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fore seem more rational to eliminate the experimentally
irrelevant atoms from Eq. (2. 10) and discuss a general-
ized master equation for the reduced field-density oper-
ator $~(t) = tr~@'(t). This has actually been done for the
laser by Haake, Bef. 5, which in many respects parallels
the present paper. However, elimination procedures are
ultimately motivated not by economical considerations
but rather the physically sound approximations they
eventually give rise to. As may be seen from Sec. 4 of
Haake's paper, the integral kernel in the generalized
master equation for S~(t) allows for a convergent ex-
pansion if 1/T&, 1/T2» I(: (which is usually fulfilled for
a laser) but does not for the superradiance limit (2.14).

This formula has also been obtained for the far field
in Bef. 2(c).

Becall that ~j =~+~; if no collision broadening
i. e. , nonradiative decay is present, p& equals the natural
linewidth p of the atomic transition.

F. T. Arrecchi and E. Courtens, Phys. Bev. A 2

1730 (1970) ~ These authors have also obtained and dis-
cussed the values for lo and +, given in (6. 5) and (6.7).
Using arguments completely independent from ours, they
show that N, is "the maximum number of atoms that can
cooperate to superradiant emission" and that l, is the
maximum distance between atoms able to cooperate.
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The classical theory for mass defects in crystals is inapplicable to quantum crystals, where
zero-point motion leads to a force-constant renormalization on the introduction of mass de-
fects. We develop a variational theory for handling such problems which simplifies the re-
normalization so that the problem reduces to that of a single frequency-dependent mass defect,
to be calculated in a self-consistent fashion. Various anomalies observed in the properties of
quantum crystals are discussed in light of the present theory. The theory may also be used
to calculate in a simple fashion the properties of extended defects in classical crystals.

I. INTRODUCTION

The traditional theory of lattice dynamics' as-
sumes that the deviations of particles about their
mean positions in the crystal are small relative to
the equilibrium interparticle separation, and that
the ratio of these quantities is a legitimate small
expansion parameter in a perturbation treatment.
In isotopes of helium and hydrogen, such an ap-
proach breaks down. Because of the small mass
of the atoms and their weak attractive interaction,
the zero-point kinetic energy is of the same order
of magnitude as the potential energy, and the rms
deviation is as large as 30% of the equilibrium in-
terparticle separation. Since the peculiarity of
these crystals is rooted in the large zero-point mo-
tion, they have been called quantum crystals. The
work on these crystals in the past few years has
resulted in a clear understanding of the theoretical
framework in which these crystals ought to be re-
garded. From the point of view of this paper, the
salient points in this development have been the
following: Nosanow clearly formulated the prob-
lem of short-range correlations in such solids and
showed that the single-particle variational wave
functions are approximately Gaussian. Brenig
and Fredkin and Werthamer' showed through the
random-phase approximation that the elementary

excitations of even such highly anharmonic crystals
are phonons. Assuming phonon wave functions
(generalized Gaussians in coordinate space),
Koehler obtained a concise formula for the phonon

frequencies by a variational calculation. Hornerv

obtained the result of Koehler through an elegant
perturbation resummation and also showed how one

may go beyond the noninteracting quasiparticle pic-
ture in such crystals. The result of these theoret-
ical investigations may be summarized by saying
that at least for long wavelengths, the excitations
in quantum crystals are phonons, whose frequencies
however should be determined self-consistently
from force constants that are the thermal average
of the second derivatives of some effective inter-
particle potential which includes the effect of short-
range correlations. More precisely, the frequency
„-~ of a mode with wave vector k and polarization
~ is given by

X(&;.&,,v(~;;)),

where m is the mass of an atom; i, j label the lat-
tice sites; o.', P label the Cartesian coordinates;
R, J is the vector joining f to j; e~ (k) is a polarization
vector; v(r;;) is the effective potential between
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particles at a separation x,~; and ( ) indicates a
thermal average.

Though the quantum crystals were of much use
to the many-body theorists, much of their effort
may be characterized as an attempt to understand
why the erysta1s display routine elassieal behavior
in most macroscopic properties (while they display
in the liquid state very bizarre phenomena). How-
ever, on introduction of defects in such crystals
they display several anomalies not observed in
classical systems. Briefly, some of them are the
following: The thermal resistivity in crystals with
isotopic defects'9 is much larger than can be ex-
plained on the basis of Hayleigh scattering due to
the mass difference; the intermediate-bath specific
heat deduced in spin-lattice relaxation measure-
ments in 'He depends dramatically on He concen-
tration, '0 l~ leading to the belief that the He atoms
locally enhance the exchange frequency among the
'He atoms by more than an order of magnitude;
there are effects on the magnitude and the temper-
ature dependence of the spin-lattice relaxation
times" for impurities as few as 1 in 10', and mix-
tures of He and He are perhaps the only isotopic
mixtures to undergo phase separation in laboratory
times "'

In the present work, we develop a theory of de-
fects" which is applicable to quantum crystals. We
have borrowed from the elegant theory of defects
in crystals developed' by Lifshitz and by Montroll
and from Koehler's formulation of the theory of
perfect quantum crystals. We state here the theo-
retical problem, which precludes the application
of the Lifshitz-Montroll theory to quantum crystals.
Accepting that self-consistent phonons are the qua-
siparticles for perfect quantum crystals, the in-
troduction of a mass defect produces a shift in the
eigenfrequencies and the eigenvectors, which in
turn produces a change in the force constant in the
quantum crystals of the same order as the mass
defect. The simple mass-defect theory is then no
longer valid, and one requires a self-consistent
treatment of the whole mass —force-constant defect
complex.

Our method is also applicable to the calculation
of the properties of extended defects (a strong mass
defect and rapidly decreasing force-constant defects
its vicinity).

In Sec. II we briefly review the classical theory
of defects, and in Sec. III this theory is generalized
by a variational method to be applicable to quantum
crystals. In Sec. IV we discuss the results and re-
view previous work on this problem.

ing with harmonic force constants A 8(l, l ). For
the pure crystal the 3N equations of motion for the
dispiacements u, (l) in the direction n of a particie
whose mean position is R, are

Mu (i)+Z A.,(l, l')u, (l')=0. (2. i)

The eigenvalues &,(k) and the eigenvectors e, (k)
pertain to the dynamical matrix

(k) P A (l i~)elk'&Rg-a( ~ & (2. 2)

The eigenvectors are orthogonal and may be nor-
malized so that

~. &:.(k)en. (k) = 6~v

&~ & "~(k)&&(k) = 6.a
The normal coordinates of the problem are

q, (k)= Q T)*„(kl)u (l),
where

T (k l) = (lVM) e (k)e

(2. 3)

(2. 4)

(2. 6)

The elements of T satisfy the equation

P A ~(l, l )T@„(k,l')=M&~(k)T ~(k, l ), (2. 6)

this being the definition of a diagonalizing operator.
The eigenvectors T„(k, l) are normalized,

~ M(l)IT-. (k l)I~=i (2. V)

In the presence of defects, M will depend on l,
and A ~(l, l ) will not depend only on l —l; as a
consequence k cannot be used to characterize the
modes. The equation of motion for the particles in
a defective crystal may be written in terms of that
for a pure crystal as

—M&'u (l)+2 A~(l, l')u, (l')= Q C„(l, l')u~(l'),
(2. 6)

where C ~(l, l ) is the defect matrix

~C(l, l') = —bM(l)~ 5,g(l, l )+&A g(l, l ) (2. 9)

and AM(l) and &A ~(l, l') are the deviations. Now

we introduce new normal modes for the lattice with
defects, in analogy to (2, 4):

u. (l) =Z. T.(u, i)~(u), (2. iO)

where v labels the 3N normal modes just as k, &

do for the perfect crystal.
By definition T (v, l) satisfy

II. "CLASSICAL" TREATMENT OF DEFECT PROBLEMS
(2. ii)

Let the pure crystal be composed of particles of
mass J'vI arranged in a Bravais lattice and interact-

/he so$ntion of (2. ll) may be written in terms of
the Green's function g "z(l, l') which satisfies the
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equation

(2. 12)

Using (2. 6), we obtain

q—T,„(kl)T~~(kl')

QJ&(k) —(d

The solution of (2. 11) is

T, (v, I) = g Q g "z(I, I ') Cz„(l' I )T„(v, l ),
g)i

(2. 13)

(2. i4)
and since the new T, (v, I) are normalized as

~ M(&)l T.(v &)I'=I (2. iS)

they are completely determined.
In (2. 14) only those T„(v, I) appear in the right-

hand side that are affected by the defect. Using
these in the left-hand side, we obtain a set of homo-
geneous equations that have a solution if and only if

T (v, I) = —eM &„Q~ g,"~(l, 0) T~ (v, 0)

and (2. 16) reduces to a 3 &3 determinant,

~

eM~,'g.",(0, 0)+ 6.sl = o

(2. iv)

(2. ia)

For Bravais cubic lattices, g,"z(0, 0) = &„qg "(0,0),
and hence from (2. 1V) we have the threefold degen-
erate solutions

f CO„

3~ a, i ~i(k) —~.
which we may write more concisely as

e~„'g"(0,0) = —1,
where

1 1g"(0, o) =
3~ ~

a(~) a

(2. 19}

(2. 20)

Equation (2. 19) provides the new eigenfrequencies
for the problem and (2. 14) and (2. 16) give the new

eigenvectors.
We briefly discuss the characteristics of the solu-

tions obtained from Eqs. (2. 19}and (2. 20). If the

det 2 g~g(l, I ')C~~(f", I') —6~~6(l, l') =0 .

(2. 16)

This determinant has the same dimensions as the
number of coordinates affected by the defect, and
this is what makes this procedure workable in de-
termining the properties of a crystal with a small
concentration of defects.

We now specialize the above treatment to a single
defect mass M' at the origin. If e = (M —M )/M,

C, (l, I') = —eM~'6„(l, 0)6(l, 0) .
Equation (2. 14) now reduces to

defect mass is heavier than the host mass (e & 0),
the frequencies given by (2. 19) are decreased from
their unperturbed values, but by no more than the
difference between the unperturbed frequencies.
Thus the &„are different from &k~ by O(l/N); how-
ever, anyphysicalproperty which is a function of
the sum over all frequencies is affected to O(l).
The frequency dependence of the amplitude of the
defect atom, I T(v0) I, is altered from that of the
perfect crystal, which is a constant (in the Debye
approximation). There is a low-frequency reso-
nance, in the amplitude, which shifts to lower fre-
quencies as j&) increases. This resonance be-
havior often gives rise to a pronounced dip in the
thermal conductivity as a function of temperature
at high temperatures.

If the mass defect is lighter, all the frequencies
are increased, but again by no more than the dif-
ference between adjacent unperturbed frequencies;
also a new mode is generated at a frequency higher
than that of the perfect crystal and which decays
exponentially away from the defect site. The in-
troduction of defects changes the optical properties
of ionic crystals It c.hanges the velocity and mean
square displacement; the change in velocity is seen
in M'ossbauer experiments. The presence of local
modes gives rise to an exponential temperature
dependence in the spin-lattice relaxation times in
some substances. . There are various other observ-
able effects; these have been reviewed by
Mar adudin. "

III. ISOTOPE DEFECTS IN QUANTUM CRYSTALS

Since the interatomic potentials between different
isotopes of helium are the same, one may expect
that the simple mass-defect theory reviewed in
Sec. II would ideally apply to them. As was pointed
out in the Introduction, it is, in fact, quite inap-
plicable because of the large zero-point motion in
such crystals, which necessitates the use of a re-
normalized theory for the excitations. A simple
isotope defect which changes the eigenfrequencies
and eigenvectors also produces a change in the ef-
fective force constants for the defect and its neigh-
bors of the same order. The eigenfrequencies and
the eigenvectors must now be calculated anew.
Thus a single mass defect leads to a multidefect
problem because of the many-body effects. Now
a multidefect problem in which the defect has to be
determined self-consistently is a hopeless task.
The approach to the problem we adopt here is to
reduce the problem to that of a single defect, and
yet take care of the self-consistent force changes
in the best possible fashion. As we show below,
this approach leads to an effective mass which is
frequency dependent.

A. Variational Solution of Defect Problem in Quantum Crystals

Our method is variational„we choose the wave
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function (or equivalently the eigenvectors) of a
model problem and use the variational principle to
determine the parameters in it. The parameters
will be chosen to be the new frequencies (or equiv-
alently the elements of the force-constant matrix).
This part of our work is similar to Koehler's.
We will also have to determine the force-constant
def ects self -consistently.

As the variational wave function, we choose the
wave function for a specified set of defects within
the harmonic approximation:

82
Pop= —2 P (m, m„)' 'Gg„u„yo

~up ~ul

= —2(m, m„)'/ G„go+4(m, m~) /

xg [( „)'/pG, „u,][(m,)'/ G u, ]p,'.
r, s

(3.6)

Now multiplying (3. 5) by G on both sides, and using
(3.6), we get

'Pp= QexP — . — m; mj u&G&jQj
1 1/2

i,j
(3. 1)

4+GikGA/ 4I xl/2 8 s ~o ' ( ' )

Thus we have
The force-constant matrix 0 is determined varia-
tionally with the restriction that it be diagonalized
by the eigenvectors (2. 14) to yield the frequencies,
which in turn affect the eigenvectors. The norm
r/ in (3. 1) is given by

~P y. &)-PN/ol Gl
1 /P (3. 2)

We write the Hamiltonian for the defect problem
under consideration as the sum of a kinetic-energy
part Hp and a potential-energy part H1.

H=Hp+H1 .
The expectation value of H in the state pp is

E= (Po, (Hp+ Hg) Pp),
(3.3)

(&o~Ho&o)= p && f ///o(/~/'m&)///o= ~ &t G&' ~

Thus we have

Using the fact that T„(v,i)
we obtain

p

au, au/
~o

(m, m/)'/a

(s. 6)
are eigenvectors of G,

Z T, (v, i)(P, »)T~*(v,j) .
io, j8

B. Single Mass-Defect Variational Solution

(s. 9)

T (v, f) = —eM p/'„p p g,"p (f, 0)T, (v, 0) . (s. lo)

Substituting (3. 10) in (3.9) and using the properties
of a Bravais lattice, we obtain

We now specialize (3.9) for the case when yp is
the wave function of the problem with a single mass
defect at the origin. We therefore use the eigen-
vectors T of the single-defect problem:

&= ~ &; G" + f %q'oo ~ (3.4)
(&lli1&u„) = —P T„(v, 0)T„(v, 0)

We use the elements of G as the variational param-
eters, so that by the variational principle

aE=O= —,'&o, + H, Po .
kl kl

Now we have

8
»

where G~, is the cofactor of the element G» and

Thus we have

/ x1/2 2

G 2 ~G ~

~'yp —~m„m, j u~ul pp,
kl

so that

~ /vfl T-("f)l'-~'/vfl T.(v o)l'=1. (s. 12)

Using (3. 10), contracting with (2. 3) and using the
symmetry of a cubic Bravais lattice, we obtain

1 c(o4 ~1

I Tu(v& 0)
l 3 SH „[p/R(k) ~2]a 1

(3. 13)
Now we write

(P,.„,) =(P,'.„,)+ 9 P, „,»),
where (Po /p) is the value for a perfect crystal and

(bP„») is the change introduced by the defect.
We use the fact that

x Z &P,.„»)g„"„(f,O)g,"„*(j,O) .
(3. 11)

The normalization condition (2. 15) may be written

4 5pt + Hg Gp~pp (mome) uou)(pp2 1/2 2

2IG j Z T.',(k, )(P,'. /. )T„(l,j)=
ie, jg

(s. 14)

a

Gkl

Next we note that

(3. 5) to get

Z (p,.„,)g."„(i,o) g,"„(j,o)
iud j8
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NM f
' [~'(k) —(d']'

+ & «P(. ,»)g.",((:, 0)g~",*(j,0) . (3 15)
&af ~N

Using (3.15) in (3.11) we get

—1 —E'M(a) " 3&~ fi (d~(k) —(d~

Z v" (i a)(av( v )ve (e' 0)) (3.16)
3 $~ jp

In "classical" crystals with a single mass defect,
(AP„~())= 0 and we get the old result (2. 19).

The next problem is to determine (&P„). The
problem of the hard core in the potential may be
handled as by Nosanow. 3 If v&& is the effective
nonsingular potential obtained from the first two
terms of the cluster expansion, we have that

2

&o
8Q] 8Q~

~

~ ~2
Q

~Qg ~Qg

8=Z to ~(, f j (3. 17)

~Q 8
fj "ij (3. ia)

where F is given by

(3. i9)

In an analogous fashion it can be proved that

~eO 2

(i'„)=fe ev'ie "e v„, i-ej'
8e-"&i' (~' (s p, t„, i=j (3.20)

u Qc

where F is given by

(P„)-.'. = Z„[lT(.(~)I'+ I T» (~)I'- »(*.T»(~)]~.' .
(3.21)

Due to the altered effective potential between the
particles, there will, in general, be a distortion
around the defect. We may determine the distortion
by varying (po I HI ((()0) with respect to the average
distance between particles R„. to obtain

8
v„) = 0 ivv aava i .

t' (3. 22)

where pp is the ground-state wave function for the
perfect crystal. Koehler has shown that it is pos-
sible to reduce (3.17) to integration over a single
variable to get

~eO P 82
(Vv) fe "'" =le'"u v„,

~Q] ~Qy

IV. DISCUSSION

Equations (3.16), (3.20), and (3. 22) give the
complete solution to the problem in our variatianal
ansatz. Comparing the form of (3.16) with (2. 19)
it is apparent that the defect problem in quantum
crystals has been reduced to that of a single fre-
quency-dependent mass. Our method is applicable
also for the calculation of the properties of extended
defects in "classical" crystals with a strong lass
defect and weaker force-constant defects around it.
In this case, one may use (3.16) to calculate the
properties of the defect complex with 4P& &z taken
as given. The advantage again would be that if the
defect is indeed well localized, good approximate
answers may be obtained from the solution of a
determinantal equation of at the most three dimen-
sions rather than solving in as many coordinates as
are affected by the defect. This could serve as an
alternate method to that devised by Oitmaa and
Maradudin" to handle the same difficulty.

Some numerical results of a calculation for He
defects in solid 'He were presented earlier. " De-
tailed calculations with application to thermal con-
ductivity will be presented later. For complete-
ness we shall merely summarize here the conclu-
sions arrived at eal lier

(a) The force constants around the defect are
changed significantly up to the third nearest neigh-
bor. The force constants change in such a manner
that for equilibrium properties the "defectiveness"
is reduced. For example, the mean square dis-
placement of the 'He atom is brought closer to that
of the He atoms, and the lattice distortion around
the He atom is reduced by the force-constant re-
normalization. Thus the force-constant changes
act to "screen" the impurity.

(b) There is very little lattice distortion around
the defect. For all densities of 'He in the bcc phase
it was found to be less than 1. 5'%%uo. The large effect
on thermal conductivity on addition of defects is
thus not due to strains as has been believed, '9
Also, there is negligible change in the exchange
frequency of the 3He atoms around the He defect.
We calculated the change in the exchange frequency
and found it to be less than 10'%%uo.

(c) The thermal conductivity change is accounted
for by the force-constant changes. " This point
needs further study however, since different meth-
odss'9 of analyzing the thermal conductivity data
yield different results for the effect of defects. The
difference in the analysis lies in the different fre-
quency dependence used for the normal process
relaxation rate r„((d). The data in Ref. 6 are gen-
erally for higher temperatures than in Ref. 9 (al-
though there is an overlapping region) and the choice
for ~„(&) of Ref. 6 did not fit the data of Ref. 9
and vice versa. We suggest that the same r)(((~)
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should be used throughout the temperature range
of Refs. 8 and 9 and that the additional frequency
dependence is in the effective mass of the impurity.
The two sets of data can then be reconciled, As
we mentioned earlier, our results are equivalent
to having a frequency-dependent effective mass.

(d) The low-frequency amplitude of the He atoms
around the defect is enhanced. In other words, there
is a change in the local low-frequency density of
states. The effect is significant as far as the third
neighbor. We can in principle understand the vari-
ation of the temperature dependence of the spin-
lattice relaxation rates T& with He concentration
on this basis. Formally, the calculation of T, in-
volves a (double) integral over the frequency spec-
trum, and its temperature dependence is determined
by the power to which the frequency appears in the

integral.
(e) The enhanced exchange frequency around the

defect has been deduced from measurements of the
intermediate-bath heat capacity in NMR measure-
ments. As already mentioned by us and in calcula. -
tions performed by Glyde, there is, in fact, no en-
hancement of the exchange frequency. We have
proposed'9 that the increased heat capacity arises
due to the hopping motion of ~He i.'n the lattice,
which contributes to the intermediate-bath heat
capacity. In NMR theory this motion may be rep-
resented by a separate bath which couples strongly
to the exchange bath of the ~He atoms in a tempera-
ture-independent fashion. 7t al,so couples to the
phonon bath through the scattering of phonons in the

hopping process and relaxes to it at a rate deter-
mined by the Raman process,

Now we briefly comment upon the work done on
defects in quantum crystals by other workers.
Most of the work has been done using an Einstein
spectrum for the solid. This is quite appropriate
for properties which depend upon the total energy
or strain in the crystal. Thus Mullin o obtained
excellent results in his calculations of the phase-
separation of the 'He- He mixtures, and Glyde '
concluded that there is no enhancement of exchange
frequency around the defect. Guyer's work on
phase separation suffered from using an inappro-
priate criterion for phase separation. The Einstein
picture of the crystal is however quite inappropriate
for calculating any frequency-dependent properties
like thermal conductivity or spin-lattice relaxation
rates.

There has been an attempt made by Jones 3 con-
currently with ours to develop a theory of defects
in quantum crystals with a reasonable spectrum
for the solid. The starting point, Eq. (3. 1), is the

same. However instead of using a variational prin-
ciple throughout as we have, the author uses per-
turbation theory in the parameter e. This leads to
difficulties since the problem is nonperturbative
in nature. Thus the results of Jones do not give the
usual results in the "classical" limit, and he ob-
tains an unphysical divergence of the strain due to
the defect.
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