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Calculations of cohesive energy, pressure, and compressibility have been made for liquid Na
at 393 °K. They are based on the Ashcroft form for the pseudopotential and the self-consistent
dielectric function recently given by Singwi et al., which have been found to give good agreement
with the measured phonon dispersion relations in crystalline Na, and a liquid structure derived
from a recent molecular-dynamics calculation by Rahman. The theory is formulated in terms
of a volume~dependent pair potential and additional volume-dependent terms. A model which
considers only volume-independent pairwise interactions gives incorrect results for the cohesive
energy and pressure. It also gives a different result for the compressibility from the full theory,
owing to the neglect of certain three- and four-particle interactions which are considered in the
full theory; this result is, however, in reasonable agreement with experiment. The full theory
gives good agreement for the cohesive energy, pressure, and compressibility if and only if an
adjustment is made to the Hartree energy, similar to that made in a previous calculation for the

crystal.

I. INTRODUCTION

The dynamics of metals in the solid and liquid
state is often treated by assuming pairwise inter-
actions between the ions. The validity of this ap-
proach is to some extent justified by the basic
theory of simple metals.! If (a) the adiabatic ap-
proximation, and (b) perturbation theory to second
order in the electron-ion interaction, are both valid,
one can indeed define an effective potential between
each pair of ions. The pairwise interactions, how-
ever, do not give a complete description of the sys-
tem; not only are the effective pair potentials them-
selves volume dependent, but also the energy of the
system contains additional terms depending on the
volume alone. These features have an influence on
the dynamic as well as the static properties; for
example, they are primarily responsible for the
failure of the Cauchy relations in metal crystals,
as pointed out by Mott and Jones.? Furthermore,
third- and fourth-order terms in the electron-ion
interaction are probably not negligible even in the
alkali metals; such terms represent three- and
four-particle interactions in real space. In the
long-wavelength limit some of these terms con-
tribute to second order, ** and explicit calculations
for the solid*® have shown that they are relatively

large.

On the other hand, the complexity of the problem
of liquid dynamics is such that the assumption of
pairwise interactions is almost indispensable.
Models based on this assumption have been used in
all molecular-dynamics® and many-body theory’
calculations up to now. The principal aim of the
present paper is to investigate the meaning of equi-
librium properties such as cohesive energy, pres-
sure, and compressibility for a model considering
only volume-independent pairwise interactions
(VIPI model). This is done by calculating both the
pairwise interaction terms and the volume-depen-
dent terms for liquid sodium. The calculations are
based on a local pseudopotential and a dielectric func-
tion which give phonon dispersion relations in the
crystal in very good agreement with those measured
by neutron scattering, as described in an earlier
paper, 5 hereafter referred to as I. An effective
pair potential (EPP) derived from these (Ref. 8,
hereafter referred to as II) has been used in a mo-
lecular-dynamics machine calculation, ® and the
pair distribution function (PDF) from that calcula-
tion has been used here. In this way one is able to
make a completely consistent calculation with a
realistic potential, avoiding the use of approxima-
tions like the hard-sphere model, which has been
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widely used in previous discussions of liquid met-
als. 10

The second aim of the paper is to investigate the
extent of the agreement between equilibrium prop-
erties of the liquid calculated on the lines described
above and experimental values. Since an EPP
derived from data in the crystal can only give in-
formation at discrete points corresponding to the
pair separations in the lattice, liquid properties
can in principle help to determine it more uniquely.
Dynamical calculations for liquid Na are also in
progress, !! and should provide a further test of the
EPP. In that case, however, one has to contend
with the many-body aspects of liquid dynamics,
whereas the properties considered here involve
only the EPP and PDF and their derivatives.

II. COHESIVE ENERGY

The cohesive energy of a static metal crystal was
considered in I. A simple form of pseudopotential
due to Ashcroft’? and a self-consistent dielectric
function due to Singwi et al.!® gave phonon disper-
sion relations in agreement with neutron scattering
measurements in Na and were used to calculate the
cohesive energy, equilibrium lattice parameter,
and compressibility of the crystal. It was found
that a small adjustment of the Hartree term E 4
was needed to give the observed value of the lattice
parameter, but that, when this was made, the cal-
culated cohesive energy and compressibility were
also brought into agreement with the observed val-
ues. The Hartree term represents the average in-
teraction of the conduction electrons with the non-
electrostatic part of the bare potential:

Ey=2 lim [w(g) +41Ze%/Q4¢%] , (1)
e~ 0

where Z is the number of conduction electrons and
Q=+47r,3Z is the average volume per ion. This
term is likely to be the least accurate one in the
above description since it involves the long-wave-
length limit of w(g), whereas the form of w(g) is
usually fixed by comparison with short-wavelength
data such as phonon-dispersion or Fermi-surface
measurements; an equivalent adjustment is made
by Ashcroft and Langreth in a similar calculation. !
An expression analogous to Eq. (22) of I can be
written down for the internal energy of the liquid,
adding the kinetic energy of the ions and replacing
the sums over reciprocal-lattice vectors by inte-
grals over the static structure factor S(4). The
latter has been derived in a molecular-dynamics
machine calculation of Rahman, ® simulating liquid
Na at 393 °K and a density of 0.927 g/cm?, corre-
sponding to 7;=4.05. The EPP used was that which
fitted the phonon dispersion measurements in the
crystal, as described in II. It has the form

() = Pos(q) + ¥pslq) (2a)

©eslq) =812%/04% , (2p)
(pbu(q) == G(q) (pas(Q) ’ (ZC)

where the function G(g) is defined for a local pseudo-
potential w(q) and dielectric function elq) as®

wlg)

o= | [<45] . (20)

although it can be defined more generally for a non-
local pseudopotential. Energies are given in Ry/ion
and distances in units of the Bohr radius.

The structure factor S(d) and the EPP described
above can be used to evaluate the cohesive energy
of the liquid. This reciprocal-space calculation
turns out, however, to be unsatisfactory. The
factor G(g) in Eq. (2c) damps out ¢,,(q) at large g,
leaving the long-range Coulomb part ¢,,(g) essen-
tially unscreened. The integral over ¢ has there-
fore to be carried to large g where S(§) has to be
obtained by Fourier transformation of the PDF
g(¥), a process with large inherent errors. It is
necessary instead to work in real space; since
©us(7) and @,4(7) cancel for large », the integral
involved is short-ranged.

One must first transform the expression for the
cohesive energy given in I to a real-space form.
The required form is given by

E=E,+E,+E3+Ey , (3a)
where
Ey=3[g(# o) at , (3b)
Ep=3@ur=0), (3c)
E4=0.982 —-Z—2-+(9—'ﬂ7-—0.916>£
s £ s

-(0.115-0.0311nr,)z,  (3d)
E g =the kinetic energy of the ions ,

and £ is a constant related to the compressibility
of the electron gas.®'® The physical meaning of
the three potential terms is clear: E, represents
the pairwise interactions, E, the self-energy of the
band-structure part (which cannot be left out like
the self-energy of the electrostatic part), and E,
that part of the energy of the electron gas not in-
cluded in the first two terms.

Calculations performed with values for g(¥) ob-
tained from the molecular-dynamics computations
proved satisiactory; after a certain point, the value
of E, did not depenc significantly on the cutoff of the
integral. The results for the liquid are given in the
third column of Table I. For comparison, analogous
results for the solid are given in the second column,
equivalent to the reciprocal-space calculation de-
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TABLE I. Equilibrium properties of liquid Na (Ry/ion).
E, E, oP QB QB

Torm Solid, 0°K Liquid, 393 °K

1 -0.0160 -0.0114 0.0203 0.0950 0.1030

2 —0.2902 - 0.2882 -0.0194 0. 0350

3 - 0.1880 - 0.1857 - 0.0284 0.0212

AEy 0.0308 0. 0280 0.0280 0. 0560

Total PE -0.4634 - 0.4573 0.0005 0.0950 0.1028

KE 0.0010 0.0038 0.0025 0. 0025 0. 0025

Total calc —-0.4624 - 0.4535 0.0030 0. 0975 0.1053

E,—E4=0.0089
Total obs —0.460 0. 008 95 0. 0000 0.0973%
+ 0.002° £ 0.00002°

2Reference 15, error not given.
Y Heat of sublimation plus first-ionization energy

scribed in I. The rows labeled 1, 2, and 3 refer

to E,, E,, and E;, respectively, and the row labeled
AE , refers to the modification of the Hartree term
mentioned above. The value of this term has been
taken as 0. 218 E,, as in I. The kinetic energy is
$RT for the liquid, and the zero-point motion has
been included for the solid, taken from a Debye
model with ®=172°X. The calculated energy differ-
ence between liquid at 393 °X and solid at 0 °K is

0. 009 Ry, agreeing well with the experimental val-
ue of 0.00895+0.00002 Ry. (The latent heat of
melting is 0. 001 95 Ry, the remainder representing
the energy needed to heat the solid to the melting
point and the liquid from the melting point to 393
°K.)

The agreement is perhaps fortuitously good in
view of the uncertainties in the calculation, in par-
ticular the adjustment to the Hartree term. Never-
theless, it is clear that the state of the theory is
sufficiently advanced to make the calculations of
the small energy differences between liquid and
solid feasible, contrary to what has been said
earlier.'® The improvement seems to be due to
two factors, first, the availability of reliable struc-
ture data from molecular dynamics, and second,
the use of a real-space representation which util-
izes the considerable cancellation between ¢, and
Pese

Comparison of the second and third columns in
Table I shows that the contributions to the energy
differences between solid and liquid from the vol-
ume-dependent terms E,, E3, and AE, are as large
as those from the pairwise interaction term E,.
Thus the VIPI model (considering only volume-in-
dependent pairwise interactions) is not adequate to
explain the observed differences in energy.

III. PRESSURE

The pressure of a liquid can be derived by stan-
dard statistical mechanics once the interatomic po-

(Refs. 16 and 17).
¢ Reference 17, corrected for electron contribution.

tential is known. '® In the case of a metal one must
take the volume dependence of the potential into ac-
count, both because the EPP itself depends on £
and because of the terms E, and E3 which depend
only on Q. The result® is

QP =QP, +QP, +QP3 +kT (4a)
where
- Ay 0 \ =
QP =- (r)(v—+r ~——->dr (4b)
== e\ v gy ’
7]
QP, = "'é"rs '37.—[(pbs(r=0)] ’ (4c)
S
OF
QPy=-+r, —2 (4d)
3 37s a,},s

Here 8/87 denotes differentiation with respect to
the space coordinate at fixed »,, and 8/8r, differ-
entiation with respect to 7 at fixed space coordin-
ate. The integrands in Eqgs.(4a) and (4b) can be eval-
uated from the expressions in Eq. (2a). Since the
dielectric function €(g) is a function of ¢/gp, i.e.,
g7, only, ® the full derivative in Eq. (4b) does not
involve € (¢g) but only the pseudopotential w(g); the
same fact can be used to evaluate the derivative in
Eq. (4c), and leads to a considerable simplification
of the algebra.

The results are given in the fourth column of
Table I. The potential terms give a result which
is nearly zero, but the addition of the kinetic term
gives a total QP of 0.003 Ry/ion. Since the bulk
modulus B is about 0.1 Ry/ion (see Sec. IV), such
a pressure would require a change in 7, of about
1% to produce equilibrium, which is a reasonable
result in view of the approximations made; in par-
ticular, the total QP is about 10% of the contribu-
tion from the adjustment to the Hartree energy.

In the VIPI model, the pressure is given by

aP=—} [¢@)r 3L aF kT . (5)
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For liquid sodium this gives a value of 0.011 Ry/
ion, a much larger pressure than we get with the
full calculation. Thus a molecular-dynamics cal-
culation at a fixed value of € is simulating a system
of particles under a large positive pressure. A
similar situation exists for the crystal in a force-
constant description, and leads to the violation of
the Cauchy relation even though the force constants
are axially symmetric.? It does not, however, fol-
low that such a description is a bad representation
of the metal; the metal is in equilibrium with re-
spect to the ions and electrons combined, not with
respect to the ions by themselves. The positive
pressure of the VIPI model is merely simulating
the volume-dependent effects of the electrons.

IV. COMPRESSIBILITY

The compressibility or its inverse, the bulk
modulus, is an interesting property of a condensed
system in that it ties together static and dynamic
aspects. There is a “compressibility sum rule”
which must be obeyed in a consistent theory for
the system. In a crystal, for example, the static
bulk modulus B, derived by double differentiation
of the energy with respect to volume, must agree
with the dynamic bulk modulus B representing the
appropriate combinations of elastic constants eval-
uated from the phonon dispersion relation by the
method of long waves.?!' The latter depends on the
interatomic interactions at constant volume, and
not on terms in the energy which depend on volume
alone. In a consistent theory, however, there must
be a relation between the form of the interatomic
interactions at constant volume and the derivatives
of the total energy—including the volume-depen-
dent terms—with respect to volume. This relation
leads to the compressibility sum rule.

In I the compressibility sum rule was investigated
for the case of crystalline sodium, and a significant
violation was found. This arises because our “full
theory” is actually not self-consistent, since it
stops at second order in the perturbation expansion
in terms of the electron-ioninteraction.®* There are
certain terms which appear in the dynamical matrix
to third and fourth order which contribute to second
order in the long-wavelength limit. These are
neglected in the dynamic modulus but included in
the static modulus, leading to the discrepancy
mentioned. Of course, it is in principle possible
to set up a dynamical matrix including these extra
terms??'23; these correspond to triplet and quad-
ruplet interionic interactions. No such calcula-
tions have as yet been performed, however, and
we neglect these terms in our theory. In that case
the dynamical matrix and hence the dynamic mod-
ulus involve only the pairwise interactions at con-
stant volume. The dynamical modulus B therefore
corresponds to the modulus calculated from the

VIPI model. Since this is itself a perfectly con-
sistent model, the static and dynamic moduli for
the model are both equal to B.

For the case of crystalline sodium investigated
in I, it was found that an adjustment to the Hartree
energy was needed to bring the static modulus B
into agreement with experiment, but that the dy-
namic modulus B, which agreed with experiment
before the adjustment, then became too large. A
possible explanation is that the third- and fourth-
order terms in the dynamical matrix become more
important as g becomes small, so that, if they
were included, one would have to modify the pseudo-
potential at small ¢ to maintain agreement with ex-
periment; this modification would then correspond
to our adjustment of the Hartree energy.

A similar sum rule applies in the case of a liquid.
The static isothermal bulk modulus is derived from
the differentiation of the pressure:

QB=—92<Z—g>T , (6)

while the dynamic isothermal bulk modulus is re-
lated to the long-wavelength limit of the structure
factor S(Q@) =/ S(Q, w) dw by

QB=£T/S(0) . (7)

In a consistent theory the two moduli must agree.

If however we use second-order perturbation theory

and derive QB from S(0) through a calculation with

the VIPI model—such as the molecular-dynamics

calculation described above—we may expect a

discrepancy similar to that obtained for the crystal.
The explicit expressions are as follows:

QB=QB, + 9B, + LBy + kT , (8a)
QB, =+ [ Dg(F)Do(r)dr
+3% [g(¥)DPp(r)dt , (8D)
where
D=y —g;+rs 5%

and the derivatives have the sense described after
Eq. (4a), and

9 9
QBZ=_115'7’3 oy Vs o7 [‘Pbs(’)"—‘O)] +QP2 ’ (80)
s s
3 9E
QBy =%, o Vs 573+QP3 . (8d)
s s

A similar expression can be written for the dy-
namic modulus B since this can be calculated with
the VIPI model, which, as we said, is a consistent
model and therefore gives the same result for static
and dynamic compressibilities. (Wallace* estab-
lishes this fact for the crystal in the reciprocal-
space representation, but the result is much more
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transparent in the real-space representation.) The
required expression is

QB=QB, +kT , (9a)

- - VO -
QB =4 Dg(r)”—a‘iﬂar

- Y0¥d
+15 &(r)5"%5

(r)dT . (9b)
Of course Eq. (7) gives a much simpler expression
for QB. The equivalence of Egs. (7) and (9a) is in
fact a special case of the consistency condition?*
between the (#)- and (n +1)-particle distribution
functions. However, Eq. (9a) has the merit of
giving us some indication of how to evaluate Eq.
(8a) for the static compressibility, for which we
do not have an equivalent simple form. There are
in fact two problems in evaluating Eq. (8b):

(a) We should, strictly, use a g(¥) that is con-
sistent with the full theory, i.e., that gives S(0)
=1+/[[g(¥) - 1/9]dT equal to the correct value of
RT/QB. This however would require a calculation
which took account of the third- and fourth-order
terms for small ¢g. Since such terms correspond
to effective interactions between three and four
ions, this is practically impossible. We will there-
fore assume that the g(¥) calculated with molecular
dynamics using an EPP at fixed £ will not be seri-
ously in error except in the long-wavelength limit,
and will therefore use this g(T) both in Egs. (8)
and (9).

(o) Both Egs. (8) and (9) require the volume
derivative of g(¥), which could only be obtained
from moleculai'-dynamics calculations at different
volumes, a rather tedious task. For the present
purpose we make the approximation

g(%, 75, T)=(1/9Q)xfunction (¥/7,, T) . (10)

This is taking the structure to scale uniformly with
volume at constant temperature, which is true for
the static crystal lattice but not necessarily for the
liquid. From this approximation it follows that

- 9, 9, e
Dg(r)E%Tg+rsg§=—3g(r) . (11)
S

With these assumptions, Eq. (8b) becomes

QB, =+ [ g(¥) (D* - 3D) o(r)dF (8b")
and Eq. (9b) becomes
- 2
QB =1y g(F)Kg—i‘) —zL::,tp(r)dF . (9b")

Results for the dynamic modulus QB are given in
the fifth column of Table I. The value 0. 097 de-
rived without the adjustment of the Hartree energy

agrees well with the experimental value of 0.0973,
just as was found in the case of the crystal in I.
The value of S(0) from the molecular-dynamics
calculations® is 0. 032+ 0.002, giving 2B=0.078
+0.005. Now the approximation Eq. (10) implies
that the modulus obtained using Eq. (9b’) is an
“instantaneous” bulk modulus, which Schofield®
shows is an upper limit to the adiabatic bulk mod-
ulus, the latter being about 10% higher than the
isothermal bulk modulus in liquid Na. Our result
is consistent with this, but shows that the differ-
ence is not very large, and therefore that Eq. (11)
is a reasonable approximation for the present
purposes.

We may therefore proceed to evaluate B with
the same approximation, using Eq. (8b"). The re-
sults are shown in the last column of Table I. In-
cluding now the adjustment to the Hartree energy,
we get a final result of 0.105, which again is in
reasonable agreement with experiment, consider-
ing that we are calculating an upper limit to the
actual compressibility. As in the case of the crys-
tal, the adjustment to the Hartree term gives a
large contribution and is essential to obtain agree-
ment.

On the other hand the dynamic modulus B, which
ig identical with that obtained from a model con-
sidering only volume-independent pairwise inter-
actions, then becomes too large. The entire situa-
tion is exactly analogous with that found in the
crystal® and must be explained in the same way.
One possible explanation, in terms of a modification
of the pseudopotential at small ¢, has been men-
tioned above; a definitive statement, however,
must await a calculation of the third- and fourth-
order terms for larger ¢, i.e., of the effective
triplet and quadruplet interactions.

V. CONCLUSIONS

The principal aim of this work was to investigate
the meaning which can be attached to values of
equilibrium properties based on a model which
considers only volume-independent pairwise inter-
actions. The conclusions may now be summarized.
The calculated energies, even the small energy dif-
ference involved in melting, are incorrect. The
pressure is meaningless, since the model is simu-
lating a system of particles under a large positive
pressure. The matter of the compressibility is
less straightforward, because of the uncertainty
about the higher-order terms in the electron-ion
interaction. The instantaneous bulk modulus cal-
culated from the pairwise interaction model, which
is identical with the dynamic modulus calculated
from the full theory taken to second order, is sig-
nificantly different from the static modulus cal-
culated from the second-order theory. The former
is in good agreement with the experimental iso-
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thermal modulus, while the latter is only brought
into agreement by adjusting the Hartree energy.
This is the same situation as that found with the
crystal in I. A possible explanation is that the
modification of the pseudopotential represented by
the adjustment of the Hartree term and the signifi-
cant higher-order terms in the electron-ion inter-
action are both negligible except at long wave-
lengths, where they balance each other out. With-
out further calculations, it is impossible, of
course, to know how far out in the zone this long-
wavelength region extends.

As regards the second aim, the agreement be-
tween theory and experiment for the equilibrium
properties of liquid sodium, the results are satis-
factory. It is essential to include the adjustment
to the Hartree energy, but the same adjustment
gives good agreement for cohesive energy, pres-
sure, and static compressibility. These results
are also similar to those found for crystalline
sodium.

Finally, it should be mentioned that the resistiv-

ity and thermoelectric power of liquid sodium have
also been calculated with the formalism described
in the previous sections. Good agreement with the
experimental values was obtained. However, not
too much importance can be ascribed to this result
since in lithium, for example, the value of the
core-radius parameter which fits the phonon dis-
persion relation® is very different from either of
the two values which give the correct resistivity
for the liquid.?® The resistivity and more especial-
ly the thermoelectric power are sensitive to the
behavior of the pseudopotential around 2k, while
the dynamical and equilibrium properties are sen-
sitive to the values at shorter wave vectors.
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