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The possibility of accelerating particles with a focused laser is considered. The particle is
accelerated transversely by the electric field and redirected to the forward direction within a
single half-cycle by the magnetic field of the radiation. The equations of motion of the particle
are solved and discussed. Special attention is given to an intuitive understanding of the constraint
imposed by the geometry of the focal region. Optimum conditions are examined.

I. INTRODUCTION

One of the most basic problems of the interaction
of radiation and matter is the motion of a charged
particle in a plane electromagnetic wave. We shall
solve this problem classically, and apply the re-
sults to the acceleration of electrons to highly rela-
tivistic energies using the intense fields of pico-
second laser pulses. We will approximate the high-
intensity region of a focused beam by a plane wave,
and discuss the problems and the errors this intro-
duces. This procedure enables valuable insight into
the nature of the problem, and gives numerical re-
sults to within a factor of 2. The order of magni-
tude of laser power readily available is 10"W,
which means that a diffraction-limited focus (take
1= 1 p) gives fields of the order of 10 esu or 3X10
V/cm. In a single pass across such a focus, an
electron could gain in energy 3&&107 eV. Since this
implies that the electron becomes relativistic within
a small fraction of an optical cycle, the usual linear
approximation, which ignores the magnetic field of
the wave and results in simple sinusoidal oscillation
of a particle, is no longer valid. Once the electric
field of the plane wave has given the particle a large
transverse velocity, the magnetic field causes the
particle's path to be bent into the direction of travel
of the wave. In very large fields, the particle's
velocity then approaches c in the forward direction
very quickly and it tends to travel with the wave,
gaining energy from it. W'hen the particle has
finally fallen behind the wave enough so that the
field directions are reversed, it is symmetrically
decelerated.

This acceleration mechanism is currently of
great astrophysical interest because of the enor-
mous energies that can be transferred to particles.
This idea was suggested years ago by Menzel and

Salisbury and by McMillan' for the origin of cosmic
rays, with the solar corona as the source of the
electromagnetic waves. Gunn and Ostriker' re-
cently conjectured that cosmic rays are generated
by pulsars by this same mechanism. Proton ener-
gies of up to 3&& 10' eV can be expected from a typ-
ical pulsar. Gunn and Ostriker estimate the mag-
netic dipole radiation fields caused by the rotation
of neutron stars to be on the order of 10 esu, which
is only an order of magnitude larger than obtainable
in the focused laser. The wavelength of the radia-
tion for the Crab pulsar, however, is 10' cm, which
is a factor of 10 larger than laser wavelengths.
Since Gunn and Ostriker's calculations indicate that
the energy of the particle increases as m' 'X E
where E is the electric field, we can expect 107-eV
electrons from the same mechanism with laser
fields, which supports our crude estimate above.
These results are especially encouraging consider-
ing that peak laser power might possibly become
several orders of magnitude higher than at present;
peak powers have been increasing by orders of
magnitude in the past few years, and there seems
to be no fundamental limit on these peak powers.
Hence it seems worth examining more closely the
possibilities of this particularly simple and prom-
ising laser acceleration mechanism.

II. TRAVELING AT SPEED OF LIGHT OR SOLUTION BY
INTRODUCTION OF INDEX OF REFRACTION

Although the problem of the classical motion of
a charged particle in a plane electromagnetic wave
has been solved many times, ' it is so fundamental
and interesting a problem that we think it worthwhile
to report a novel method of solution. Though
lengthier in simple cases, this method is more
physically intuitive because it eliminates the need
to solve parametrically in terms of g =- ~t -kz, as
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required by other methods. Also our method of
solution allows the treatment of phase velocity other
than c, as in a focused beam or in an interstellar
plasma.

To solve this problem we imagine a medium with
an index of refraction n». We then transform into
a reference frame moving at the velocity of light in
that medium, solve for the motion of the particle
in that frame, transform back into the laboratory
frame, and then take the limit n- 1. No property
of the medium other than its index of refraction is
considered. In the medium the light can be treated
as traveling at speed c/n so that it is actually pos-
sible to observe the interaction from a reference
frame co-moving with the light wave. In such a
frame we will find that the fields do not change with
time; the problem is reduced to that of the motion
of a charged particle in a static (but nonuniform)
magnetic field. The limiting process is a complete-
ly physical one corresponding to the introduction
and then evacuation of a thin gas from the region
of interaction, so we can expect no mathematical
problems with taking limits. With this method we
have found the motion of the particle for arbitrary
injection energy, direction, and phase with respect
to the wave.

The simplest possible electromagnetic field to
use in this problem is

cos kz —(dt

P. =l/u, y. =(1 —P.') '" (3)

We call this new frame, in which all quantities are
primed, the "light frame. " The quantity kz —(dt

corresponds to the number of crests of the electro-
magnetic wave between two physical space-time
points and so must be an invariant. Thus kz -cut
=k'z —u&'f', and (k, v) is a four-vector There-.
fore, we have

(u' = y„((u —ck P„)= y„(u(1 —P„n) = 0,
k' = y„(k P„&u/c) = y„k(1 ——P„/u) = k/y„.

In the light frame the electromagnetic fields are

The solution for a more complex waveform cannot
be given by superposition in this nonlinea, r problem,
but can be found in a manner similar to this simple
case. Postulating a thin medium, with index of re-
fraction n ~1, requires

k=n&u/c, B=nE .
The light is traveling through this medium at a ve-
locity c/n in the positive 2 direction. We wish to
travel along with the light, and therefore to trans-
form from the laboratory frame to a reference
frame moving with velocity v„=c/n in the positive
2 direction. Hence let us define

Ip,
dQ 8 I gv

Qvdv' vl C

where ~ is the proper time. This immediately gives

dQ~ I I I I= —('d, Qg cosk 8

I
du g I I

dt
I- =c Qx cosk z

y
(4)

dQ ~ dy

where &u,
' = eB'/y'mc. Thus the energy of the parti-

cle, y'mc, is a constant of the motion in the light
frame. This is of course because a purely magnetic
field cannot do work. Hence y' and P' are constants
of the motion.

To integrate these equations, the initial condi-
tions must be specified. In the simplest case the
particle is initially stationary at zero phase of the
wave in the laboratory; more general conditions add
no conceptual complications. With these simple
initial conditions, Eg. (4) integrates to

u„'= -A sink'g',

where A—= &u, 'y'/k'c = eB/mc k =neE/mc k measures
the strength of the interaction. Equation (5) implies

u, ' =u'(1 —z sin k'z')'@, (6)

where z-=(A/u') and where u'=y'p'. Note that the
initial conditions require u'= -y„P„. The particle
is injected backzvaxds very rapidly in the light
frame, and is curved off axis by the static magnetic
field, without any change in its total energy. For
a very thin medium e is much less than unity, going
to zero in a vacuum. Therefore Eg. (6) becomes

P'c = „;(1+—,
' e sin'k'z'),

which can be integrated to give

z'+ v„f' = (e/4 k' )[g ——,'(sin2q)],

static, since the wave has been Doppler shifted to
zero frequency. Spatial variation is still present,
but much more gradual as k' «k. Note that the in-
dex of refraction in the light frame n' = ck'/&u' = ~.

The magnitudes of the field become

B'=iy„(B- P„B)=o, B'=jy.(B P.-&)=B/y. ,

using Egs. (2) and (3). As viewed from the new
frame, then, the particle is moving in a static mag-
netic field B ' =j (B/y„) cosk'z'. The electric field
has vanished.

In the light frame, the relativistic equation of
motion for the four-velocity of the particle, u„'
=(y'P', y'), is
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where g= &A -kz = —k'z', the phase distance the
particle falls behind the wave in the course of the
motion. Transforming back into the laboratory
frame and letting n-1 gives

2
2p» -mc5pg=&,

p„=K ',
P„+(e/c) A„=Z ",

(16)

(i7)

(18)

p= 1+u =1+p+ sin Q ~ (io)

Thus the particle gains energy as g increases, that

is, as it falls behind the wave, until g reaches &m.

The energy gained and the forward distance traveled
are independent of the sign of the charge of the par-
ticle, as is intuitively reasonable. In the light
frame the curl of B' is clearly nonzero and yet the
electric field is zero. This is maintained by the
polarization currents present in the medium. Such

considerations are implicit in a simple transforma-
tion of fields.

III. CONSTANTS OF MOTION

kz = —,'A [g ——,
' (sin2q)] .

Likewise, Eq. (5) implies

dx'= -A sin(k's') ds'/y'P, ' .
Ignoring terms of order &, this can be integrated

to give, in the laboratory frame,

kx=A(1 —cosy) .
We note that u, =y„(u,'+P„y'), expressing u, ' in terms
of u„, immediately implies the useful relation

2ug= 2u» ~

Since y'= 1+u', we can use Eqs. (9) and (5), and the
fact that u„=u„' is the transverse component of a
four-vector, to find

p„=Amc sing . (2o)

Combining this with Eqs. (15) and (16) gives an en-
ergy gain corresponding to Eq. (10), which can be
integrated parametrically in terms of g to give Eq.
(7). These results then are the same as those found

by introducing a refractive medium.
The methods described above can be easily ex-

tended to more generalized initial conditions. The
particle begins at the origin but at phase Q of the

wave, rather than at zero phase where the fields are
strongest. It is injected with energy y; mc, with

velocity P&c at the angle from the forward direction
whose tangent is n = P;„/P;,. Equations (10}and (7)
then generalize to

where 5, E, K ', and E" are constants defined by
the initial conditions, and A„ is the vector potential,
which for these fields is given by

A„= —(cE/(u) sinful .
Equations (1,5) and (16) are not really independent as
they are related by the condition that

p c -p c-p c=mc
These equations for the constants of the motion

specify the problem completely. With the simple
initial conditions used above, Eq. (18) immediately
becomes

A straightforward solution of the motion of R

charged particle in a plane electromagnetic wave is
achieved by examining the constants of the motion
of the particle. This method is essentially the
Hamilton-Jacobi solution of Landau and Lifshitz
put into a more explicit form. The equations of
motion for a particle in the fields of Eq. (1) in vac-
uum are

d(p„) eE cosy W

dT mc c

d(p„) 8E cosrl
( )d7' mc

d(p, ) eEcosg
(

d& mc
(13)

d(W/c) eE cosy
(

d~ mc

8'-cp, =mc 5,2 (i5)

By inspection and minor manipulation of these equa-
tions we can find the constants of the motion

= (Ap, „y,/5) [sin(g —P)+ sing]

+ (A /25) [sin(q —Q) + sing], (21)

&& = r(P(.n/5+ (Argp(„/5')

&& [(1 —cosy)cosP + (q —sing)sing ]

+ (A2/85 ) [ —(2rl+ sin2q —4 sing) eos 2$

+ (3 + cos2q —4 cosy) sin2$

+ 4(q —sing}], (22)

where 5=y;(1 —P;,},as before. It must be empha-
sized that this is not an explicit solution, as g de-
pends upon z.

The constants of motion [Eqs. (15)-(18)]ean be
understood physically. The constant 5 is the (di-
mensionless) momentum of the particle in the g+ct
direction, as can be seen from a Hamilton-Jacobi
solution to the problem. The Hamiltonian of a
charged particle in an electromagnetic wave travel-
ing in the +z direction is a function of the z -ct
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coordinate only and not of the @+et coordinate; the
momentum in the a+ et direction must then indeed
remain constant. The Minkowski force upon the
particle at any instant, dp„/dr, is equal to eE(t)5
In the particle's instantaneous rest frame it feels
an acceleration proportional to the strength of the
field, so that 5 is a measure of the particle's sus-
ceptibility to being accelerated. For example, if
the particle is injected energetically in the +g di-
rection it will have 5-0, and will be little affected
by the fields. In a sense, the particle can only gain
energy to the extent that it lags behind the wave, but
in this case it stays very close to it. This is
in contrast to a particle in a linear accelerator,
where there is a longitudinal component of the elec-
tric field to continue the acceleration at velocities
tantamount to c.

Equation (16) reflects the fact that the force in the
forward direction, dp, /dt, is contributed entirely
by the magnetic field, and so is directly proportion-
al to the sideways velocity of the particle, v„.
Equations (17) and (18) simply state that for direc-
tions in which the field does not vary, the corre-
sponding canonical momenta are conserved. Both
of these equations can be derived directly from the
equations of motion using the defining equation (19).

IV. LASER ACCELERATOR

Is it practical to use intense laser fields to acceler-
ate electrons to high energies? Equation (21) indi-
cates that energy gains (gym c ) which are proportional
to A~y, might be achieved, because 5- (2y, ) ~ for
relativistic forward injection. Since gigawatt laser
pulses can give values of A of around 10, this would
mean multiplying the energy of the incident particle
by 100. But such intense fields require focusing
the beam, and so can only be maintained over a
short distance. Multiplicative energy gains are
impossible: To accelerate particles with large initial
velocities requires great distances, as Eq. (22)
makes clear. We are forced to consider an optimi-
zation procedure, to balance the strong fields pres-
ent at a sharp focus with the longer distances avail-
able with less focusing. For the sake of calculation
we approximate the complex high-intensity region
of the focused beam by a plane wave of extent 4FW
along the beam and FX across it, 7 as in Fig. 1. F
is the F number, or nominal focal ratio. The con-
striction of the beam is limited by diffraction. The
limitations of this approximation are discussed be-
low. Our results are exactly applicable to an un-
focused plane wave, which will diverge because of
diff raction.

The experimental variables are F and the power

We define the dimensionless parameter

focal plane x

2F A.

Z

Optical axis

4F A.

FIG. 1. Geometry of the focus of a lens with nominal

focal ratio E. The intensg field region scales as E2

longitudinally and as & transversely.

(23)

With the moderate power of 2. 5&&10 W, D=8. 55
does not vary with F and is a direct measure of the

optical power. We first consider the problem on

simple physical grounds. The energy gained by the
electron in crossing the focus is &8=force ~ &x, so
that Ay = eE&x/mc2, if the fields were to remain at
their strongest. But eE/mc2= kA = kD/2F. If the
maximum allowable &x is SX, then the maximum

~y to be attained is mD. This simple analysis indi-
cates that the energy to be gained by this accelera-
tion technique is strictly limited, regardless of the
injection velocity, and can only be increased as the

square root of the available power. In this picture
the higher fields obtained by focusing are only at
the expense of shorter possible distances across
the focus. Note that focusing does not increase the
maximum energy available to the particle, mac,
which depends only upon the total power. Focusing
does affect the distribution of that power, and so
determines how close the actual energy gain ap-
proaches the limit. The limiting energy gain does
not depend on the wavelength of the laser, for a
given power. The more exact calculations verify
these conclusions.

The electron is injected into the focal region with

an initial energy y& at an angle to the forward arctann,
in the plane of the electric field. We will as-
sume that for cases of interest the electron leaves
the focal region through the front rather than through
the side, so that the limiting equation is kz=szF
instead of kx = 2'. Since this acceleration mecha-
nism results in particle paths being bent to the for-
ward, this assumption clearly holds if n & 1/4F.
We find below that even when o. & 1/4 F the optimum
trajectory particle leaves the focal region near the
corner, without an explicit restriction in the x di-
rection.

We wish to find the maximum energy that can be
gained by the particle for a given set of initial con-
ditions. Experimentally we would vary the F num-

ber, making a narrower or a broader focus to find
the optimum geometry. But mathematically, since
Eqs. (21) and (22) are such complicated functions
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of q, we will have to implicitly vary E by varying
Remembering that the particle leaves the focal

regions at kg = 8mE', Et(. (22) [using Eci. (23)j be-
comes a quartic for Il in terms of g. This can be
solved explicitly for E= E(rl). E determines the
fields because it gives the area that the laser power
is spread across, and it also determines the dis-
tance the particle can travel in these fields. There-
fore, for a given set of initial conditions, I' fixes
the motion of the particle and hence the phase lag
g of the particle as it leaves the focal region. Equa-
tion (21) then becomes &y = n y(E(q), ri), understood
to refer to the exiting values. A computer maxi-
mization of this equation with respect to g gives the
largest ~y for the specified initial conditions, as
well as the I' number required for this optimum.

This optimization procedure was carried out to
find the energy gain &ymc for a wide range of
initial conditions. ~y, for a particle injected at
the peak of the wave (phase C in Fig. 2), at the
moderate power of 2. 5&&10 '

W, is shown as a func-
tion of injection angle and energy in Fig. 3(a). The
corresponding optimizing I' number is shown in
Fig. 3(b).

Only the injection phases between C and E (Fig.
2) were considered. The phase point E is equivalent
to C in that a particle beginning at either of those
points would experience the same forwards acceler-
ation. If the particle is started between I" and E,
it will begin to be decelerated as soon as it falls
behind the waves as far as E, and so cannot reach
the higher-energy gains. %'e find that for any initial
conditions, regardless of the phase at which it is
started, the particle must leave the focal region at
phase B in order to maximize its acceleration,
where J3 is in a narrow range of phase between 60'
and VO' behind C. Likewise the energy gain is
greatest when the particle enters the beam at phase
D, within a similar range ahead of C. By entering
and leaving the focal region at these points, the
particle stays in the beam only so long as the fields
are strongest and so receives the maximum ener-
gy. This is a soft maximum, though, and the ener-
gy gained varies by less than a factor of 2, in gen-
eral considerably less, when thy injection phase is

0.1
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10

10
10

0.1—

0.01—

1 0 3

10
10

100

I

100

10

F =1

F =10

F =100

F =1

10

10

10

FIG. 3. Computer results of (a) optimum normalized
energy gain 4y and (b) optimum E number, as a function
or normalized injection energy y~ and of the tangent of the
injection angle to the forward, n. The results shown are
for laser power P=2. 5 &&10 ~ W, with the particle injected
at the peak of the optical cycle (Q = 0).

FIG. 2. Single cycle of electromagnetic radiation.
The letters are referred to in the text.

varied between C and E.
The most striking result of the optimization is

that at a given power level there is a maximum en-
ergy gain which cannot be surpassed Figure 3.(a)
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indicates that for P = 2. 5X10"W an electron in-
jected at the peak of the wave cannot possibly attain
a 4y greater than 26. This result supports the
simple model considered above. The magnetic field
of the wave does not accelerate the particle; it can
only change its direction. The electric fieM does
the accelerating, but only across the focus. Thus
the energy gain is strictly limited by the finite width
of the focus. Figure 3(a) also indicates that it is
generally advantageous to inject the particle at a
slight angle to the forward. This isbecause, for a
highly relativistic particle moving directly forward,
the forces due to R and v&&5 balance each other al-
most exactly, and little acceleration results. But
if the particle is moving at a slight angle to the
forward, there is a significant component of the
magnetic force in the forward direction. In other
terms, the particle injected at an angle will be able
to move further across the focal region before
leaving through the front. For a less relativistic
particle, whose injection energy does not overwhelm
its subsequent energy gain, this effect is less im-
portant, as can be seen in the shape of the curves
in Fig. 3(a).

It is clear that a number of the subtleties of this
problem have been ignored. The high-intensity re-
gion of a focused beam is quite definitely not a
sharply delimited plane wave. The intensity is ac-
tually a maximum at the very focal point, falling
off in every direction. Superimposed upon an actual
focus, our chosen homogeneous focal region extends
to about the half-intensity circle in the focal plane,
and to about the 80% maximum intensity points along
the optical axis. The intensity in our focal region
is 4/m times the actual intensity at the focal point
of a focused beam of equal power. 7 The numerical
factors in the dimensions of our focal region were
of course chosen intuitively, to give a reasonable
representation of t~e focus. The more important
consideration is the scaling of the focal dimensions
with F, which we express exactly. We have also
totally ignored the effects of the particle's entering
and leaving the interaction region, which are ex-
pected to be minimal. These simplifications should
not fundamentally change the nature of the problem,
but only modify the numerical results by a small
factor.

A more serious problem we have ignored in using
our plane-wave approximation is the speeding up
of the wave through the focus. In the focal region,
the k vector is decreased by a factor of 1 —1/16E'
compared with a parallel beam of light of the same
wavelength. ~ This is to be expected, for when the
phase velocity of a plane wave of velocity c is mea-

sured along a diagonal to the direction of travel, it
is greater than c. This effect is alternatively
thought of as the Gouy phenomenon: the decrease in
phase by m of a ray through the focus. For our
purposes, this means that the wave mill more rapid-
ly outdistance the particle, decreasing the time for
effective acceleration. Since the wave does not
travel at c, it might be difficult to accelerate the
particle to as close to c as desirable.

Intuitively, this should not be an overwhelming
effect. It is the spreading of the focused beam that
causes the speeding up, just as it causes the finite
length of the intense field region. We might then
expect these two effects to be of similar weight in
limiting acceleration. In fact, we can try to ex-
press the speeding up by decreasing the effective
acceleration distance by a small numerical factor.
To see this quantitatively, we find the distance g~
in which the actual focused beam surpasses our
ideal plane wave in phase by —,'~, at which time the
particle will certainly be out of phase:

tk —(1 —1/16& )kl'P = s" 1

(k/16m') s, = —.'m,

gp=4F A. .

We see that acceleration is curtailed by the speeding
up about as quickly as it is curtailed by leaving the
intense field region. This effect then cuts practical
energy gain by something like a factor of 2.

Another way of seeing this is to notice that the
speeding up of the wave is significant only when it
is the main contributor to the particle's lagging the
wave. This is the case only when the particle is
traveling very close to c: When the particle's veloc-
ity P=1 —1/16F . This condition implies y=2v 2E.
We find in our computer calculations for the ideal-
ized plane wave, in fact, that for any injection en-
ergy the optimum parameters include F of about

&y, quite close to the above condition of significance.
The particle's lagging the plane wave is thus about
as important as the speeding up of the wave, and the
practicable energy gain is correspondingly de-
creased.

These results indicate that at present and in the
forseeable future laser accelerators cannot complete
with the higher-energy accelerators. But pulsed
lasers are a simple, easy, and versatile means to
impart large amounts of energy to charged parti-
cles, and might be useful in many specific applica-
tions. That peak laser powers can be expected to
increase in the future makes this means of acceler-
ation more interesting as time goes on.
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Effects of a Volume-Dependent Potential on Equilibrium Properties
of Liquid Sodium'

D. L. Price
Argonne National Laboratory, Argnnne, Illinois 60439

(Received 11 January 1971)

Calculations of cohesive energy, pressure, and compressibility have been made for liquid Na
at 393 'K. They are based on the Ashcroft form for the pseudopotential and the self-consistent
dielectric function recently given by Singwi et a/. , which have been found to give good agreement
with the measured phonon dispersion relations in crystalline Na, and a liquid structure derived
from a recent molecular-dynamics calculation by Rahman. The theory is formulated in terms
of a volume-dependent pair potential and additional volume-dependent terms. A model which
considers only volume-independent pairwise interactions gives incorrect results for the cohesive
energy and pressure. It also gives a different result for the compressibility from the full theory,
owing to the neglect of certain three- and four-particle interactions which are considered in the
full theory; this result is, however, in reasonable agreement with experiment. The full theory
gives good agreement for the cohesive energy, pressure, and compressibility if and only if an
adjustment is made to the Hartree energy, similar to that made in a previous calculation for the
crystal.

I. INTRODUCTION

The dynamics of metals in the solid and liquid
state is often treated by assuming pairwise inter-
actions between the ions. The validity of this ap-
proach is to some extent justified by the basic
theory of simple metals 'If (a.) the adiabatic ap-
proximation, and (b) perturbation theory to second
order in the electron-ion interaction, are both valid,
one can indeed define an effective potential between
each pair of ions. The pairwise interactions, how-
ever, do not give a complete description of the sys-
tem; not only are the effective pair potentials them-
selves volume dependent, but also the energy of the
system contains additional terms depending on the
volume alone. These features have an influence on
the dynamic as well as the static properties; for
example, they are primarily responsible for the
failure of the Cauchy relations in metal crystals,
as pointed out by Mott and Jones. ~ Furthermore,
third- and fourth-order terms in the electron-ion
interaction are probably not negligible even in the
alkali metals; such terms represent three- and
four-particle interactions in real space. In the
long-wavelength limit some of these terms con-
tribute to second order, 3' and explicit calculations
for the solid ' have shown that they are relatively

large.
On the other hand, the complexity of the problem

of liquid dynamics is such that the assumption of
pairwise interactions is almost indispensable.
Models based on this assumption have been used in
all malecular-dynamic si' and many-body theory'
calculations up to now. The principal aim of the
present paper is to investigate the meaning of equi-
librium properties such as cohesive energy, pres-
sure, and compressibility for a model considering
only volume-independent pairwise interactions
(VIPI model). This is done by calculating both the
pairwise interaction terms and the volume-depen-
dent terms for liquid sodium. The calculations are
based on a localpseudopotential and a dielectric func-
tion which give phonon dispersj. on relations in the
crystal in very good agreement with those measured
by neutron scattering, as described in an earlier
paper, hereafter referred to as I. An effective
pair potential (EPP) derived from these (Ref. 8,
hereafter referred to as II) has been used in a mo-
lecular-dynamics machine calculation, ' and the
pair distribution function (PDF) from that calcula-
tion has been used here. In this way one is able to
make a completely consistent calculation with a
realistic potential, avoiding the use of approxima-
tions like the hard-sphere model, which has been


