(k')dk', (59)
k(k) —k(k')

Thus lim( —,E~""—E'""")= 0 as N- ~ and we de-
duce that the quantity &E, to be calculated in Sec.
VII, represents the boundary energy or "surface"
energy of the boson gas enclosed in a box.

VII. BOUNDARY ENERGY

Let us call k, and k„respectively, the momenta
for the 2L-periodic and L-box system at the same
density. We have the coupled equations

with e(k) =k/ Ik I, or, by the change of function

g(k) = p(k) k(k) (odd function),

me finally obtain the integral equation

g(k) —— g-. . .=-,'~(k)c g(k') dk'

(k -k')'+c'

and the boundary energy

(60)

(61)

N g c
k, L =Z tan ' + tan '

+ (so)
~E=2 j kg(k)dk. (62)

c C
k, L=v+Q tan ' +tan '

@g=i + J

f, =[I,N] (Sl)

In Sec. VIII a method is described to solve ap-
proximately Eqs. (56) and (61) in the limit c/p- 0
and thus to calculate the leading term of &E.

VIII. ELECTROSTATIC ANALOGY

Integral equation (56) is known in potential the-



M. 0AUDIN

f(t) dt
V(r z)

[ 2 (t
~ )2]1/2

«1

(68)

V(p, z) is real (f even) and harmonic outside the
lower disk(@=0, 0&r& 1). The densityof charge
c(r) is related to f(r) by the Abel transform

1 d ) f(t)tdt
a(r) = —

2 2 x(2(t' r)-
r

and the total charge on this plate is

Q= f f(t)dt. (65)

In the presence of the upper disk at z = a, density
—o(r), the equilibrium condition on the lower disk
is

V(p, 0) —V(p, a)=V, 0& p&1.
Taking the Abel transform of Eq. (66), one obtains
the Love equation for f(t):

ory as the Love equation for the old problem of
the circular disk condenser. ~ Consider two coaxial
circular metallic disks of radius 1, separated by
a distance a, and charged at opposite potential
+ Vo. In cylindric coordina. tes (r, z) the potential
due to an axially symmetric distribution o(r) (on
the lower plate at x = 0, for instance) admits of the
following useful representation in terms of an even
real function f(t):

x tin +ln . 71
16me

1+( a

From Eqs. (68), (69), and (71) we get the den-
sity of the Bose gas as a function of K and c'.

E' K 16& Z
p= —+—ln ——+ ~ ~ ~

4c 4m e c (72)

and the energy particle

K4 E3 K3 16& E
6p= - +—ln — — + ~ ~ ~

16c 6g 8p e c

Eliminating K between Eqs. (72) and (73), we ob-
tain the equation of state at zero temperature

'=cp-(4/8w) p"'c"'+ ~ ~ ~, (74)

This can be inverted to give

which coincides with the result given by the pertur-
bation theory of Bogoliubov previously calculated
by Lieb and Liniger.

Analogous methods could probably be used to
transform Eq. (61) into a problem of potential the-
ory. We only give here the dominant behavior of
g(k) and nE as c goes to zero. Following the Kac-
Pollard method, an approximate form of Eq. (61)
(in the reduced variable x=0/K) is easily found:

+1 I
PP II dy= —&(x) + (75)

y -x 2c

a I f(t')dt' ~V

w (t —t')'+a' n
-1

(67) ~ ~ =4mc()=

This becomes Lieb and Liniger s equation after a
change of scale, by choosing Vo= —,

' and a = c/K.
The capacity of the condenser is given by Eq. (65).
Between the two problems we have the correspon-
dence

1-xy —[(1 —x')(1 -y')]"'
xJ In (- (((,)(( x)p, )x(x)dx.

(76)

Formula (62),

p(x) =f(x/K), ~E= 2K' f yg(y) dy, (62')

density p= capacity=K f f(t) dt,

energy E = second moment

= (K'/p) f t'f(t) dt .

(68)

(69)

(77)

in the limit c/p «1.
IX. CONCLUSION

gives us the dominant term of the boundary energy
3 2g 8 3/2 1/2QE oc — ———p2''c 3 3

1 1 16'
Q= —+ —ln — +O(1) x

4a 4g ea

and Hutson's method' gives

1 21/Q 1
'4, (1-t )

(70)

The difficulty of the condenser problem is to find
an asymptotic expansion of the capacity at small
separation of the disks; by using physical argu-
ments Kirchoff obtained

Starting from a known elementary solution of the
Schrodinger equation for a boson system with a
6-function interaction, we have applied a superpo-
sition method to build up a wave function defined
by /=0 boundary conditions. This constructive
method led us to recognize the possibility of as-
sociating Bethe's wave function with each finite re-
flection group and of constructing the corresponding
Hamiltonian. We do not know if the periodicity
conditions are compatible with the solutions cor-



responding to exceptional reflection groups.
%'e apply this to calculate the boundary energy of

the Bose gas in its ground state. The same method
could be used to calculate the difference in energy
between the Heisenberg-Ising chain and the ring,
and possibly the boundary correction to the free
energy of some two-dimensional ferroelectric sys-
tem. %'e give here the coupled equations for the
spectrum of the Hamiltonian of the anisotropic
Heisenberg chain:

N-1
3C = Z S"„S„",1 + S'„S"1 +p(S„'S'„,1 ——,') .

With the notations

p= coshC (in the domain p &1),

cot2k =coth-,'Ctanag, 0«$ &v

from which we deduce the desired formula of Sec.
VI:

Iim[E, (p) 2-E~(p)]=0 as N- (A4)

We start with the following formula (Whittaker and
Watson 0), which is valid for an analytic function
on a segment line including the points a and b

(b —a=ru):

Z f(a+an) = — f(x) dx+ —,'[f(b) -f(a)]
N=1 K Q

+~g[f'(5)-f'(a)]+0(u') . (A5)

Specializing to an even function, and using the ana-
Iyticity at the ends of the interval in order to shift
the limits of the integral from ~&, we obtain the
modified formula

cot~(($) = cothC tan-,'g,
we have found the equation

I .(N+1) = ~(~„+—.')+ y(2t..)
+2 Z (($„—$~)+(($ +4), a= [1,M]

BC&e)

where the quantum numbers A. for the ground state
are probably

1, 3, 5, . . . ,N-1 (N=2M).

The energy is given by

1
g N-1

I=-g (F-11
f(x) dx+ —R„,

with I R„I & ,'v I f '—(vN/L) I + const
Fol' a set fk]'x solll'tlo11 of tile coupled equation~

the function h(p),

@(p)= p —Q tan I
I I

is analytic on the real axis, as is the inverse func-
tion p(h) with I dp/dpi &1. For any val~e of p we
have

E= Z (cosh„—cosh@) .
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(N 1)r/I 2c
dp L a= &n 11~gr, c +-[p-p(@)l
—=1+—

Thus, using (A6), we get

dk e dp' dk—= 1+—,~ 2 —,+ —
2 Rl(p), (AQ)

dp v „(p-p')'+c' dp'

with

APPENMX

%e have to show that the ground-state energy of
the L -periodic Bose gas behaves in the limit N- ~
like

E„=eN+ 0(1/N),

where & is the energy per particle given by Lieb
and Liniger's equations (56) and (5V) and

q =p(vN/L)

27/' 4p' 2'
~R1(p) ~

& 3, —„+const& 3= 3 +const
3C

I

dk 3

%e obtain also the density of particles

I "da(p')d,
dp

(A10)

(All)

(A12)

e=(1/p) J' ~'p(u)dn, p=N/L. (A2)
and t e total energy

limE„/N = a as N- ~ . (AS)

In fact, his proof gives the stronger result (Al),

%e follow exactly the proof given by Yang in order
to establish

with

P —— dP+ y

, dh(p)
dp L

(A13)
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~R2~ & r'rv2ri(dP/dh) (q)+const &~my+const. (A14)

Using the existence of a bounded inverse operator
of the integral operator in (AQ) and the fact that ri
is bounded, we deduce that p, = p + O(1/L ), p = N/L . (A17)

and the solution of Lieb and Liniger's equation for
the value of the parameter K, = q; from Eqs. (A12)
and (A15) we have

dp
—= 2vp, (p) +O (I/L') (A15) Since all the quantities p and E are derivable in the

parameter K, we have also

and
e, = c+O(1/L ) (Als)

E„=Laipi+ O(1/L), (A16)

where p, and p, (p) are, respectively, the density
and this gives, with (A16) and (A17), Eci. (Al) and
the corollary (A4).
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A detailed proof is given for the validity of substituting a c number for the zero-momentum-
state operators in the quantum-field-theory approach to the many-boson problem at a finite
temperature. We use a modification of the method of Kromminga and Bolsterli, and add
slightly to their work for the ground-state case. The case in which the bosons which condense
are themselves composite particles, as in superconductivity, is treated in this method by the
artifice of coupling to a fictitious elementary boson and then letting the coupling become in-
finitely weak; the self-consistent formulation of Schrieffer for superconductivity can be obtained
in this way.

I. INTRODUCTION

The application of quantum-field-theory methods'
to the problems of statistical mechanics can nor-
mally be made only when the grand canonical en-
semble can be used to describe the system being
studied. This is because only in the grand canoni-
cal average over states for the unperturbed system
can the occupation numbers of the separate single-
particle states be summed over independently and

the thermodynamic Wick's theorem applied, where-
as with the canonical average the restriction on the
total particle number prevents these different oc-
cupation numbers from being independent of each
other. For a system without particle number eon-

servation, this restriction is absent, however, and

the canonical ensemble average is just like the
grand canonical average with the chemical potential
p. set equal to E|.ro; in this case, therefore, the
quantum-field-theory methods are directly applic-
able in the canonical ensemble.

For the many-boson system at a temperature for
which there is no condensed phase, it is quite proper
to use the grand ensemble, but difficulties arise
when there is a condensed phase, that is, when one
single-particle state (typically the zero-momentum
state) is macroscopically occupied. In this case,
if the grand ensemble is used, the chemical poten-
tial for the unperturbed system, which is the refer-
ence system for this approach, has an anomalous


