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Pressure effects in gas lasers are studied within the framework of a theory that treats the
center-of-mass motion of the active and perturber atoms quantum mechanically. Such a theory
considers the perturber-induced energy-level variations and the velocity changes of the active
atom caused by collisions on an equal basis. The calculation is carried out assuming that the

active atom undergoes many binary collisions before it decays. As such, this paper represents
a generalization of our previous work, which was valid only if the active atom underwent, on
the average, at most one collision in its lifetime. The transition from the "one-collision" to
the "many-collision". domain is achieved by use of a pseudoclassical collision model. This
model enables one to incoporate the results of a rigorous quantum-mechanical treatment of the
one-collision problem intdy standard classical procedure for handling many (binary) collisions.
The result is a quantum-meqhanical theory of collision effects valid in the many-(binary-)colli-
sion pressure region. Using this theory, expressions for the laser intensity profile are de-
rived employing a collision model which, although quite elementary, should prove to be rea.-
sonably accurate for lasers operating slightly above threshold at pressures where both the colli-
sion-broadened linewidth and cavity detuning are much smaller than the Doppler width associa-
ted with the laser transition. A comparison of theory and experiment is made, and the signHI-
cance of their relatively good agreement is discussed.

I. INTRODUCTION

In a previous paper' (hereafter referred to as
QMI) we discussed the problem of an atom interact-
ing with a radiation field and undergoing collisions
with perturber atoms. Collisions will, in general,
produce variations in the energy levels of the active
(emitting or absorbing) atom and may also alter
the atom's velocity. It was pointed out in QMI that
if one hopes to consistently incorporate these colli-
sion effects into the radiation problem, it becomes
necessary to use a quantum-mechanical description
for the center-of-mass motion of the active atom.

Employing such a method in QMI, we solved a
laser problem to first order in the field and obtained
the gain and frequency pulling parameters of the
laser. The calculation was limited to very low

pressures since it was assumed that the active
atoms underwent at most one collision in their life-
time. With this restriction, however, the results
were applicable to absorption as well as stimulated
emission experiments. The major purpose of this
work is to extend the calculation of QMI to third
order in the laser field and increase its applicabil-
ity to higher-pressure regions. Working to third
order in the laser field will enable us to obtain an
expression for the steady-state laser intensity as
a function of cavity detuning which, as pointed out
in Sec. I of QMI, may provide a sensitive probe of
the collision effects.

To perform the present calculation, we shall use
the pseudoclassical collision model (Sec. III) which

was first introduced in Sec. V of QMI, The model
is based upon an interpretation of the quantum-
mechanical results in terms of independently occur-
ring Doppler-modifying and phase-shifting collisions
and offers a simple alternative to the laborious use
of time-dependent perturbation theory in QML
(Doppler-modifying and phase-shifting collisions
will be defined in Sec. III. The former are related
to velocity changes caused by collisions and the
latter to the perturber-induced energy-level varia-
tions of the active atom produced in collisions. )
The pseudoclassical model is believers, to be valid
in the binary-collision pressure region but only for
the case in which one of the two radiative states
involved in the laser transition experiences a much
stronger collision interaction than the other. Thus,
this paper wi11 be directed towards situations where
only one of the radiative levels experiences a colli-
sion interaction and, unless noted to the contrary,
the text refers specifically to this case. We do
feel that the above condition is closely approximated
in many physical systems. To treat the case where
the collision interaction in the two radiative levels
is comparable, we offer a calculational model in
Appendix A.

In Secs. II and Ill we review QMI and outline the

philosophy of the present calculation, including a
detailed exposition of the pseudoclassical model in

Sec. III. The mathematical development of the
problem is presented in Secs. IV-VI, with expres-
sions for the gain, linear pulling, saturation, and
nonlinear pushing parameters of the laser, as we11
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FIG. 1. The two states a and b involved in the laser
transition are assumed to decay to some lower states not
shown in the figure with rates p~ and 'YI„respectively.
The frequency difference between the two levels is de-
noted by a.

as the steady-state field intensity, given in Sec.
In Sec. VII, we discuss the general properties

of our solutions and compare our findings with ex-
perimental results. An evaluation of the theory is
given in Sec. VIII.

It will prove useful (although not absolutely neces-
sary) to be familiar with Secs. I-IV and IX and the
beginning of Sec. P of QMI before proceeding.
Equations referred to from QMI will be prefixed
by a "I."
II. REVIEW OF QMI AND PHILOSOPHY OF CALCULATION

It will prove helpful to briefly review the calcula-
tion of QMI. The basic problem was to follow the
time development of a moving atom which at t = 0
was excited to the upper laser state a shown in Fig.
1 and then permitted to interact with both the exter-
nal laser electric field and several stationary per-
turbers. The initial condition chosen for the active
atom had to be consistent with the assumed macro-
scopic propertiesof the gas —namely, an isotropic
spatial distribution of excited atoms characterized
by some velocity distribution Ii', (vo). We found the
most convenient choice of initial condition for the
active atom, leading to the above properties, to be
a plane-wave state of definite momentum po nor-
malized to the laser volume. The velocity vo=po/m
that one associates with the plane-wave state must
be weighted according to the distribution W, (vo).

Having decided on an initial condition, we pro-
ceeded to solve the Schrodinger equation for the
problem by time-dependent perturbation theory to
first order in the laser field and to lowest order in
the collision interaction at each individual perturber
site. We then generalized this result to all orders
in the collision interaction at each perturber site
by use of an assumption discussed in Sec. V of
QMI. The result we obtained was valid only if the
active atom made at most one collision in its life-
time, since our treatment did not allow for succes-
sive interactions at different perturber sites. Ad-
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FIG. 2. Schematic representation of the chain of cal-
culations leading from the results of QMI to the present
results.

ditional approximations of a less restrictive nature
given in Sec. II of QMI are retained in this work.
For convenience, the negligible photon recoil terms,
included in QMI, will be neglected here.

The purpose of this paper is to generalize the re-
sults of QMI to (a) allow for moving perturbers,
(b) work to third order in the laser field, and (c) al-
low for the active atom to undergo many binary col-
lisions in its lifetime. A schematic form of the
chain of reasoning used to accomplish this general-
ization is pictured in Fig. 2 and will be discussed
below.

Although noted only briefly in QMI, it is possible
to extend the quantum-mechanical calculation given
there to the case of moving perturbers by taking
each perturber atom to be initially in a plane-wave
state [with its velocity determined by some distri-
bution W~(v~)] rather than fixed in the medium. The

only difference from the stationary perturber re-
sults is that the line-shape parameters (i. e. ,
widths, shifts, etc. ) are modified —the form of the
results of QMI [see especially Eqs. (I89) and (I90)]
remains the same. In this paper, we shall give,
without derivation, the line-shape parameters for
the case of moving perturbers. They will appear
as a somewhat obvious generalization of the station-
ary perturber results.

We have also extended the results of QMI by car-
rying out the time-dependent perturbation calcula-
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tion to third order in the laser field, thus providing
a rigorous quantum-mechanical expression in this
one-collision stationary perturber limit. Since the
generalization to allow for moving perturbers is
not directly dependent on the laser field, it is rea-
sonable to assume that we may combine the moving
perturber generalization of first-order laser theory
with the stationary perturber third-order laser
field calculation to arrive at a result valid to third
order in the laser field for an active atom which

undergoes at most one collision in its lifetime with

a moving perturber atom.
Finally, we wish to remove the one-collision re-

striction and allow the active atoms to undergo
many (binary) collisions in their lifetimes. In gen-
eral, this will increase the region of perturber
pressures for which the theory is applicable from
about 0. 2 Torr to a few hundred Torr, and it will
certainly encompass normal laser operating pres-
sures (=1-10 Torr). To include the many-collision
effects, one could attempt to continue with the time-
dependent perturbation theory of QMI, but this ap-
proach would prove tedious and difficult. Instead,
we propose to extend the results of QMI by use of
the pseudoclassical collision model (PCM) which

was first introduced in Sec. V of QMI and will be
described more fully in Sec. III. The PCM will
enable us to easily incorporate binary-collision ef-
fects into the no-collision quantum-mechanical re-
sults. Based on our confidence in the PCM, we

shall obtain a quantum-mechanical solution of the
laser problem to third order in the laser field for
the case of moving perturbers that is valid in the
binary-collision pressure region.

We cannot offer direct proof that the PCM is
correct. The only guarantee which may be given
is that it will reduce to the above-mentioned quan-
tum-mechanical result in the one-collision station-
ary perturber limit, and that it will also reduce to
well-known impact theory limits ' 'if one neglects
velocity-changing collisions. In addition, we hope

to develop the PCM in a manner that will attach
some type of diagrammatic basis to the model and,

hopefully, make it easier to accept. This diagram-
matic basis is no longer obvious if there is a com-
parable collision interaction for both radiative
levels. For this reason, we shall discuss only
single-state (a or b) scattering in this paper. How-

ever, to include the possibility of collision interac-
tion in both radiative states, we present a calcula-
tional model in Appendix A extending the two-level
scattering result of QMI to the binary-collision
pressure region. Since this calculational model
lacks the diagrammatic basis which the PCM pos-
sesses, our confidence in it is somewhat reduced,
although it does seem to provide reasonable
results.

Before discussing the PCM, we should like to

add one additional note. The final results that will
be obtained will depend critically on the quantum-
mechanical (or corresponding classical) line-shape
parameters. The evaluation of these parameters
is far from trivial and, in fact, represents a sig-
nificant problem in its own right. It is not the pur-
pose of this paper to provide a sophisticated deter-
mination of these parameters, and we shall be con-
tent with examining the general properties of our
solutions.

III. PSEUDOCLASSICAL COLLISION MODEL

The pseudoclassical collision model (PCM) per-
mits one to use classical collision concepts within
the confines of a quantum-mechanical theory. In
order to provide the framework for the model, we
shall proceed as follows.

(A) First, the quantum-mechanical solution of the
laser problem with no collisions as developed in

QMI is reviewed.
(B) Second, the effect of a classical collision on

the active atom is discussed.
(C) Third, the one-collision quantum-mechanical

solution of QMI is recalled and its relation to the
classical picture of a collision is noted.

(D) Finally, the discussions of (A)-(C) are com-
bined to produce the PCM.

A. Quantum-Mechanical Solution with No Collisions

In QMI, we found a quantity of interest in laser
problems to be the polarization function density
A(R, f, v~) which was related to the off-diagonal den-
sity matrix element of the atom by [see Eq. (I10)]

A(R, t, v, ) = p„(R, t, v, ) e""'"""
where a and b are the laser states depicted in Fig.
1, vo is the velocity of the atom at its time of exci-
tation, A is the laser cavity frequency, R is the
center-of-mass coordinate of the atom, and q&(t) is
a slowly varying phase. One may recall that

p,~(R, f, vo) is the quantum-mechanical generaliza-
tion of the atomic density matrix element p„(f, vo)
and that p,~(R, f, v~) is, in effect, the amount of
p„(t, vo) associated with the volume d'R [that is,
fd R p,~(R, f, vo) = p„(t, vo)]. In practice, one will
have to solve for p, ~(R, f, vo), use Eq. (1) to obtain
A(R, f, vo), and then project it onto the laser cavity
mode [see Eq. (113)]to find the polarization func-
tion

A(t, vo) = (2/V) f d3R A(R, f, vo) sin(k ~ R), (2)

where V is the laser volume and k is the propaga-
tion vector associated with the laser field. The
polarization function is then used in the amplitude
and phase equations of laser theory [Eqs. (I19) and

(I21)] to obtain chara. cteristic laser parameters.
To solve for p,~(R, f, vo) in QMI, we worked in the
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Fig. 3 that an interpretation of the diagram leads
one to conclude that only p„(R, t, vo) is nonzero
for times between 0 and t„while only p,„(R, t, vo)
is nonzero for times between t, and t'. Thus, the
diagrammatic solution allows an interpretation in
which, for a given diagram, only one density matrix
element is nonzero at any time. This feature will
be critical in formulating the PCM.

FIG. 3. The only type of diagram leading to a contri-
bution for p,&(B, t', vp) to first order in the laser field.
The two lines can be thought of as representing two pos-
sible Feynman world lines or histories for the atomic
state amplitudes. Density matrix elements are obtained
at any time t by forming the product of the amplitude rep-
resented by the upper line with the complex conjugate of
the ampl. itude represented by the lower one at time t.
Both amplitude histories begin with the atom excited to

A

state a with velocity vp at t = 0. While the upper line rep-
resents a history with no interaction with the laser field,
the lower one indicates an interaction with the field at
time t& taking the state amplitude from a to b. Note that
one may interpret this diagram to imply that only
p«(B, t", vp) &0 for times between t=0 and t=t~, while
only q,&(R, t, vp) & 0 for times between t =t~ and t= t'. The
value of p,&(R, t', vp) to first order in the field is obtained
by summing all such diagrams (i.e. , by integrating over
all t~ from 0 to t').

momentum representation and sought the probability
amplitudes a(p, t) and b(p', t) for the atom to be in
states a and b with center-of-mass momenta p and
p', respectively. A knowledge of these quantities
enabled us to calculate the desired quantity [see
Eq. (I34)]

p,~(R, t, vo) = (2vlh) f d p f dsp' exp(ih '
Op —p') ~ R

—[p'- (p')']t/2m]) e ' ' a(p, t) b(p', t)*, (3)

where is the frequency difference of the laser
levels a and b, and m is the mass of the active
atom. perturbation theory was used to determine
a(p, t) and b(p', t), and we found it was convenient
to introduce diagrams to represent each term in the
perturbation solution. For example, the only dia-
gram leading to a contribution for p, ,(R, t', vo) to
first order in the laser field is shown in Fig. 3.
The upper line indicates the a-state amplitude and
the lower one indicates what finally yields the b-
state amplitude at time t'. In the Feynman sense,
the field is assumed to act instantaneously at t, and
it is necessary to carry out an integration over all
possible ~s from 0 to t

At any time t between 0 and t', the product
a(p, t) b(p', t)* is well defined. It is clear from

B. Effects of Classical Collision

Let us temporarily put aside our quantum-mechan-
ical calculation and consider the effect of a classi-
cally described collision on the active atom. The
active atom will also be thought of as classical in

that one may assign to it a given position and ve-
locity. Hence, its density matrix is specified by

p(R, t, v, vo), where R and v are the active atom's
position and velocity, respectively, at time t.

Although not conventionally done, it is also pos-
sible to solve the classical problem using a dia-
grammatic approach. With this approach, it is
relatively easy to determine how classical collisions
affect the various density matrix elements. In

time regions where a diagonal density matrix ele-
ment is nonzero (in the diagrammatic sense), the
only effect of a collision is to alter the velocity as-
sociated with that density matrix element (collisions
are assumed to be adiabatic in the sense that they
may not result in population transfer between levels
a and b) On the o. ther hand, in regions where an
off-diagonal density matrix element is nonzero,
collisions may alter the velocity associated with
this element and produce a phase shift. If the colli-
sion parameters are represented symbolically by
O. , then the change in p, ~ produced by a collision is
given by

p„(R, t, v, v,)~p„(R, t, v'(8, v), v, )e'""' ', (4)

where g = g —
X~ is the relative collision-induced

phase shift. (That is, the collision produces phase
shifts y, and X, respectively, in the a and b atomic
state probability amplitudes. )

The changes in velocity which result from colli-
sions may modify the Doppler effect if the additional
Doppler phase shift resulting from the collision
reaches a value of unity in the lifetime 7. of the
atom, i. e. , if

nv
I
r - I, av = v' —v (5)

Collisions that produce a Av satisfying Eq. (5) and,
in addition, do not add any phase-shift factors to
the specific density matrix element under consid-
eration are termed Doppler modifying collis-ions
(DMC). On the other hand, collisions which do

give rise to an additional phase-shift factor in the
density matrix element under consideration but
which produce negligible velocity changes, 1k ~ d v I 7

«1, will be termed phase-shifting collisions. If
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a collision gives rise to an additional phase factor
in the density matrix element under consideration
and produces a Av satisfying Eq. (5), it will be
called a DMC-Phase collision.

Vfith this terminology and our diagrammatic in-
terpretation of the problem, one may conclude that
only DMC can affect the diagonal density matrix
elements, while both phase-shifting and DMC-
phase collisions may affect the off-diagonal matrix
elements. The change in velocity and phase shift
of DMC-phase collisions are correlated, both being
functions of the active-atom velocity v and the colli-
sion parameters O~. In general, the larger the
phase shift, the larger the change in velocity.

One should note that the above "classical" de-
scription of a collision need not be purely classical
in nature. That is, the diagrammatic approach al-
lows us to view each collision as affecting only one
density matrix element, and, as such, one could
take different collision interactions depending on
which density matrix element (p„,p~, p,o, or p~)
is nonzero (in the diagrammatic sense) at the time
of the collision. (In a purely classical theory the
interaction would be state independent. ) Thus, the
diagrammatic approach allows one to broaden his
view of "classical" collisions by permitting state-
dependent collision interactions. This "generalized
classical picture" would be adequate for our pur-
poses if it contained a prescription for determining
the change in velocity associated with DMC-phase
collisions which act on off-diagonal density matrix
elements. We shall see that the quantum-mechani-
cal result of QMI will provide the necessary pre-
scription for treating such collisions.

C. Review of Quantum-Mechanical One&ollision Result

In QMI we found that the quantum-mechanical re-
sults could be interpreted in terms of DMC and
phase-shifting collisions, but in a manner different
from the classical one discussed above. Equation
(I68) for the collisional factor shows its separation
into DMC and phase-shifting collision terms, and
for convenience it is rewritten here as (this was
for a-state scattering only)

collision factor =-,'I"toM(vo) (f' —f, )

+4(lnM(vo) J df~&'a(vlvo)

x exp[ik (v —vo) (f' —f,)]), (6)

where the prime restricts the angular integration
to the DMC region. The complex quantity I"o„(vo)
is a phase-shifting line-shape parameter and
I n„(vo) and W,

(volvo)

are DMC line-shape parameters
to be discussed later. The key point is that the
DMC are associated with the time interval t„while
the phase-shifting collisions are associated with

the time interval t' —t, . Reference to Fig. 3 will
indicate that the intervals t& and t' —t& correspond
to regions where only p„&0 and only p,~0, re-
spectively. Hence, our quantum-mechanical result
can be interpreted to imply that only DMC may
occur if diagonal density matrix elements are non-
zero and only phase-shifting collisions may occur
if off-diagonal density matrix elements are nonzero.
Recall that only one density matrix element may be
nonzero in any time region according to our Feyn-
man-type analysis, so that DMC and phase-shifting
collisions must occur at mutually exclusive times.
The above interpretation in terms of separately oc-
curring DMC and phase collisions is actually part
of the PCM.

One may seek a comparison between the classical
and quantum-mechanical descriptions of a collision.
To make this comparison, one must first achieve
some common ground. Hence, let us imagine that
either the quantum-mechanical or classical center-
of-mass calculation has been performed using the
diagrammatic technique. In that case, each time
interval between field interactions can be associated
with a single density matrix element. If a diagonal
density matrix element is nonzero, then only DMC
are allowed in either the classical or quantum-
mechanical models. On the other hand, if an off-
diagonal element is nonzero, only phase-shifting
collisions (recall that a phase-shifting collision
implies no velocity change) are allowed in the quan-
tum-mechanical model, while phase-shifting and
DMC-phase collisions are allowed in the classical
case. We see that a simple method for correcting
the classical model is to permit only phase-shifting
classical collisions in time regions where off-diag-
onal density matrix elements are nonzero (i. e. ,
DMC-phase collisions are forbidden). With that
restriction the generalized classical and quantum-
mechanical collision models become equivalent in
principle. Again we must stress that the diagram-
matic interpretation is of the essence here. If
one has a very strong collision at a time when an
off-diagonal density matrix element is nonzero
(in the diagrammatic sense), the collision cannot
alter the velocity associated with this element. '

[The reason that DMC-phase collisions do not
occur in the quantum-mechanical calculation is
related to the fact that, after a collision, p„(R, f, v)
is composed of the spatial overlap of a plane wave
and spherically scattered wave. Such an overlap
leads to a rapidly varying phase factor in all but
the forward direction. Thus, p„(R, f, v) is effec-
tively zero in all but the forward direction and this
corresponds to phase shifting rather than DMC-phase
collisions. If there were collision interaction in
both radiative levels, DMC-phase collisions would
appear in the quantum-mechanical calculations, but
without classical analogs (see Appendix A). ]
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ao babb ab
FIG. 4. Diagram leading to a contribution for

p,&(R, t', vp) to third order in the laser field. In the
Feynman sense, the field is assumed to interact with the
laser atom at times t~, t2, and t3. The diagram is drawn
with the convention that t3&t2&t~, so that one may inter-
pret it to imply that the only nonzero density matrix ele-
ment which may exist in a given time interval is the one
corresponding to the label for the interval. That is, only
p~ & 0 for time between 0 and t~, only p~ & 0 for times
between t& and t2, etc.

D. Pseudoclassical Collision Model (PCM)

We are now ready to combine Secs. IIIA-IIIC
and establish rules for using the PCM.

(a) First, one must obtain the appropriate time-
ordered diagrams for the sought after quantity [in
laser theory this quantity is p„(R, f, va)] to the de-
sired order in the external field with the neglect of
all collisions. An example of such a diagram rep-
resenting one contribution to p,~(R, t', vo) in third-
order laser theory is shown in Fig. 4, where t3& t~
) t(.

(b) Next, the diagrams must be partitioned into
time regions representing the intervals between
field interactions. This is also done in Fig. 4,
where the various time intervals are labeled by the
nonzero density matrix element associated with
that interval. For the diagram shown, the time
regions and their labels are t, : aa; t, —t, :ba;
t, —t, : bb; and t' —t, :ab.

(c) Now one may put classical collisions into the
no-collision result by allowing for the appropriate
types of collisions in the various regions. For
example, in regions aa and bb, classical DMC are
permissible (lest one forget, the DMC will be al-
lowed in region aa or bb, but not both, since we are
dealing with collision interaction in one state only).
On the other hand, in regions ba and ab, only clas-
sical phase-shifting collisions may occur. It
should be remembered that these classical phase-
shifting collisions do not change the velocity asso-

E+0/2QE = —(OiP X, /eo) Im~ (f),

qE = —(n&a, /e, ) Rem (t),
where the driving functions M (t) and M(t, vo) are
given by

(9)

~ (t) = fd'v, W, (v, ) ~ (t, v,), (10)

A (t, v, ) = J dt' A(t', v,),

X, is the average rate for excitation of laser atoms
to state a, P is the matrix element for the n compo-

ciated with the off-diagonal density matrix element,
as discussed in Sec. III C. To obtain the final re-
sult with collisions, an average over all possible
collision histories is performed.

(d) The final result will then depend on classical
line-shape parameters. If desired, the correspond-
ing quantum-mechanical line-shape parameters may
be substituted for the classical ones, based on the
results of QML

Thus, we see that by a slight revision of our
classical concept of a collision (allowing only phase-
shifting collisions to affect off-diagonal density
matrix elements), used in conjunction with the dia-
grammatic interpretation of the time evolution of
the density matrix for the system, the PCM for in-
corporating collisions into "no-collision" results
ha, s been developed. The revision was necessitated
by our knowledge of the quantum-mechanical colli-
sion calculation and hence the term "pseudoclassi-
cal" is applied to the entire model. The reader
may wish to return to the above outline of the PCM
when reading Secs. IV-VI.

It is of interest to point out that the quantum-
mechanical calculation has led to simplified results.
That is, in previous classical theories, it wa.s the
DMC-phase collisions that proved to be most diffi-
cult to handle. The net result of the quantum-me-
chanical calculation is that such collisions need not
be considered when there is scattering interaction
in one sta,te only.

IV. LASER SOLUTION WITH NO COLLISIONS TO THIRD
ORDER IN FIELD

The laser is assumed to be operating in a single
mode of the Fabry-Perot cavity with the field given
by

E(t) =nE(t) cosLQt+ p(t)] sin(k ~ R), (7)

where 0 = II/c, k is the direction of the laser axis,
and n is a direction perpendicular to k. The net
result of Sec. III of QMI was to obtain the self-con-
sistent amplitude and phase equations for the slowly

varying amplitude E(t) and phase y(t) of the laser
field. These equations, written in a, slightly differ-
ent form from that in (I19) and (I21), are
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nent of the electric dipole moment of the atom be™
tween states a and t}, Q is the quality factor of the
cavity, and W, (va) is the velocity distribution for
initially excited laser atoms. Both the amplitude
and phase equations will be specified when one finds
A(t', vo), the polarization function of an atom excited
with velocity vo.

To obtain A(t', vo), one solves Eqs. (I30) for the
probability amplitudes in momentum space using an
iterative approach and then uses Eqs. (3), (1), and

(2) to get A(t', vo). Since we are not interested in
collisions at present, all collision terms should be
omitted in Eqs. (I30). To first order in the laser
field, the contribution to A(t', vo) can be represented
by the one diagram shown in Fig. 3. %e have al-
ready calculated this term in QMI [where it was
designated A00'"(t', v, )] and, transcribing the re-
sult from Eq. (I42), we have

x exp[(- y,},
—it}(o +ik vo) (t' —t, ) —y, t,]

+[(term}k- -k], (12)

(13a)

(13b)

NC stands for "no collision, " and the superscript
refers to the order of the laser field. The driving
function ~ (t, vo) is given by Eq. (11)as

&No(ti vo) —
fo dt +Nc(t i vo) i

and, making the obvious change of variable 7 =t
—t„and using Eq. (12)„one finds

~„"}(t,v,)=-.'it z(-t)&'v-'

& f, d7'f, dt, X(t„7')e'"'vo"

+ [(term)k- -k], (14)

One can continue the iterative solution of Eqs.
(I30) to obtain all terms to third order in the laser
field. The third-order contributions can be rep-
resented by the four diagrams shown in Fig. 5 and
labeled (A)-(D). In all cases ta& ta & t„so that dia-
grams (8)- (D) differ only in their time ordering.
It is a straightforward calculation, similar to that
for +so(ti vo), to find the contribution of each of
these terms to A„'c}(t,vo), and we shall merely
state the results. In the Doppler limit (Doppler
width» natural width and cavity detuning' ) we find

~„'~~}(t,v,)=C[Z(t)]'f d7' f d7" f d7"' f dt, I',(t„7'",7", 7') e'I'~0' e "''0'"+[(term)k--kj, (16a)

~„"c}(t,vo)=C[Z(t)]'f d7'gd~" t dv'" f, dt, M, (t„7"', 7.", p')e'"'vo" e '"'vo""'+[(term)k--k], (16b)

A„","(t, v, )=C[Z(t)]'f d~' f d~" f d~'"f dt, ~,(t„~'",~", ~')e'"'o" e-*"'o"'"+[(term)k--k], (16c)

Ap'~ }(t,v )=C[ Z(t)]~ f d7' f d7'" f d7'"'f dt, F,(t„7'",7", 7')e'"'vo' e '"'vo' ' [(term)k- —k], (16d)

gp 3 A@3 +~1

P (t xiii +i i + )ei}'ii}}c( }'ii}i $64l}i'
y, .

xe """8' "~-& ""'"', (laa)

(t xiii + i i + )ei+ }(}}}'i+i}}+ 'LEOi} i

n=aor t} (18b)

(lgc)

Note that the integrands may be factored into terms
depending only on the time intervals t„7"',
and 7' between field interactions. This feature will
prove helpful in Sec. V.

Thus, to third order in the field,

~„,(t, v, ) = W „",'(t, v, ) + A „'~c}(t, v, ) + W „"cB'(t,v, )

+~N',"(t, v, )+a„",'(t, v, ) . (2O)

It remains to put collisions into this equation by
use of the PCM. The result with collisions will
take the form of the no-collision result propagated
through the various time regions t„7'", v'", and
7' with the appropriate types of collisions intro-
duced in each region.
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FIG. 5. The four diagrams leading to contributions for p~&(H, g', vo) [and consequently&(t', vo)j to third order in
the laser field. Kith the adopted convention t3& t2 & tt „one can see that diagrams (B)-(D) differ only in their time or-
dering.

V. INCORPORATION OF COI.LESIONS INTO
NO-COu. rSION RFSUI.TS

Following the procedure outlined in Sec. IIID, we
shaH use the PCM to incorporate coQisions into
the no-coDislon result. There ale only four dis-
tinct types of time regions which need be considered,
and these are shown in Fig. 6. All contributions to
M(t, vo) can be constructed from a chain of such re-
gions. For example, ~ (t, vo) (see Fig. 3) ls com-
posed of segments aa(t, = 0, t„,= t, ) and ab(t, = t„t„,=t ),
while M'~c'(t, vo) (see Fig. 5) is composed of the
four segments ag(t, =0, t, , =t, ), ba(t, =t„t„,=t, ),

bb(t) =tp, t„g = tg), and ab(t(=ts„tg, g=t'). As a
specific example, we shall compute the effects of
collisions on the M'3 '(t, vo) term. This term is
is quite general, since it contains all types of
time regions. After having calculated M' '(t, vo),
it will be an easy matter to write expressions for
all the other terms.

For convenience, we rewrite the integrand of the
expression for&„'~cc'(t, vo) [see Egs. (16c) and (18h)],
factoring it into functions of each time region, as

'(t 7'" 7" 7' t v v )=C[E(t)]~' '(t v)

bt)

bb

Fgg. 6. The four types of "time regions"' that form the substructure of the perturbation diagrams presented in this
ypork. The times t~ and t~+~ represent the times at the beginning and end of the intervals, respectively, and the labels
represent the nonzero density matrix elements associated with that region. By choosing appropriate values for t& and
tg ~, one can construct any of the perturbation diagrams by using a chain of these time regions. For example, the dia-
gram of Fig. 3 cln be constructed from aa(t~=o, t~+t =t~) and gb(g&=tt, t~ ~=t').
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'(T"', v) Ms. s
'(T" v)M" '(T' v) (21)

where

~ (SC& (t V)
~-'r ctc& (22a)

~ &sc&g ccc v) e(- vzs+ k4ccc&c'''' - Ik vc''''
(22b)bz &T

~( SC(&cc V) e-y c" (22c)

~ &3C& ( & ) ~(- toy- f&CO) &' if( ~ $T'
ab i7 ~ vs 8 (22d)

and v is the velocity associated with the given time

region (for no collisions v =vs in all regions). To
include collisions in this result, we must sum over
all possible number of appropriate (i. e. , either
phase-shifting or DMC) collisions in each region
and average over all collision parameters (i. e. ,
impact parameter, perturber velocity, etc. ).

The quantity ~" '(t„T"', T", T'; f, vs) will de-
note the collision-modified value of Mzc & (t„T"',
7", T'; f, v, vs) averaged over all possible collision
histories. %e may obtain a useful expression for

(&t„T"', T", 7'; f, vs) if we explicitly indicate
the integration over a few of the collision variables.
Hence, we write the collision-modified and -aver-
aged value of Eq. (21) as

A "c'(t„T'",T ", 7'; t, vs) = C[E(t)]3f d'v f d vs f d'vs f d'v& a,', '(f&,' vs, v&)

X~ SC&( rcc' V, V )M(SC&(Tcc'V V )~(SC&(T ' V, V),

where the density (in velocity space) ~' .'(T; v;,
v„,) is the collision-modified value of A„"P, (T, v)
averaged over all possible collision histories in
the time region associated with the nn'-state con-
figuration (n, c.' = a or I&) which begin with the active
atom having velocity v& and end with it having veloc-
ity v, , One must perform the integrations over
the atom's velocity at the end of each time region
to allow for all possible atomic velocities consis-
tent with a velocity vo at the time of excitation.

Thus, Eq. (22) gives a collision-averaged contribu-
tion to the driving function from active atoms which
had velocity vo at their time of excitation. In Eq.
(22) we have used the fact that collisions in differ-
ent time regions are uncorrelated to write the con-
tributionM'3 &(f, vs) as a product of averages

It remains to calculate the M' .'(7; v„v&, &).

Since we are dealing with classical collisions, it
is a simple matter to average over all possible col-
lision histories in the an' region and obtain"

A~~r (T; Vgc V&~ &)
= P~~c (T, V() cA~~c (T, V;) $(v;~ &

—V()

+ f dQ f dT, P'„,, (T„v,)P „,(Q(v, -v„„7,))P' ~ (7- T„v„,) A"„'(T;8(v(-v(. &, T&) )
0

+ f d V' f dQ, f d8, f '
dT, f, 'dT, P'.„.(T„v,)P„..(8,(V; V, T&))P (TS —

T&, V )

XPcccc. (Q~S(V V&, &, TS))Pcccc,.(T —
TSc V&, &) A cccc: (Tc Qk&(v( V, T&); 83(V' V;, &c TS)) + ~ ~ ~, (24)

where P, (T, v) is the probability that an atom mov-
ing with velocity v in a region en' undergoes no col-
lisions in a time 7; P (8,(v-v', T, )) is the prob-
ability density per unit time that an active atom
moving with velocity v undergoes a collision at time
v, in the region nn' specified by collision param-
eters 8, that changes its velocity to v' (P, is
actually independent of T,); and

I

has essentially two forms depending on whether
n= n' or n4 n'.

n= n'. If n= n', we find [see Eqs. (22)] that

(25)

with no velocity dependence. '2 Only DMC are al-
lowed in these "diagonal" regions and these do not
affect M, i. e. ,

, (T; 8&(v v', T&); 83(v' v', TS); etc. )

is the collision-modified value of A' .'(T, v) if a
collision specified by 8, occurs at time 7„acolli-
sion specified by 0~2 occurs at time 72, etc. In
all cases, "collision" means the type of collision
appropriate to the given region o.e'.

Inspection of Eqs. (22) will show that A', '(T, v)

chic, ~ (T; 9(v( ~ V( ~S, Tg)) = c& ~( ~). T

Using this result, we may write Eq. (24) as

where the propagator

GN~(Tc V(c VS~ &) =Pc, l(T) V(c DM) 5(V(c, &
—V&)

(26)
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+ f dQf dT, P (T„v;, DM)

&( P (O~( v, -v;, „T'„DM))

&(P (T —T„v(,f, DM) + (23)

occur in time 7; we find that

(Tt OH)(v( Vtt Tf)t 03(v( V(t T3))

= ~."„"(T) exp[tX...(O„v, )]exp[tX. (8. v()]

(ssa)

and the DM arguments in the P' s imply that these
probabilities apply to Doppler -modifying collisions
only. It is easy to compute" the probability for
no DMC to occur in a time v as

P„' (T, v, DM) = exp[- r (v) T] (29)

rf&M(v) = f dpi'' W (v-v')
where the prime on the integra 1 indicates that we
must restrict the integration to only those values
of v' which represent DMC, i. e. , such that
~k ~ ( v' —v) I &,3' ~ 1 [see Eq. (5)]. Using Eqs. (29)
and (30), we may rewrite Eq. (28) as

G . . (T v ~ v( f) = exp[ —l (v()T] 6(vf f —v()

p J dT, exp[- rf& (v, )T,]W„(v;- v, „)
x exp(- r ( v...) (T T, )] + (3-l )

n & n' . On the other hand, when a 4 n', the
"nondiagonal" terms have the form (see Eqs. (22)]

where F„~(v) is the rate at which DMC occur for
active atoms in state n moving with velocity v.
Furthermore, from the definition of P„. (O~( v v',
7; DM)), it follows that the quantity W (v- v') de-
fined by

W~ (v- v') = J dOH P» (Qtt (v- v't T; DM))

is just the probability density per unit time that a
DMC changes the velocity of an atom in state
from v to v'. Hence it is easy to see that I . (v)
and W„(v- v') are related by

where

X~~. (Sf, v() = X (8ft v() X (8)t v()

is the relative phase shift induced by the "1"co11i-
sion when the active atom has velocity v, ~ Using
the above result in Eq. (24), we obtain

where

((k V (&t'), (34)

+ J dp„ f dTf P t (Tft V(, pll) P~ (Q( Tft V(, pll'))
0

x P, , (T T„v;,p-h)exp[tX ~ (8, v;)]+ ' ' ')

((ko C('), (35)

whe re the ph argument implies that these probabi 1-
itic s apply to phase -shifting collisions only. The

function as sures that the velocity remains un-
changed in these phase -shifting collisions as re-
quired by the PCM. Equation (35) assumes a sim-

plifiedd

form if one recognizes that the term in
curly brackets in Eq (35) m. ay be evaluated by
standard "impact theory" pressure broadening
techniques" to yield exp[- y ~ (v, )T], where
y„.(v, ) is a c omplex line-shape parameter asso-
ciated with the en ' time region and will be speci-
fied shortly. Thus Eq. (35) becomes

Gk. (T' V V 'k) = 8t (k 3(t 8 t ~ (3()ttt
j+ fy

G~~t (T; V(t v(t ft k) 8 ( 5 ( v(t f v() (P~~ (TttV(t ph)

~(3C&+ (T V) ~(3C) (T) 8+ ik ~ 'H
(&j (kt) (32) x 6 (v„f —v, ) (35)

and only phase-shifting collisions (which imply no

velocity changes) are allowed in these regions.
These phase-shifting collisions merely alter the

~ (T) by introducing the appropriate pha. se factor
for the collisions . For example, if two collisions

We now have expre ssions for al 1 the collision
"propagators "Using . Fig. 5 or Eq. (23) [and Eqs.
(221) and (22d) to fix the sign in the Doppler phase
factor], we may combine the propagators in the
correct order to evaluate Eq. (23) as

'(t„T '", T", T'; t, vp) =C[E(t)] f d'v f d v, fd v fd gf

&( G„(tft vpt vf) Gp, (T'"t vf, vpt'k) G33(T t v3, v3) G+ ( 3tTv3t vt k)

&(~ (3c) (t ) ~ (3c)( tt t) ~ (3c) (T tt) ~ (3c& (T ) . (3'1)
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Performing the necessary time integrations indi-
cated in Eq. (16c) and making use of Eqs. (25),

(32), (22), and (18), we obtain the (3C) contribution
to the collision-averaged driving function,

'"'(t, vo) = C[&(t)]'f, dr ' f"dr "f"dr"' f,
"

dt, f d'v f d'v, f d'v, fd'v,
0

&& G„(t, ; vo, v, ) G,,(r'"; v„v„k)G»(7"; v„v, ) G,', (7'; v„v; k) M, (t„r'", r", r') + [(term)k- -k] . (38)

One sees that our procedure has separated out all
the velocity dependence of the integrand and in-
cluded it in the propagators.

Proceeding in a similar manner, one can find all

the other needed terms. In fact, a quick look at
Figs. 5 and 3 and Eqs. (16), (1&), and (12) will
enable one to write, by inspection, the remaining
third-order terms

~'~'(t, v,)=C[E(t)]'f dr'f dr" f dr'" f, dt, fd'v fd'v, fd'v, fd'v,

G«(t„vo, v, ) G,„(7'";v„vs, k) G«(r"; v2, v~) G,', (7'; v„v; k) F,(t„r"', r", 7')+ [(term)k- —k], (39a)

~'"'(t, vo)=C[Z(t)]'f" dr' f d7" f dr"'f dt, fd v fdv, fdv~ fd v,

G„(t„vo,v, ) G,,(7'";v„v„k)G„(r";v„v~) G,'~(r''; v~, v; k) M, (t„r'", r", 7')+ [(term)k- —k],

a'3n'(t, v, ) = C[Z(t)]' f «'
f, «" f, d7'" f"dt, f d'v f a'v, f d'v, f d'v,

&&G«(t„'vo, v ) G»(r'"; v„vs;k) G»(r"; v~, vs) G,',(r';vs, v;k) F (t„7'",7", 7')+[(term)k--k],

(39b)

(39c)

and the first-order term

A"'(t, vo)= —,'i t'E(t)& 'V 'f dr—'f dt, f d v f d'v, G„(t„vo,v, ) G,', (r'; v„v;k)K(t„r')+[(term)k- —k],
(40)

where C, M, F, and X are given by Eqs. (IV),
(18a), (1&b), and (15), respectively.

At this point one is ready to find the driving func-
tion A(t, vo) to third order in the laser field by
using Eq. (20), and then substitute it into the ampli-
tude and phase equations. Before this procedure
is carried out, we should like to indicate values
for the line-shape parameters y ., W„(v- v'),
and I"nu which appear in Eqs. (31) and (36).

Values of line shape param-eters. The line-
shape parameters may be evaluated classically by
using the results of standard pressure broadening
theory and classical Boltzmann-equation theory.
For this case

7„(v,) = r.(v, )*

= & f 2&bdb f d~v
p I v, —v~ I W~(v~)

&& fexp[tx(b, lv, —v~l)] —I], (41a)

W, (v, -v„,) = Boltzmann collision kernel
(defined for DMC only)

and

for atoms in state a, (41b)

I (v, ) = f'd'v, „W„.(v, -v„,) (41c)

is the rate at which DMC collisions occur for atoms
in state a moving with speed v„where %is the den-
sity of perturbers, b is the impact parameter of the
classical collision, y is the relative collision-in-
duced phase shift discussed in Sec III B (recall that

y =y, —X, and for single-state scattering either

y, =O or y, =O), v~ is the perturber velocity before
the collision, W~(v~) is the perturber velocity dis-
tribution, and the prime on the integral indicates
the DMC region only, i. e. , Ik (v, „v,l -r„-

On the other hand, the line-shape parameters
may also be evaluated quantum mechanically if
the proper correspondence is made between the
classical parameters above and the quantum-
mechanical parameters found in QMI [see, for ex-
ample, Eqs. (I62) and (I&6)]. Although the results
in QMI were given for stationary perturbers, it
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r„(v, ) = r„(v;)*= -,' f d'v~ W, (v~) T'","(v",),
a scattering

=-,' fd v W~(v~)[1'"(v",)]*,

with

f& scattering (42a)

1"' (v") =&(4«/i«)f (v", - v", ),

W, ( v» - v&. &)
= &(m/«)' f d v& W& (v& ) f d~vt „,

x 5(v"„,+ («&/m, ) v,. + v, —(m/«) v„,)

(42b)

&&6(v& —vt, &)(v&) 'if (v", -v";.,)i', (42c)

1"'"(v&) f' d'=v, „,W. (v, -v,.„)

with

=Of f d v&, Wp(v&, ) v& 0'~ (v&),

is not difficult to generalize to the case of moving
perturbers, and one can obtain the line-shape
parameters as

from first principles. Given the emitter-perturber
interaction, one calculates the quantum-mechanical
scattering amplitudes which, in turn, determine
all the line-shape parameters. Of course, such
calculations are very difficult and, in addition, re-
quire information about the emitter-perturber inter-
action which is not readily available. As an alter-
native to first-principles calculations, one could

hope to use data, from scattering experiments to ob-
tain the scattering amplitudes; however, present
experimental techniques are not capable of mea-
suring differential cross sections when one of the

colliding atoms is in a. short-lived excited state.
Hence, it appears that, at best, one must be con-
tent with an empirical determination of the line-
shape parameters. Such determinations may be
achieved if it is possible to get theoretical expres-
sions for either spectral profiles or laser intensity
versus detuning line shapes in a form where they
can be easily compared with corresponding experi-
mental results. In general, the theoretical line-
shape expressions are too complicated to uniquely
determine the parameters. However, as we shall
see in Secs. VI and VII, the use of some limiting
approximations will enable us to extract y„and
I" from certain laser experiments.

0' (v&) =f did„ if (v& v; &) i. (42d) VI. LASER RESULTS WITH COLLISIONS

where v", = v, —
v& and p, are the active atom-per-

turber relative velocity (before the collision) and
reduced mass, respectively, m and m~ are the ac-
tive atom and perturber mass, respectively,
f (v", -v "&) is the forward-scattering amplitude, and

I f, (v &- v ...) I' is the differential scattering cross
section for atoms in state n. Note that in Eq.
(42c), the 6 functions restrict the integration over
the relative velocity after the collision, v", ,„ to
those values consistent with conservation of mo-
mentum and energy.

In writing y, ~ and F„as a function of active-
atom speed (and not velocity) in Eqs. (41) and (42)
we have implicitly assumed an even perturber ve-
locity distribution. This assumption also enables
one to show that W, (v&-v„,)= W, (-v, - —v„,),
which, together with Eq. (31), leads to the relation

~(f) =w"'(f)+~'"(f) (43)

where

~&&&(f) & &&&I-1y-& E(f) cP&&) (44)

(f) = —iP 8 V [E(t)] I) (46)

and the functions are defined as

&«'= f d'v, f vdW, (v, )S,(v, -v)

Equations (10), (20), and (38)-(40), together
with Eqs. (31) and (36), determine the driving func-
tion M(t) to third order in the laser field. Using
these equations and performing the necessary time
integrals, we obtain

G (7;v, v')=G (r; —v, —v') . & [ y,&(v)+ i(A&«(v) —k v)] + [(term) k- —k]

Equations (42), in some sense, indicate the way
in which one may calculate line-shape parameters

(46)

5)&" = f d'v, fd'v, fd'v W. (vo) S,(v, -v, ) [S,(v, -v) +S,(v, -v)]([y„(v,)+i(a (v,&d) k+v, )] '

+ ['Y„(v2) —i(h+(v2) —k ~ va)]
& ] [y„(v)+ i(g&o(v) —k ~ v)] ' + [(term) k- —k], (4V)
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with the line-shape parameters given by

S,(v; -v&) =S ( —v; -—v&)

-=J'" d~e-" 'G..(~; v;, v,), (48)

r,~(v) = r.b + Rer.~(v),

A~(v) = b.~+ Imr„(v),

(49a)

(49b)

where r„(v) is given by Eq. (42a), G„(7';v„v,} is
given by Eq. (31), and» is given by Eq. (13b).
The driving function A (f) specified by Eqs. (43)-
(49) may now be substituted into the amplitude and
phase equations [Eqs. (8) and (9), respectively]
to yield

E= &E —PE

p= 0+ pE

where &, P, o, and p are real and given by

u= —,'Q/Q+ —,
' (QP'k-'A, /eo) Rem ",

p=~(QIP k A, /e )Re&' ',
e= —-'(QS'8-'A /e ) 1m'"'

p=6~4(QIP k 'A, /eo)imS"',

(50a)

(50b)

(51)

(52)

(53)

(54)

and A, = X,/V is the excitation rate per unit volume
of atoms to state a. The quantity & is the linear
gain, p is the saturation parameter, o is the linear
pulling term, and p the nonlinear pushing term.
The steady-state amplitude is found to be

——,'Q/Q+ —,
'

(Q yak 'A, /e ) Res"'
p ~ (Qy'k-'A. /e, ) ReS"'

(55}

The driving terms I)"' and X)"' [see Eqs. (46)
and (47)] implicitly contain the features of the
pseudoclassical collision model (PCM). That is,
in first-order theory the atom may change its vel-
ocity in one time region, while in third-order theory
it is allowed to change its velocity in two regions.
These changes are represented, respectively, by

S,(vo-v) in the first-order terms and S, (v, -v, )
&[S,(va -v)+S„(v, -v)] in the third-order terms.
From phase-shifting time regions, where there is
no change of velocity, one invariably obtains re-
sonance-type denominators with r„and» of the
no-collision theory replaced by y„= y,„+Rey„and
~+ = ~++ Imy„, respectively.

Before attempting an analysis of Eq. (55), it may
prove useful to review the approximations that were
used in its derivation. For the present, we shall
be concerned with only those approximations perti-
nent to the laser problem and defer, until Sec. VIII,
a discussion of the more general assumptions of
our collision model. First, we note that Eqs. (51)-

(54) were valid for the case of excitation of laser
atoms to state a only. The simple extension of the
calculation to also allow for excitation of laser
atoms to state b is given in Appendix B. A more
serious approximation we have made is to work in
the Doppler limit. At negligible foreign gas pres-
sures, use of the Doppler limit implies the neglect
of terms on the order of r„/ku or»/ku, where
u is the most probable speed of the active atoms.
Since, typically, r„/ku =10 ', the errors are not
excessive as long as one does not deal with large
detunings ~+. However, with the presence of
foreign gas, one must replace y,„by y,b

= y,„+Rey„,
and at normal laser operating pressures y,b may
be five to ten times as large as y„. In particular,
at 1.3 Torr, a typical laser had r„/ku=0. 02 while
r„/ku =0. 1, so that in taking the Doppler limit,
errors of 10%%uc may be introduced. As such, our
Doppler-limit expressions are valid only at pres-
sure where r„/ku«1 and»/ku«1. However,
it is possible to calculate the third-order polariza-
tion without restrictions on the ratios of y,„, ~+,
and ku. The additional terms which will appear in
such a calculation are given in Appendix B. Un-

fortunately, it is very difficult to evaluate these
terms once collisions are present. A third assump-
tion we have made is the neglect of spontaneous
transitions between laser levels a and b, and this
assumption is based on the premise that the partial
decay rate for such transitions is negligible. Fi-
nally, we should point out that our theory will not
be valid for high-intensity lasers. The problem
associated with obtaining high-intensity solutions
will be discussed in Sec. VIII.

VII. ANALYSIS OF INTENSITY PROFILE: COMPARISON
WITH EXPERIMENT

Unless noted otherwise, our discussion will be
restricted to the Doppler limit (r,~/ku «1 and
&~/ku«1). In order to analyze Eqs. (46) and (47),
we shall return to the diagrams of the perturbation
solution (see Figs. 3 and 5). In discussing these
diagrams, we shall label the time intervals or
"time regions" between field interactions by the
time difference associated with the intervals, For
example, the time region between t= 0 and t = t, ap-
pearing in Figs. 3 and 5 will be called "time re-
gion t„"and the time region between t= t~ and t= t,
appearing in Figs. 5 will be called time region w'

[recall, from Eq. (19b), that & =f, —ta]. It is clear
from Figs. 3 and 5 that DMC occur in the time
region t, for both first- and third-order contribu-
tions and in the time region w for third-order con-
tributions. To understand the effects of the DMC,
we shall consider these two time regions separately.

Time region t, . During the time region t„which
represents the interval between the active atom's
excitation and first interaction with the field, the
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only effect of collisions is to alter the velocity dis-
tribution of the atoms before they interact with the
field. This may be seen formally by rewriting a
factor common to all contributions to M(t) [e.g. ,
see Eqs. (44)-(47)] as

where u is the most probable speed of the distribu-
tion. With this assumption, Eq. (56) may be sub-
stituted into Eqs. (51), (52), and (55) (for the gain,
saturation parameter, and intensity, respectively)
to yield

J d'()0 W, (v,)S,(v, -v)

= J d'vo W, (vo) J
"d'7 e"""G, (7;vo v)

0

and

fl /q (1 & R g (1)

P
(3) R g(3)

(56)

=y, W, (v), (56)

which is an equation defining W, (v), the new effec-
tive velocity distribution for the atoms originally
excited to state a. There is one case in which
W, '(v) = W, (v) [recall that W, (v) is the velocity dis-
tribution characterizing atoms at their time of ex-
citation to state a], and that is when W, (v) is taken
to be an equilibrium distribution. " The equality of
W,'(v) and W, (v) for this situation follows from the
fact that, by definition of an equilibrium distribu-
tion, collisions can not alter the velocity dist' bu

tion W, (v) even though they may change the velocities
of individual atoms. For simplicity, we shall as-
sume that W, (v) [ and consequently W, (v)] is an
equilibrium distribution given by

) fI/q+ g(1) Re g (1 &

I= g(3) Reg(3)

where the factors g"' and g' ' are defined by

(60)

g(1) ) (p /y )tip-2@ 1(e k )
1 (61)

and

g"' = —,', (ii, /y, )&&'k '(e,ku) '(y, y,) '
(62)

(62)

and the dimensionless quantities Q'" and Q"' are
given by

g"'= ku()(u )
' f d'v e"2 2

2 3/2 2
W. (v) = W.'(v) = (vu')-'"e (57) and

g"'=y, y,ku(vu') 't' J d'(), f d 1&e "2 " [S (v2 v)+S, (va v)]

&( (I y„((),)+ i(&~(v,)+ k. v,)]-' + [y„((&,) i(&~((),) k. v,)]-'$(y„(1&)+i[»(())—k. v])-' (64)

[It follows from our choice of even velocity distri-
butions for both the active atoms and perturbers
that the k- —k terms which appear in Eqs. (46) and
(47) are equal to the first terms in those expres-
sions. This fact has been used in writing Eqs.
(61)-(64) ]

We should point out that, in actual experiments,
W, (v) may not be an equilibrium distribution and
collisions would effect changes in the distribution.
In that case, the actual form of W, (v) may be quite
complicated, but, since it appears in both first-
and third-order terms, the details of the intensity
profile will probably not depend critically on its
form. Thus, unless one is specifically interested
in the effect of DMC in the t, region, he need not
be overly concerned with collisions in this region.

Time region 7.". Unfortunately, the situation for
the r" time region is not so simple (recall that
this interval represents the time between the field
interactions at times tz and t„see Figs. 5). To
understand the effects of collisions in this region,
one must return to the no-collision Doppler-limit

expressions (16a)-(16d) in which all integrands
contain the factor e '~&" " 'e'"'~' e "~' . The
reason why these terms give a relatively large con-
tribution is that for all 7 = ~ the Doppler phase
factor vanishes. When collisions are incorporated
into Eqs. (16), one finds that collisions in the )

"
region (see Fig. 5) will cause the velocity in the

region to be different from that in the 7
' region

and, in doing so, may somewhat destroy this
Doppler phase cancellation. Explicitly, the factor
which will appear in the integrands of expressions
for ~ '(t) will be of the form [see Eq. (64)]

[S,(v2-v)+ S, (vz -v)] e """"

where ~v= v —v2, and v2 and v are the velocities
associated with the T" and & time regions, re-
spectively. The distribution of the ~v's produced
in the v region is determined by the S functions
defined by Eq. (48). One easily observes that any
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integrals over v' containing the above factor will
receive significant contributions only for v"' [y,„]-'
and this feature enables one to separate the DMC
into three categories. If Ik 4v I «y„, the effects
of collisions are still negligible. However, if
Ik ~v I

= y„, the additional phase factor e'"'~"
must be reckoned with. The modification of the
line shape produced by such collisions will depend
on the details of collision process. Finally, any
collision in which Ik ~v I

» y, b virtually eliminates
all chance for Doppler phase cancellation. Colli-
sions of this type should reduce the contribution
of these "Doppler-limit" terms to a magnitude
comparable with non-Doppler-limit terms. Thus,
if one were interested in the Doppler limit, he
would need only make a collision model for the col-
lisions with ~k ~ Avl "-"y,„, since other types of col-
lisions either destroy or do not affect the third-
order contributions. On the other hand, if one
seriously considers the non-Doppler-limit terms,
he must also have a model for the "strong" colli-
sions, lk ~v I

» y,b.
It is difficult to get a detailed description of the

line shape without employing some type of colli-
sion model. We choose to discuss one simple col-
lision model. Although we do not claim that this
model will provide an extremely accurate descrip-
tion of the actual physical processes involved in
the collisions, it is hoped that the line shape cal-
culated by using this model will enable us to draw
some general conclusions as tq the effects of colli-
sions on the laser intensity profile.

A. Simple Collision Model

Before describing the collision model, we should
point out that it will be most effective when ap-
plied to systems which conform to the Doppler
limit. To this end, we shall adhere to the Doppler
limit and evaluate Q"' [see Eq. (63)] to lowest order
in y,„/ku (but for arbitrary detuning &&) and Q"' to
lowest order in y„/ku and d ~/ku. The collision
model is characterized by the following assump-
tions. (1) It is assumed that the complex line-shape
parameter y,~(v) given by Eq. (42a) does not vary
appreciably when v changes by an amount y,b(u)/k.
The consequences of this assumption will be evident
shortly. (2) A kind of "hard-sphere" model will
be employed for collisions occurring in the 7

time region. A cutoff parameter y,'~(u) [not neces-
sarily exactly equal to y„(u)] is chosen to divide
the collisions into two categories. Collisions with

I k 6v
~

& y,~(u) are assumed to produce a negligible
effect on 8'", while collisions with Ik &vl & y, &(u)

are assumed to be truly "Doppler modifying" and

consequently reduce the contribution of Q' ' by
order y,„/ku. Since terms of relative order y„/ku
are neglected in the Doppler limit, we need only
retain the contribution to 8' ' which results when

no DMC occur in the 7' region. Analytically, this
corresponds to taking only the leading term in Eq.
(31) for the propagator G, i. e. ,

G (~";v„v)= exp[ —1 (v)T "]&(v-v, ) .
Using Eq. (48), one then may obtain

S,(v, -v) =[y, + I"„(v)] '&(v-v, ) . (65)

In the Doppler limit and with a proper choice of the
cutoff parameter y,'„(u), it seems plausible that this
"hard-sphere" model and Eq. (65) will adequately
describe the DMC in the 7' time region.

With the above assumptions we are ready to
proceed to calculate Re9'", Ref'", and the inten-
sity I. Taking a cylindrical coordinate system
(v„v„v,) with the v, axis in the k direction, it
follows directly from Eq. (63) that

ReB'" = ku(mu )
'~2 f" 2wv, dv, J "dv, e "~~"

'0 w CO

-u u
y (( 2 2)1 jR}2 2-

+ [a(o((v,'+ v',}'"}—kv, ]'] -' . (66)

The integral over v, may be easily evaluated in the
Doppler limit if assumption (1) of our model is
employed. The major contribution to the v, integral
comes from a velocity region of width y„/k centered
about the solution of the equation

v, = k 'a~((v'p+ v', )'~') .
The value of v, satisfying Eq. (6V) will be designated
v, (A&). Since y, ~(v), 6+(v), and e "~~" are as-
sumed to be slowly varying functions of v, over the
range y„(u)/k, we may evaluate v, appearing in
these functions at v, (h&). When this is done, the
integral over v, in Eq. (66) is readily performed
to yield

Ref'"=2m' u' f" v, dv e"
0

&exp[ —~~((v, + [v,(»)] ] '~ )/ku] . (68)

Similar techniques may be used to calculate the
function g'" given in Eq. (64), when S is deter-
mined by Eq. (65). To zeroth order in y,~/ku and
&4&/ku one obtains

Re9' ' = 2m ~ u ay, y~ J v, dv, e "~~"
0

~ ([y.b(v, )] '+ y.~(v,)([y.&(v,)]'+[»(v,)]'} '] .
(68)
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The intensity is found from Eqs. (60)—(62) to be

XII/q ~ g(1) Re g(l)
(3) Re g(3) (70)

where He 8") and He 9") are now given by Eqs.
(68) and (69), respectively. An examination of
Eqs. (68)-(70) reveals that the intensity profile
will not, in general, be a symmetric function of
cavity detuning due mainly to the dependence of h~
on v, . To actually compute the intensity profile
indicated by Eq. (VO), one must use some functional
form for y„(v) and I' (v) and then do the velocity
integrals in Eqs. (68) and (69). Such a specific
evaluation is not included in this work.

There is one case in which Eq. (VO) becomes
greatly simplified, and that is when the line-shape
parameters do not depend on speed (or vary only
slightly as v varies from v=O to v=u). This situa-
tion is favored when perturber speeds are much
greater than active-atom speeds or, equivalently,
when the emitter-perturber relative velocity is
approximately equal to the perturber velocity. In
that case, the integral over vk in Eq. (42a) will yield
a y,~ which is almost speed independent. If the
line-shape parameters do not depend on speed, the
intensity [no distinction will be made between the
"intensity" I given by Eq. (60} and the intensity
measured in experiments —in practice, these quan-
tities are proportional to one another] will be
given by

&-(k&v jku) [9l (P}]-1
I=&(P)

1 P [-k (~g)k] i (71)

where the relative excitation 9l (which may depend
on pressure P) is equal to

0)
I-

IXI-
CQ
K
«j

QQJ
0 .I .2 kg

FIG. 7. Graph of laser intensity S versus dimension-
less cavity detuning &/ku (that is, cavity detuning di-
vided by Doppler width) for a laser with relative excita-
tion % = l.05 and dimensionless width parameter p,&/kg
=0.05. The intensity goes to zero for values of l &a~/
kg ) ~0.225, a value which may be obtained using Eq. (75}
of the text.

9?(P) = v'~'(Q/A)[A (P)/y ]Oft'8 '(e,ku) '

and A(P) is given by

~(p) = 16(a /s)'y„(y. + r.'M) (y„+ r,'M)

x (y, + IP+ y, + I', ")-' (73)

The line shape is a symmetric function of cavity
detuning about 4&=0. The intensity at central tun-

ing, A~= 0, denoted by Io(P), is equal to

I,(P) = —.'&(P)(I —[9l(P)] '}, (74)

(76)&[1+y,2k/(y. kk+ a~)']-',
in which K is a constant, I' is the pressure in
Torr, y„/2m= (9+69P) MHz, and E(P), as empir-
ically determined by Smith, is shown in Fig. 8.

and the intensity goes to zero for a detuning larger
than or equal to a cutoff value l», l obtained from

8-~ k ~c ~ ku) —[Q(P) ] I

A typical curve for I [Eq. (71)] is shown in Fig. 7,
in which the central tuning dip is evident.

Some general features of the line shape given by
Eq. (71) or Eqs. (68)-(VO) may be noted. The Itne
shape effectively contains three collision param-
eters (Rey, „, Imp„, and I' ") that vary linearly
with pressure. " Of these, it is experimentally
easiest to observe Hey„and Imp„, since these pa-
rameters are, more or less, directly related to
the width and shift of the tuning dip shown in Fig.
7 [by "shift" we mean the collision-induced change
in the absolute frequency (obtained, for example,
by beating the laser against a reference laser) at
which the center of the tuning dip occurs]. On the
other hand, the DMC collision parameter I'D is
more difficult to observe and, as will be discussed
below, there is not yet any definitive experimental
evidence of its existence. The dependence of Io(P)
on pressure may provide a means of identifying
pDM

We should like to discuss possible improvements
and extensions of our model, but defer this discus-
sion until the present experimental situation has
been described.

B. Comparison with Experiment

We shall discuss three experiments 6 involving
He-Ne lasers. In all cases, a quantity correspond-
ing to j',~ was found to exist and to exhibit a linear
pressure dependence. In none of these experiments
was the absolute frequency of the laser determined.

Smith" measured intensity profiles for the 6328-A
(3sk -2p4) neon transition in a He-Ne laser (V: 1
ratio of helium to neon) and was able to fit his data
to an equation of the form

I= Ice(P){e-&'"""'—[9t(P)]-']
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50

theory A(P)
the same form. In Fig. 8 we have plotted a dashed
theoretical curve for A(P) [see Eq. (73}]assuming"
y, /2@= 8. 3 MHz, and yb/2m= 9.75 MHz and assuming
a scattering only, 3 with I', M given by

(78)

40

.5

IO

2
P (Tor r)

FIG. 8. Curves of &(P) and points for F(P) versus
perturber atom pressure. The quantity A(P) is defined
by Eq. (73) and is proportional to the laser intensity,
while F(P) is a corresponding quantity determined ex-
perimentally by Smith (see Ref. 16). The shape of the
curves depends on the rates ~~ and 1

& at which Dop-
pler-modifying collisions occur for atoms in states a
and b, respectively. These rates may be written as
~~DM=~O, 'YoiP(0.' =a, b), where Mo is in Torr ~, y~ is the
natural decay rate of state &, and P is the pressure in
Torr. The dashed curve is drawn taking M& = 0, 0 Torr ~

and M~ = 1 Torr ~, while the solid curves are drawn tak-
ing M~/M~ = 0. 16, with the numbers next to the curves in-
dicating the value of ~, in Torr . In the pressure range
0-1 Torr, only the M~ = 0. 0 Torr and the M~ =3 Torr
curves have been shown. All the other curves will lie
between these two, with the exception of ~, = Torr
which lies below the ~, =3 Torr ' curve and passes
through the origin. The &(P) curves have been normal-
ized to agree with F(P) at P =1 Torr.

(Since no absolute frequency measurements were
made, it was impossible to ascertain the pressure
dependence of 6&. ) In practice, F(P) was experi-
mentally obtained as

F(P) = Io [1—91 '(P)] 'K ', (77)

where Io is the measured intensity at zero detuning
and 9&(P) is the relative excitation at pressure P
determined by the cutoff detuning 4+, at that pres-
sure [see Eq. (75)].

A comparison of Eqs. (71) and (76) will show that
for theory and experiment to be in agreement the
pressure dependence of F(P) and A(P) must be of

The quantity M, (in units of Torr ) is a parameter
determining the relative importance of the DMC.
It turns out that for a scattering only, A(P) is not
very sensitive to the value of M„and in plotting
the dashed theoretical curve of Fig. 8 we have taken
a value M, =1 Torr ', for reasons that will be
evident shortly. It should also be noted that we
have normalized our value of A(P) to the P=1 point
of Smith's data.

In Fig. 8, we have also plotted solid theoretical
values for A(P) assuming both I', and I', "are
nonzero. Immediately, one may argue that this
assignment contradicts the basic premise of the
PCM: collision interaction in one state only. How-

ever, as long as, »
b or I, », , there

is considerable theoretical basis (to be discussed
in Sec. VIII) for taking both rnM and I" nbM nonzero
but still allowing only phase-shifting collisions (and
no DMC-phase collisions) to affect off-diagonal
density matrix elements. Hence we assume that

r', =(M, /M, )M,y, P, (79)

where the ratio M, /M, indicates the relative
strength of the DMC for atoms in state b to that for
atoms in state a. If Eqs. (78) and (79) are sub-
stituted into Eq. (73), one obtains

(const) (1+M, b P)(1+M, P)[1+ (Mb/M, }Mb P]
I+ fy, (1+M, P) + y, [1+ (M, /M, )M, P]}/2y„

(80)

where M, b is defined by

y, b
= y, b (1+M, b P) (81)

and is equal to V. 7 Torr ' in Smith's experiment.
Using the values of y, and y„given above and taking '
Mb/M, = 0. 16, we graph A(P) vs P in Fig. 8 for
several values of M, . In this case, one can see
that A(P) is sensitive to M, with the best values of
M, obtained in the range M, = Q. 5 Torr ' to M, = 1.5
Torr '. [These curves of A(P} have been normal-
ized to fit the experimental point at P = l. ]

As can be seen from Fig. 8, there is qualitative
agreement between theory and experiment. The
curvature of F(P} offers some evidence for the ex-
istence of I ", although this evidence is certainly
not conclusive. ~

A similar experiment was performed by Holt, '7

who studied the l. 15- p. (2s2-2p, ) Ne transition in
pure neon and He-Ne lasers. Part of this study
was directed towards establishing the regions of
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validity of the third-order perturbative approach
to the laser problem. It was found that, for relative
excitations 9t ~ 1.10 and for y„/ku ~ 0. 14 (or for
9i ~ l. 17 and y„/ku ~ 0 08). , the shaje of the theo-
retical curves of Io vs P for the high-intensity and
third-order theories was the same, justifying the
use of Eq. (74) in searching for DMC effects. '
However, the comparison of the third-order and
high-intensity theories also indicates that the de-
pendence of intensity on detuning at a fixed pressure
given by Eq. (71) may be in error by as much as
20% for relative excitations 9t & l. 05. Thus, any
detailed agreement between Eq. (Vl) and experi-
ment at all but very low relative excitations is not
particularly meaningful. Experimentally, values
of Io vs P for fixed 9t ' were measured. While
these measurements support the fact that A(P) [see
Eqs. (74) and (73}]depends linearly on y„, they
are not precise enough to determine whether or not
a I "g Q is also in evidence. '

Finally, there is the experiment of Cordover and
Bonczyk, " in which intensity-versus-detuning
curves were measured at several pressures. It
was found that the experimental data could be fitted
(remarkably well) to a five-parameter expression
for the intensity. This expression was based, in

part, on a theory of collision effects in lasers pro-
posed by Szoke and Javan. ' We do not find the ex-
cellent agreement between the theory of Szoke and
Javan and the experimental results of Cordover
and Bonczyk to be particularly significant, because
(a) the collision theory of Szoke and Javan is highly
phenomenological at best and (b) the experimental
data were taken for relative excitations 5 & 1.2,
where, as discussed above, one would not expect
a third-order theory (as is Szoke and Javan's) to
be highly accurate.

In the same experiment, a slight asymmetry was
observed in the dependence of intensity on detuning.
Such asymmetries will develop in our theory when
it is extended to include the possibilities that (1) the
line-shape parameter y,„depends on v [see the
discussion following Eq. (70)], (2) there is a com-
parable collision interaction for both radiative
states allowing for DMC-phase-type collisions
which, it turn, can lead to asymmetries (see Ap-
pendix A}, and (3) many-body collisions provide
a. correction to the binary-collision theory.
Which, if any, of these effects leads to the observed
asymmetry is difficult to ascertain. Since the
asymmetries are very slight, one must also be
careful to remove all spurious experimental sources
for asymmetry (e. g. , isotopic impurities of the
active atom or a frequency dependence of the laser
window transmitivity could lead to asymmetries
in the intensity-versus-detuning curves}.

To summarize, the experiments have demon-
strated that Eq. (Vl) provides a. fairly good descrip-

tion of observed laser phenomena. The existence
of a line-shape parameter y„which varies linearly
with pressure has been established, but experi-
mental confirmation of I is not yet conclusive.

C. What Next?

There are several obvious extensions of the
theory which may be attempted to widen its regions
of validity. First, one could try to develop an ac-
curate collision kernel W, (v-v ) by using any
theoretical or experimental information about the
scattering process that is available. Even if an
accurate kernel could be obtained, the remaining
chain of calculations would still be formidable.
That is, from W (v-v') one must find, in turn,
G, (r; v, v ) using Eq. (31), S,(v -v ) using Eq.
(48), and finally B"' using Eq. (64). We do not
believe that use of a more sophisticated collision
model will substantially alter the form of the re-
sults that have been obtained using the "hard-
sphere" model of Sec. VII B as long as one is con-
sidering the case of collision interaction in one
state only in the Doppler limit. Second, one may
wish to abandon the Doppler limit and calculate the
third-order polarization to higher order in y„/ku
and &+/ku. In that case, he would have to evaluate
all the non-Doppler-limit terms in Appendix B,
which is a difficult task even for the simplest colli-
sion model. In addition, all terms or relative
order y„/ku will depend strongly on the type of col-
lision kernel used in the calculation, so that for
this situation it would be advantageous to use an
accurate collision model in formulating the theory.
Since this, in turn, implies the difficult calculation
mentioned above, one can see that leaving the sim-
plicity of the Doppler limit will lead to severe
additional problems. Third, one may wish to ac-
count for the possibility of a comparable collision
interaction for both the atomic states involved in
the laser transition. We shall defer discussion of
this case to Sec. VIII. Fourth, a strong signal
thepry ' ~' may be spught tp prpvide an adequate
description of the line shape at higher relative ex-
citations. Although such a theory might be devel-
oped for highly simplified collision kernels, it is
not likely the calculation will be at all practical
for more realistic kernels. Finally, and perhaps
most feasible, one may try to perform an explicit
evaluation of Eqs. (68) and (69) by doing the spec-
ified integrations over v, which appear in these
equations. To this end, the line-shape parameter
y„(v) = y„(u) —y„+i [&&(u) —4&] may be determined
using Eq. (41a) with a classical phenomenological
collision interaction (e. g. , I ennard-Jones). The
resulting line shape given by Eqs. (68)-(VO) will
then display the asymmetry to be expected from the
speed dependence of the line-shape parameters.

It can be inferred from the above discussion that
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attempts to extend the theory will be characterized
by very complicated calculations. In light of this
fact, we hope that future laser experiments intending
to probe collision effects will be carried out under
conditions when the present theory is valid. By
measuring intensity-versus-detuning and Io-vs-P
curves at low relative excitations and at the lowest
possible pressures in systems where y„/hu is
minimal, one may be able to obtain conclusive
checks on the theory in general and the existence
of I' in particular. To help reduce any modifica, -
tions in the line shape arising from resonant colli-
sion broadening or discharge current effects, '~

these experiments should be carried out with a
large ratio of buffer to active-atom gas pres-
sures. ' ' Since there is so little known about the
details of collision processes in atomic systems,
any information derived from such experiments
would prove extremely useful and, in addition, may
point out any failures of the theory. If and when
the results of these idealized experiments can be
understood, we shall be in a better position to ex-
tend the theory to cover more complicated experi-
mental situations.

VIII. EVALUATION OF THEORY

In this paper we have developed the pseudoclas-
sical collision model (PCM), which is designed to
enable one to easily incorporate pressure effects
into problems involving the interaction of radiation
and matter. In particular, the problem of a laser
has been solved to third order in the laser field and
an expression for the intensity profile obtained.
Including the calculations in the appendices, our
result is quite general for a laser slightly above
threshold. That is, an allowance has been made
for incoherent excitation of laser atoms to state a
or b, collisional scattering for both laser radiative
states, and arbitrary ratios of decay parameters
and detuning to some effective Doppler width (in-
clusion of non-Doppler-limit terms). No attempt
to explicitly evaluate this general line shape was
made, since we were content to concentrate our
work on the case of collision interaction in one state
only for systems in which the Doppler limit was
applicable. Within these limitations, a very simple
collision model was developed and found to be in
rough agreement with experiment. There must
certainly be additional theoretical and experimental
research if pressure effects are to be fully under-
stood. Several suggestions along these lines were
presented in Sec. VII.

The basis for the PCM, as described in Sec. III,
is an interpretation of the perturbation diagrams
in light of the calculated one-collision quantum-
mechanical result of QMI. The expressions which
have been obtained reduce to the one-collision re-
sult of QMI in the limit of very low pressure and

give the "impact" theory line-shape parameters of
Lindholm and Foley or of Baranger' if we neglect
velocity-changing collisions. An alternative to
using the PCM is to extend the quantum-mechanical
calculation of QMI to allow for many collisions of
the active atom in its lifetime —a difficult under-
taking at best.

There are certain limitations of the PCM which

may be noted.
(I) Strictly speaking, we cannot apply the PCM

to the situation where there is scattering interac-
tion in both levels. In Appendix A, we present a
calculational model intended to cover this case, but
the only rationale for this model is that it seems
to work and is "reasonable. " That is, at low pres-
sures it reduces to the one-collision result of QMI,
and it also reduces to the proper limits for the
three cases of (a) single-state scattering, (b) neglect
of velocity-changing collisions, and (c) equal scat-
tering interactions in both levels.

Determining whether or not one need consider
collision interaction in both laser states is a prob-
lem requiring further study. That is, even though
the collision interaction for one state may be much
stronger than that for the other (as is assumed in
this work), the cross section for DMC in the weakly
interacting state may be large enough to cause
such collisions to have a measurable effect on the
intensity profile The p.roblem can be divided into
two parts: the effects of collision interaction in
both states on G, (r;v, v ) (that is, on time regions
where, in the diagrammatic sense, only a diagonal
density matrix element is nonzero) or on

G,', (r; v, v;k) (that is, on time regions where only
an off-diagonal density matrix element is nonzero).
Calculations of G, (7;v, v ) will not be altered if
there is collision interaction in both states, al-
though both I' and I', "would be nonzero in this
case. Thus the calculation of this paper is quite
general as far as the "diagonal" propagators are
concerned. It is for this reason that we were able
to take both I', " and 1 ™nonzero in drawing the
theoretical curve in Fig. 8.

On the other hand, G",~(v'; v, v';k) can be signifi-
cantly altered if there is scattering interaction in
both states, as discussed in Appendix A. It is our
contention, however, that changes in G(r; vv;k)
will not be appreciable if the collision interaction
for one state is somewhat greater than that for the
othe~, despite the fact that the DMC cross section
for the more weakly interacting state is not negli-
gible. While this contention should be proved
rigorously, we feel that a reasonable argument may
be given for its validity. Let rR and &v, be the
velocity changes caused by a collision for an atom
in the weakly and strongly interacting states I and

s, respectively. If a collision is to be Doppler
modifying for an off-diagonal density matrix element
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p „ then both 4v and &v, must correspond to a
DMC. To ensure this, it is sufficient to have

(82)

Since the rate for phase-shifting collisions is
and the rate for DMC-phase collisions is

=I'DM [because of the requirementof Eq. (82)], the
relative importance of DMC-phase to phase-shifting
collisions is ~ I" /I', . If the ratio is sma. ll,
DMC-phase collisions can be treated as pure phase-
shifting collisions to a first approximation. Note
that the DMC-phase collisions would enter the line-
shape expression as a correction of order I'D"/I'DM

at most, but that the DMC collisions for the weakly
interacting state will alter the intensity formula
[see Eqs. (Vl) and (73)] by a factor I+ I" M/y,
where y is the natural width of the weakly inter-
acting state. Whereas I'D /I', will, in general,
be small and provide only a slight modification to
the line shape, I'DM/y may be comparable to unity
at pressures as low as a few Torr and, as such,
may lead to significant changes in the pressure
dependence of the intensity. This feature is easily
seen in Fig. 8.

Thus, we have advocated a generalized PCM in
which DMC are allowed in all regions where
diagonal density matrix elements are nonzero (in
the diagrammatic sense), but only phase-shifting
collisions are allowed in regions where off-diagonal
density matrix elements are nonzero. This
generalized PCM will be valid if the collision in-
teraction for one of the radiative states is some-
what stronger than that for the other. If the colli-
sion interactions for the two states are comparable,
one must use the calculation of Appendix A.

As an interesting sidelight to this discussion, we
should mention that it may be possible to determine
the relative importance of collision interaction in
both states by an independent experimental check.
If linear absorption or emission experiments are
performed on the laser transition under investiga-
tion, one can obtain a linewidth (including Doppler
width) which will be pressure dependent. If the
collision interaction in the two radiative states
wex e nearly equal, the linewidth would den"ease
with increasing pressure, a phenomenon caused
by the DMC and known as "Dicke narrowing. ""
Qn the other hand„ if one state experiences a rel-
atively weak collision interaction, there are very
few DMC-phase collisions, Dicke narrowing may
occur only at relatively high pressures, and there
is an increase in linewidth with pressure due to
the phase-shifting collisions given by ze =so~+ Rey„,
where M)0 is the width at zero pressure and y„ is
proportional to pressure. Thus, by observing the
change in width with pressure, one may be able to
predict the relative importance of collision inter-

action in both states. It is interesting to note that
the phenomenon of Dicke narrowing, which is used
so widely in microwave resonance experiments to
reduce the Doppler width (in such experiments,
the atomic levels involved in the transition belong
to the same fine-structure level and do experience
about the same collisional interaction), may play
only a minor role in determining the widths of op-
tical spectral lines (which result from transitions
between electronic levels).

(An alternative approach to an experimental de-
termination of the relative importance of the colli-
sion interaction experienced by the two laser states
is afforded by measuring the pressure dependence
of the absolute frequency at the center of the tuning
dip. If collision interaction for the two states
were equal, there would be no shift on this fre-
quency with pressure, while a shift comparable
with Rey„would indicate that one state is experi-
encing a much stronger collision interaction than
the other. )

(2) Another inherent difficulty of the PCM is its
connection with perturbation theory. Thus, if one
desired to go to higher order in the laser field, he
would have to draw the fifth-, seventh-, etc. , order
diagrams and put collisions into these results.
This type of perturbation solution of the laser prob-
lem is not the most convenient for examining a
high-intensity laser and it appears that the PCM is
impractical for such a case. However, it may be
possible to directly incorporate the PCM into the
differential equations of laser theory and then solve
the resulting integrodifferential equations by tech-
niques other than the iterative approach used in
this paper.

(3) A third drawback of the PCM is its limitation
to binary-collision pressure regions. Only in the
binary-collision approximation can one discuss
separate collisions, a feature vital to the PCM. If
one wished to study the higher pressures where
many particle collisions become important, he
would probably do better to try a different approach
to the problem. Lasers and many other systems .
do operate in the binary-collision pressure region,
although many-body collisions might produce slight
corrections to the theory.

(4) A less serious criticism of the PCM may be
leveled against the use of cutoffs on the integrals
to separate out Doppler-modifying velocity colli-
sions from other negligible velocity-changing col-
lisions. This cutoff was taken when the change in
velocity rR was such that Ik &v I

= y„, but the cut-
off is really quite arbitrary. " Thus, if one is
worried about many small 4v giving a significant
effect, he could take a cutoff at )k ' ~v

~
= 0. Oly„

(provided that the binary-collision approximation
is still valid). The effect of changing the cutoff as
described above would be to increase the rate of
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"Doppler-modifying" collisions (since one would
be including many more collisions in the "Doppler-
modifying" category) but to decrease the effect of
an average collision (since many of these "Doppler-
modifying" collisions are now very weak). The
combination of these two factors will probably not
make the result very dependent on the cutoff as
long as it is taken at Ik ~ ~vl =y„.

In summary, the pseudoclassical collision model
should provide a simple means for including the
effects of velocity-changing and phase-shifting col-
lisions in many atomic physics problems. For
example, the problem of determining spontaneous
emission profiles in the presence of collisions is
very much simplified by the use of the PCM. It
may also be possible to extend the PCM to inelastic
collision processes such as those which must be
considered in Hanle effect (with collisions) and
resonant broadening experiments.

APPENDIX A

In this appendix, we present a calculational model
for treating the collision problem when there is
scattering interaction for the two radiative states.

In time regions where diagonal density matrix
elements are nonzero (see Fig. 3 or Fig. 5}, noth-
ing is changed from the PCM. That is, the prop-
agators G„(i;v, v ) and G»(r; v, v ) are still given
by Eq. (31) [ in the PCM, either G„(i';v, v }or
G»(&; v, v') was proportional to &(v —v'), depending
on which state experienced no scattering interac-
tion —in the present discussion, as in the gener-
alized PCM of Sec. VIII, neither G„(i;v,v ) nor
G»(v;v, v') is proporti'onal to 5(v —v'), since there
is scattering interaction for both the radiative
states]. The only difficulty lies in evaluation of the
propagators G,', (i';v, v';k) when o.'4n' We need.

deal only with G,', (i; v, v;k), since

G;q(&;v, v';k) ~ &(v —v'), but this feature is lost
when there is scattering interaction in both states.

In order to treat this case, it is necessary to
distinguish between DMC-phase and phase-shifting
collisions (see Sec. III for definitions of these
terms). Whereas in the PCM there was a real col-
lision kernel W, (v-v') ~

I f„(v -v') l' associated
with the DMC, it will turn out that the quantity which

plays the role of a "collision kernel" for the DMC-
phase collisions will be complex and given by
W„~ (v-v )~f„(v-v )f ~ (v-v )". Except for
the presence of this complex kernel and permitting
both DMC-phase and phase-shifting collisions to
occur in regions where p„(R, t) WO, the calculation
proceeds as in the PCM.

To obtain G;,(r';v;, v;„;k), one must compute
M;, (i;v;, v;„), which is the density (in velocity
space) representing the collision-modified value of
,M '„(i',v) averaged over all possible collision his-
tories in the 7 region which begin with the active
atom having velocity v, and end with it having ve-
locity v,„. From the results of QMI, it is already
possible to recognize the structural form of
M,'„(i';v;, v„,) and to conclude that the average
over collision histories for the col.lision-modified
value of,A,",(r', v) may be performed in a manner
analogous to that given in Eq, (24). The only dif-
ference is that the "coll.ision kernel" as well as the
"probability" for no occurrence of these DMC-phase
collisions are complex quantities. Using this ob-
servation and realizing that if no DMC-phase colli-
sions occur in a time interval v'2 —7'„ then the
average over all possible phase shifting c-ollisions
for this interval leads to a factor exp[ —Y,~(v)
x(ri —v', )] [where v is the velocity at the beginning
(and end) of the interval], one may compute the
collision-averaged value of [see Eq. (32)]

G,,(r; v, v';k) = G;„(i;v,v'; —k) (Al)

and

G,', (r;v, v';k) = [G,', (i; v, v';k)]

For scattering interaction in one state only

(A2)

G:,(r';v, , v,.„k)=P,'„(r', v, ) exp[- y„(v,)r'] e"' ' &(v, —v...)
I

+ J «i&,', (i &, ~i) exp[- y, g(i i)ii]lV g(vi vi+$)p,', (r' —i „i;.&)
0

&& exp[ y„(i,„)(r-'-i.,)] exp(z% [v,.i., + v„,(v'- i.,)]}

+ J d'v J' dr, J 'dr, P,', (v„v', ) exp[ —y„(e,)i', ]W'„(v, -v)P, , (i'2 —&i, &)
0 0
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x exp[ —y,~(v)(7'2 —v, )]W,~(v-v;„)P,~(r' —v2, v&„) exp[ —y, ~(v;,~)(r' —v2)]

x exp(P k [v Tg+ v(T2 —&~) + v y(7 &2)]]'+ (A3)

where P,~(v', v;) is the complex "probability" for
no DMC-phase collisions to occur in a time & for
an atom moving with velocity v;, and W„(v, -v„,)
is the complex collision kernel for DMC-phase
collisions [the average over all possible types of
collisions, similar to that in Eq. (30), leading to
the change vi -v&„ is already included in
W„(v, -v,„,)]. In this case, we must also keep
track of the Doppler factor e""' since the velocity
of the atom is changing in the interval. Equation
(A3) for G;, (r; v, v;k), used in conjunction with

t

Eqs. (Al) and (A2), may be substituted in Eqs.
(38}-(40), transforming them into results which we
assert to be valid for collision interaction in both
states.

Equation (41a) is still the appropriate classical
expression for y„(v), but no classical formulas for
P,, (v, v) and W,~(v-v ) may be given. To achieve
agreement with the one-collision results of QMI,
we must choose the quantum-mechanical line-shape
parameters as [compare with Eqs. (42)]

y„(v;) = y„,(n;)*= j d'v, W~(v, )[-,' I',"(v";)+ —,'I'„"(v', )" gatv", J-dQ, f, (v";-v",„)f„(v";-v", ,)'],
"i+1

(A4a)

W, , (v,. -v,„)=st(m/p} J d3v~W&(v&) 5d v",,, &(v&, , + (m/m&)v;+v& —(m/p)v;„)

x 6(5 —5[ i)(Uq ) f (v v +1)f (vf 'vi+1) (A4b)

P'... (7, v, ) = exp[- I'.M, (v, )7], (A6a)

with

(Asb)

=st J d'v~ W(v~)v"; J dQ „
i+1

x f-(vi-vi. i)fN (vi -vi.g)* (A6c)

W, (v, -v,„)= W „.(v, -v...)
x exp[i', ~ (v, -v;„)], (A6)

where W „.(v;-v„,) is a real collision kernel and

g,.(v& -v;.,) is the effective average phase shift
of a, DMC-phase collision which changes the velocity
associated with p ~ from v; to v, , The quantity
W«. (v; v;„) has no classical analog except when

The expression for y,„(v,) may be shown to agree
with the quantum-mechanical calculation of
Baranger [see Eq. (82) and Hef. 21 of QMI). Of
course, the previous expressions for W, (v -v')
and I"nM(v) given by Eqs. (41b) and (41c) or Eqs.
(42c) and (42d) must still be retained [Notic.e that,
by setting o.'= & in Eqs. (A4b) and (A5), one obtains
W, „(v- v ) = W, (v -v ') and I', (v) = &, (v), so that
these equations may describe both DMC and DMC-
phase collisions. ]

Formally we may separate the velocity and phase
changes occurring in collisions by writing

there is equal co lision interaction for the two
states. In that case f, (v -v ) =f, (v -v ),
7i,„(v-v ) = 0, and a classical trajectory can be
associated with collisions since the collision inter-
action is state independent. Equation (A6) shows
that the probability for a given velocity change is
correlated with the effective average phase shift
produced by that change. Hence the velocity
changes and phase shifts are "statistically depen-
dent" and may lead to considerable asymmetry in
the line shapes. ' The absence of marked asym-
metry in laser intensity profiles lends support to
the theory that DMC-phase collisions are relatively
unimportant.

To summarize, we see that, in general, three
types of collisions are possible: normal DMC for
diagonal density matrix elements, phase-shifting
collisions (no velocity change) for off-diagonal den-
sity matrix elements, and DMC-phase collisions
for off-diagonal density matrix elements. In a
sense, these are the three types of possible clas-
sical collisions discussed in Sec. III. However,
the connection of the collision parameters
W (v-v ) and I' ".(v;) with corresponding clas-
sical quantities seems remote. It would certainly
be advantageous to have a clearer picture of the
collision process when there is scattering interac-
tion in both states.

One satisfying (and necessary} feature of the re-
sults is that they give correct limiting forms for
the following cases: (a) collision interaction in one
state only, (b) "impact theory" limit (neglect of all
velocity-changing collisions), (c) Boltzmann-equa, —
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tion approach limit (that is, when f, =f„so that
y, b

= 0 and the scattering process is state indepen-
dent), and (d) very low-pressure limit (agrees with
one-collision result of QMI}. The confidence we
have in this calculational model is based, to a great
extent, on its success for these limiting cases.

APPENDlX 8

In this appendix, we generalize our PCM results
to allow for inclusion of non-Doppler-limit terms
and excitation of laser atoms to state b (see
Fig. 1).

Non-Doppler-Limit Terms

In writing down the third-order contributions to
the no-collision results, two types of non-Doppler-
limit terms were excluded. The first of these leads
to expressions identical with Eqs. (16), but with
exp[ik v, (r'+ r"')] replacing exp[ik ~ v, (r' —r }]
in the integrands of these equations. Following the
method used in Sec. V, it is a straightforward
matter to calculate the contribution to this non-
Doppler-limit term when collisions are present.
We find

A,'P, „., (t)=~6, iP'5 'V '[E(t)]~ J d'vo J dsv2 J d'vW, (vo) S, (vo v )2[ S(v 2- v)+ S( v2-v)]

& {[y,~ (v2) + i (&&(v3) —k ~ vz)] '+ [y,~ (v2) —i (6&a&(v2) + k ~ v2) ] '}[y, ~ (v) + i (6 &u(v) —k ~ v)] '+ [ (term)k -—k] . (B1 )

The other non-Doppler-limit term that enters the calculation leads to expressions identical with Eqs. (16),
but with exp[ik ~ vo(r'+2r" + r'")j replacing exp[ik ~ vo(r' —r'"}]in the integrands of these equations. The
calculation with collisions proceeds as in Sec. V, except that there is now a velocity-dependent term in ther" region. It is easy to obtain

~, ,'g, „."(t)=,'4 i P'b 'V '[E(t)]' J d'vo J d'v~ J d'v W, (vo) S,(vo-v2)[S;(vs-v, k)+ S;(vp -v, k)]

{[y.(v)+i(»(v) —k v)1'+ [y., (v, ) —i(~ (v,)+k v,)] ']

where

& [y„(v)+ i (h&(v) —k v)] '+ [(term)k -—k], (B2)

S'(vz- kv)= J "dr" e r G' (r";vz, v;2k)
0

(B3)

G' ( "r; ,v22vk)=P' (r", v2, DM) exp[2ik vr" ]5(v —v3)

I I

+ J a rf P „(rL, v2, DM) W (vg- v) P ' (r"—r„v, DM) exp{2ik [vp& + v(r" —r&)]] +
0

(B4)

are obtained by techniques similar to those used
in Sec. V and Appendix A [see Eq. (A3)]. An ex-
amination of Eqs. (Bl)-(B4) will show that, if y„
and 4 do not depend on speed, the contributions
from these terms will be symmetric functions of
cavity detuning about 4+= 0. Thus, asymmetries
in the intensity line shape cannot arise from non-
Doppler-limit terms any more than they can from
the Doppler-limit term. It is also easy to obtain
formal expressions for the non-Doppler-limit terms
when there is scattering interaction in both radia-
tive states, but we shall not give those expres-
sions here.

Both the above non-Doppler-limit terms become
comparable with the Doppler-limit contribution for
large decay parameters y„or detunings ~+. If
these quantities are small, the correction to the

Doppler-limit terms from Eq. (Bl) is =y„jku,
while that from (B2) is =(y„/ku)~.

Excitation of Laser Atoms to State b

It is easy to generalize our results to allow for
excitation of laser atoms to the lower laser state
b if we leave both the a- and b-scattering interac-
tions in the differential equations (I30) (even though
one interaction may be negligible). In that case,
a careful examination of Eqs. (I30) along with the
knowledge of how M(t) is formed [i.e. ,-a( p, t) b "(p, t) ] will reveal that

A(t, b) =[M(t, a)]" with a —b,
(B6)

where M(t, &) is the contribution to M(t) for ex-
citation of laser atoms to state &. One should note
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that y„ is unchanged by this transformation since
(y„)"=y, ~ [see Eq. (42a) or (A4a)], which implies
that both y, ~ and 4 are unchanged by the transfor-
mation. If desired, the M(t, b) terms may be added
onto the M(t, a) terms already calculated in this
paper. If the atoms start out with an equilibrium
velocity distribution, the only change in the results
of this work is to replace A, /y, by A, /y, —A, /y,
wherever it appears.

Note added in Proof. This work does not take
into account the effects of radiation trapping on
laser profiles (see, e. g. , M. D'Yakonov and
V. Perel, Zh. Eksperim. i Teor. Fiz. 58, 1090
(1970) [Sov. Phys. JETP 31, 585 (1970)]]. Such
effects are somewhat greater than or of the order
of non-Doppler-limit terms and should be included
in non-Doppler- limit calculations.
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Scientific Research, under AFOSR Grant No. 1324-67,
and in part by the National Aeronautics and Space Admin-

istrationn.

~Address after 1 September 1971: Physics Dept. , New
York University, University Hts. , Bronx, ¹ Y. 10453.

'P. R. Berman and W. E. Lamb, Jr. , Phys. Rev. A 2,
2435 (1970).

2Methods for checking and modifying this hypothesis will
be discussed in Sec. VIII. In general, the two radiative
states will have different orbital radii and polarizabilities,
leading to the result that one state experiences a stronger
collision interaction than the other. However, if the two
radiative states belong to the same electronic level (i.e. ,
laser transitions between two molecular vibrational states
of a given electronic level), the collisional interaction for
these states would be equal in first approximation, and
our hypothesis fails. Such cases may be treated by alter-
native means (see Ref. 23 of QMI).

We have explicitly carried out a calculation of a typical
term in the perturbation solution allowing for two collisions
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where &~ is the imaginary part of the plasma dispersion
function and $(P) is a factor of order unity that will depend
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