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We discuss the cooperative decay of initial atomic excitation for a pencil-shaped active vol-
ume filled with two-level atoms. As long as the length of the sample is much smaller than

a certain maximal cooperation length, the atom-field interaction producing the superradiant
pulse can be treated in terms of the simplest possible laser model (single mode). The basic
laser master equation turns out to be exactly solvable if specified for the superradiance
limit which is characterized by two conditions: (i) The photons escape from the low-Q cavity
so fast that they cannot feed themselves back into atomic excitation to any appreciable amount

(this no-feedback condition is equivalent to the above-mentioned requirement for the length
of the sample). (ii) The incoherent atomic decay due to natural relaxation is so slow that the
individual atomic dipoles do not dephase before engaging themselves cooperatively in the inter-
action with the electromagnetic field. The present paper presents the derivation and general
discussion of the equations describing the statistical properties of atoms and field in a super-
radiant pulse. Analytical and numerical solutions will be presented in a subsequent paper.

I. INTRODUCTION

The cooperative spontaneous emission of radia-
tion by a large number of atoms, first discussed
and called '"superradiance" by Dicke, ' has recently
attracted new interest. The motivation of these
efforts has been to overcome some of the limita-
tions of Dicke's original calculation in order to
render his results more liable to experimental
verification. Among the limitations recently re-
moved from the theory of superradiance, we men-
tion especially the use of lowest-order perturba-
tion theory and the confinement of the atoms with-
in a volume with linear dimensions small compared
to a wavelength of the emitted radiation. In the
present paper we engage ourselves in the same
spirit. However, our treatment of superradiance
differs from that of other authors both physically
and conceptionally.

We consider an ensemble of many identical two-
level atoms placed in a. "cavity, " the length of
which is assumed to be much larger than its cross-
sectional dimension. As has already been pointed
outby Dicke""' the "coherence brightening" occurs
practically exclusively in the axial direction for
such a pencil-shaped arrangement. Emission of
radiation does take place in nonaxial directions,
too, but to a much lesser extent and essentially
unfavored by cooperative effects. '"' '" It may
therefore be looked upon as an incoherent loss
mechanism for the atoms. The latter artifice
greatly reduces the complexity of the problem, for
it leaves us with the axial modes only as dynamical
field variables. As a device which further simpli-

fies the problem, we quantize the electromagnetic
(em) field with respect to the volume of the cavity.
We show that the frequency spacing between adja-
cent axial modes of the pencil-shaped cavity is
comfortably larger than the dispersion in frequen-
cy of the emitted superradiant pulse. As a conse-
quence we need consider only the single resonant
axial mode as interacting with the atoms. We em-
phasize that this would of course be impossible if
we quantized the em field with respect to some
large laboratory volume. The escape of photons
through the nonmirrored end face of the pencil into
the radiation field is taken care of as a loss mech-
anism for the field mode in the cavity.

What we have just described as our model of a
superradiant system is nothing but the well-known
simplest possible laser model. Indeed, we use the
"old" laser master equation' as a basis for our
present analysis. This frequently used equation of
motion for the atom pius field-density operator ac-
counts for the coherent interaction of N two-level
atoms with a resonant mode of the em field in
terms of the usual interaction Hamiltonian and for
the irreversible photon escape, as well as for the
incoherent atomic decay (e. g. , radiation into other
field modes) in terms of suitably chosen non-Her-
mitian I iouville operators. However, we have to
solve the laser master equation in a limit that, for
good reasons, has hardly ever been considered in
laser theory. We are here concerned with a low-
quality cavity. At least one oi the end faces of the
pencil has to be nonmirrored. In contrast to the
laser, the superradiant device must not be designed
to lock the photons in the cavity but rather to re-
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lease them as fast as they can escape according to
the velocity of light. Moreover, again as opposed
to what is typical for a laser, the incoherent atomic
decay process must be so slow that the individual
atomic dipoles do not get out of phase with each oth-
er before they can involve themselves cooperatively
in the interaction with the field mode. Making these
statements (which "define" the superradiant sys-
tem) quantitative in Sec. II, we find the small pa-
rameter characterizing our problem. The latter
measures the rate according to which photons feed
themselves back into atomic excitation in terms of
their escape rate. As a first step in solving the
laser master equation, we eliminate the field vari-
ables from it using Zwanzig's projector technique. '
The justification of this procedure is the fact that
the integral kernel in the resulting "generalized
master equation" for the reduced atomic-density
operator allows for an expansion in powers of the
above-mentioned small parameter. Because the
parameter is small, the series can be truncated in
lowest order to yield, as our main result, a "super-
radiance master equation. " Corresponding to its
being valid for the superradiance limit, it describes
a cooperative decay of initial atomic excitation
without allowing for any feedback of the field on the
atoms. The downward transition probability accord-
ing to which the decay elapses in time is seen to be
just that part of the total spontaneous emission rate
of a single atom which is claimed by the diffraction
solid angle of the end-fire mode. If we make the
(unnecessary) additional assumption that the field
follows the motion of the atoms adiabatically, we
may replace the superradiance master equation
with its Markovian version. The latter is equiva-
lent to the former for large times but does not ac-
count for the nonadiabatic process taking place during
the first few photon transient times. It has a struc-
ture well known from the theory of spin relaxation.
The equations of motion for the reduced atomic-den-
sity operator derived in Sec. III completely describe
the statistical behavior of the cooperatively decaying
atoms but not, of course, that of the experimentally
relevant em field. By further exploiting the pro-
jector technique and again using the smallness of
the above-mentioned parameter, we relate the
statistics of the field to that of the atoms in Sec. IV.
In particular, we arrive at a "correspondence"
formula which uniquely connects normally ordered
field and atomic expectation values. It shows ex-
plicitly how the em field hurries to close up with
the motion of the atoms during the first few photon
transient times and then begins to follow the latter
adiabatically. In the adiabatic regime it can be
simplified to a Markovian version, as was the case
for the atomic master equation. %'e defer the dis-
cussion of the exact analytical and numerical solu-
tion of the superradiance master equation and the

We claim here and shall show in the following
that the superradiant decay of an ensemble of many
excited atoms can be described realistically in
terms of the simplest possible laser model. The
latter accounts for a single-mode em field inter-
acting with N identical resonant two-level atoms
and some suitable loss and pump mechanisms. As
is usual in laser theory but has been unusual in
discussions of superradiance, the em field is quan-
tized with respect to the volume of the cavity in
which the atoms are placed. This artifice is of de-
cisive importance for our considerations in that it
provides the very basis for a single-mode descrip-
tion of the superradiant pulse. Although the latter
is a transient phenomenon of very short duration,
its dispersion in frequency will turn out to be com-
fortably smaller than the frequency spacing between
adjacent axial cavity modes. Nonaxial modes may
be ruled out by giving the cavity the shape of a thin
pencil, i. e. , making its cross-sectional dimension
very small compared to its length.

It is well known that the laser model referred to
above may be treated in terms of the following
master equation for the atom plus field-density op-
erator W(t):

W(f) =- iI, W(f), I.=S.„+I.,+I.„,+iA„+iA, .
(2. 1)

The first three terms in the I iouvillian L, describe
the free motion and the interaction of field and
atoms and read explicitly

(1/ii) [H„,X], H~ = Z 5& R3«
i-"1

(1/h)[H«„X], H~ = Pi~a~ a

L„«,X= (I/S)[H~~, X],

(2. 2)

H„~= I«g P (aR, e ""«+a'R, e '""«) . -

Here a and a are photon annihilation and creation
operators obeying [a, at]=1; R', and Rz are spin
operators for the ith atom obeying [R';, R, ]= 2R„,

evaluation of the field statistics to a separate paper.
In order to elucidate the physical content of our
theory in a semiquantitative manner, we show in
Sec. V that it implies the well-known superradiance
rate '"' "' equations if reduced to a quasiclassical
approximation. The latter assign to the emitted
pulse a hyperbolic secant form.

Finally, Sec, VI is devoted to a discussion of the
limit of applicability of our considerations to light
pulses generated by cooperative decay of atomic
excitations. It turns out that the length of the pencil
of atoms has to be small compared to a certain cor-
relation length.

II. LASER MASTER EQUATION
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A, X= ~ f[aX, a']+[a, xa']] . (2. 3)

Assuming one end face as ideally reflecting and the
other as completely nonreflecting, we have

a=c/2l . (2. 4)

K
' is the time a photon needs to travel twice the

length t of the cavity An. equivalent definition of
A~ is

trina 'a e ~'X=8 '"' '"' tr a 'a X. (2 3 )

The latter displays explicitly the damping charac-
ter of A~. Finally, the atomic pump and damping
Liouvillian refers to radiative decay of individual
atomic excitations sending photons into modes oth-
er than the explicitly considered one, as well as to
nonradiative decay and, eventually, an incoherent
pump. It is defined in terms of downward (y, o) and
upward (yo, ) transition rates as

N

A~X= Z f ~oqo[R;, XR';]+[R; X,R;']

[R„,R';] =+R';, [R™,R;]=0 for i wj; (u is the fre
quency of the atomic transition and the field mode;
g is the atom-field coupling constant; k is the wave
vector of the field mode pointing in the direction of
the pencil; xi is the site of the ith atom. Note that
the interaction Hamiltonian has been specified in the
dipole and rotating-wave approximations. The re-
maining two terms in L account for irreversible
processes. The field damping Liouvillian iA~ rep-
resents the irreversible escape of photons through
one of the end faces of the cavity. It is defined as

and operators:

R'; (k) = R'; e' ""&, R o (k) = R;o . (2. 8)

W(t) = —z(L„„+zA„+zA ) W(t) . (2. lo)

Note that a still more compact form is gained for
L» by expressing it in terms of the total atomic
dipole moment operators

N
R'= Z R', , Ro=Z R~o (2. 11)

Obviously these "phased" operators still obey angu-
lar momentum commutation rules. The correspond-
ing transformation on the atomic states reads

——
)
—&e ' t, j+&$ ——~+&$ . (29)

Here the I +&; are the spin- —,
' eigenstates R;, I a&;

=+ —,'I +&„R; I
—);= I+&;, R; I+&; = 0, R; I+&g =

I
—

&g,

R; I
—

&; = 0. Of course, the phased operators act
on the phased states as the unphased operators on
the unphased states. The master equation (2. 7)
keeps its form under the transformation (2. 8) and

(2. 9), except that the factors e''""& have disap-
peared and that all R; are replaced by R,'(k). We
have given some emphasis to the introduction of
phased states and operators because it is important
to keep track of the nature of the atomic states used
in a discussion of superradiance. We shall elaborate
on this point in more detail after solving the master
equation. Meanwhile, however, in order not to
overburden the notation, we drop the index k as well
as the tilde and write our master equation in the
form

i(H& + H&) t /h ~ - i(H& + H&) t'/h

This changes (2. 1) to read

W (t) = —i (I ~p+ jA~+ tAp) W (t) .

(2. 6)

(2. 7)

Note that the Liouvillian remains time independent
in the interaction representation. This results from
our taking the atoms in resonance with the field
mode. The second transformation is designed to
absorb the space-dependent phase factors e'' "i

occurring in H» in a redefinition of atomic states

+ o yo~ l EVi, XR, ]+ [R';X, R~ ] ] (2. 6)

or, equivalently,

tr~R'; e & 'X= e ' a tr„R';X,
(2. 6 ')

tr„Ro; e "'X=e ' &tr„Ro;X+ ao(l —e '
&) tr„X,

withv

~01 ~10»i=7'2=(yoi+»o) ', 6o=—
~01+ ~10

The master equation (2. 1) assumes a somewhat
simpler appearance after subjecting it to two unitary
transformations. The first of those consists of
going over to the interaction representation

according to

If„~=g(aR'+ a'R ) . (2. 12)

The master equation (2. 10}ha.s a, vast variety of
solutions radically different in physical content ac-
cording to different initial conditions and different
relative orders of magnitude of the parameters g,
N, I(, Tf T2, and 00. Therefore the proper formu-
lation of our problem requires some further spec-

ificationss.

Because we want to study a cooperative decay of
initial atomic excitation and the accompanying radi-
ation of light generated by spontaneous emission,
we shall be interested in the following initial con-
dition:

W(0)=W„(O) 3 W (O), W (0)=~O&&O~, a)O&=0.

(2. 13)
That is, we assume atoms and field to be uncorre-
lated and the field to be in the vacuum state at
t= 0. For the time being we need not specify the
initial value of the atomic-density operator W„(0}.
We shall do that in a subsequent paper in conjunction
with a discussion of various experimental prepara-
tion techniques. For the sake of illustration, we
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shall in the following sometimes refer to a W„(0)
corresponding to the atoms being either (a) all ex-
cited or (b) in a Dicke superradiant state.

In order to establish the limit in which Eq. (2. 10)
can be expected to describe a cooperative decay of
initial atomic excitation according to the initial
condition (2. 13), we now have to discuss the "or-
ders of magnitude" of each part of the Liouvillian

LAF+ ZAE + 1~A'
A rough estimate of the order of magnitude of the

atomic pump and damping Liouvillian A„may be
based on a discussion of the equation W„(t) =A„W„(f)
Its solution W„(t) = e &'W„(0) may be read off the
definitions (2. 5) and (2. 5') of A„. We see that en-
ergy is dissipated in the loss mechanism (or in-
coherently pumped into the atoms) at a rate
1/T, . On the other hand, any initial atomic polar-
ization (R'(0)) is damped out at a rate I/Tz, in oth-
er words, the loss mechanism drives the atomic
"spins" out of phase with each other in a time T3.
Therefore, in a rough estimate A„may be said to
be of order 1/T, = I/Ta. Similarly, an inspection
of W (t) = Az Wz(t) or Wz(t) = e &' Wz(0) using the
definitions (2. 3) and (2. 3') leads us to assigning to
the field damping Liouvillian A~ the order of mag-
nitude ~.

Clearly, a corresponding estimate of the inter-
action Liouvillian L» has to be based on a discus-
sion of W(t) = —iL„J„W(t) or, equivalently, the
Schrodinger equation ikg (f) = H„z ((f). In contrast
to the above cases, an estimate of the order of

H» or L» cannot simply be read from these equa-
tions. Fortunately, however, the solution of the
aforementioned Schrodinger equation is known and
indeed provides us with the desired estimate. H»
describes an oscillation of the energy back and forth
between the atoms and the field mode. For the case
of a large number of atoms, Bonifacio and Prep-
araiaa'" hav'e shown the frequency of this (nonlin-
ear) oscillation to be -

g 0N /lnN and -g WN for the
initial state (2. 13) with W„(0) according to (a) all
atoms being excited and (b) the atoms being in a
Dicke superradiant state, respectively. Clearly,
we may take these values of the oscillation frequen-
cy as a rough measure for the order of magnitude
of L». This choice is corroborated by recent re-
sul. ts of Scharf, '" who has calculated the eigen-
values of H». For N»1 these turn out to be near-
ly equidistant. This allows the general conclusion
that the inverse energy difference of adjacent eigen-
values of H» will be a quasiperiod of observables
if only the initial state of the system is composed
of sufficiently many eigenstates of H». Specifical-
ly, for our initial condition (3.1) (no photons pres-
ent at t = 0), the frequency of the oscillation thus
predicted is gMN/InN. This is in agreement with
the results of Ref. 2(e). Returning now to the mas-
ter equation (2. 10), we can state that each part of

the Liouvillian L will want to impose itself on the
rate of change in time of the density operator W(t)
according to its order of magnitude, A„-1/T,
-I/Tz, Az - tc, and L„J -g~N, g~N/InN If. we want
Eq. (2. 10) to describe a cooperative decay of initial
atomic excitation, it is clear that we have to re-
quire the incoherent atomic decay Liouvillian 4„
to be very small compared to L».

]/T&, I/T2«gvN, gal%, guK/]nN.
(2. 14a)

Furthermore, we stipulate that any photon, once
produced, escapes from the active volume so fast
that it does not have a chance to feed itself back
into atomic excitation:

Lg~ && A~,

g~N, g~N/lnN« ~ .
(2. 14b)

In a suggestive phrasing, the limit (2. 14) forces
the em field to follow the motion of the atoms ap-
proximately adiabatically. %'e therefore expect
an easy way of exploiting it in terms of an approx-
imation to consist in first eliminating the field
variables from the laser master equation (2. 7).

Using Zwanzig's projector formalism, ' it is easy
to derive from Eq. (2. 10) a generalized master
equation for the reduced atomic-density operator

(3.1)

As is shown in Appendix A, this equation of motion
for W„(t) reads

The physical meaning of the inequalities (2. 14) will
be discussed in detail in Sec. IV. As we shall see
there, they constitute a necessary condition for the
pencil of initially excited atoms to cooperate in the
generation of a superradiant light pulse which can
consistently be described in terms of our single—
mode laser model. The corresponding necessary
and sufficient condition which will turn out to be
somewhat sharper than (2. 14) will be established
at the end of Sec. III and be discussed in Sec. VI
also.

A quick qualitative understanding of the physical
content of the master equation (2. 10) and the limit
(2. 14) may be obtained by extracting from (2. 10)
classical Bloch equations and solving these in the
limit (2. 14). Preferring not to interrupt the quan-
tum-mechanical argument here, we defer this
classical discussion of superradiant pulses to
Appendix B.

It is interesting to note that solutions of Eq.
(2. 10) which describe a usual stationarily operating
one-mode laser are obtained in a limit just oppo-
site to (2. 14), briefly, A„&L„~&A~.

IH. SUPERRADIANCE MASTER EQUATION FOR
ATOMS



306 BO&I FACIO, SC H%'ENDIMANN, AND HAAKE

W (t) =A~ W~(t) f dsK( ) W„(t -s), (3.2)

with the integral kernel

A(s)=-tr, L„,e-'"-'&"»'"~ "~"L„,~O&(0~ .
{3.3)

Equation (S. 2} is equivalent to the laser master
equation (2. 10) with respect to the atomic vari-
ables. It is merely a projection of the latter into
the Hilbert space of the atoms carried out with the
help of the pxojector

I = iO&(Oitr„sio&=0, P(1-I )=0 (S.4)

and the imtial condition (2. 13), W(0) =10&(ol W„(0).
Note that the definition (3.4) entails the algebraic
identities

which we shall have to use below.
The main virtue of the generalized master equa-

tion (3.2) for the atomic-density operator is that
it invites, by its very appearance, certain approx-
imations which will finally render it solvable.
First, let us show that the limit (2. 14) allows the
neglect of A„and L„with respect to A in the ex-
ponent in (S. 3). This is obvious from an intuitive
point of view, since (2. 14) implies A„,L„a«Aa
(i.e. , 1/T„ 1/Ta, gal% «s). For the sake of
savjng space, we demonstrate in the following that
correction terms due to L» are negligible, and we
suppress the completely analogous discussion of
corrections due to A„. To that end we discard
Az in K(s) and represent the kernel as a power
series in terms of the interaction Liouvillian I.z~.

A~P=PAg= 0, Ag P =PAg,

I {L„,)'"'I =O, n=O, 1, 2, . . .
(s. 6) A-( )=RA-,„(s), X,( )=-t,L„fI(s)L jO&«I,

2n I&a(s) =(-1)"'f dsg f ' dsa ' dsantraL» fI{s-si}L~afI(si-sa) @L~a fI(sa-sa}L»&(sa-s4) 0
0 0 0

~ "e»fI{sa..a sa. ~)L-»ft(sa. ~ sa.) e-» fI(sa.)L»lo&«I, (3.6)

with

(3.7)

preciable amount. %e may therefore safely re-
strict our consideration to the lowest-order term
in the expansion (3.6):

Here we have already used the algebraic identities
(3. 6), the last of which entails the expansion of
X(s) to contain only even-order terms in L„r.
Let us discuss tbe order of magnitude of Ka„(s).
%e assert

Ka„(s)-(g VN/v)a" Aa(s) .
This can be seen as follows. According to its defi-
nition, Ka„(s)- (Izr} "'; tbe order of magnitude of
L„z has been pointed out to be -g vN to within a
factor of 1/in¹ this explains the numerator in
(3.8). Next, recall that the field-damping prop-
agator U'(s), according to tbe definitions (2.3) and
(2. 3') of A„, varies in time on a scale s '. Rough-
ly,

' U(s)-e "'. Consequently, the 2n-fold time
integral in (S.6) provides Z@,(s) with a factor s
We now see that the expansion (3.6), although ob-
tRlned Rs R pow'ex' sex'les ln the lntex'Rctlon Llou-
villian, actually goes in terms of the parameter
{gvN/v) [or the still smaller one (g vX/vlnN) ].
The latter has an obvious physical meaning: It
measures the rate at which photons are converted
back into atomic excitation energy (gv N or

gal%/in')

relative to the rate at which photons es-
cape from the cavity As state. d in (2. 14) this pa-
rameter is assumed to be very small compared to
unity. I contrast to t e laser t e superradla t
laser releases the photons so fast that they cannot
feed themselves back into the atoms to any ap-

Z(s) = Z, (s) + O(g'N/~') (3.9)

W„(t)=(A„+A,) W„(t), t» s-'. (3.12)

This corresponds to the field follow'lng the motion
of the atoms adiabatically.

In order to get some insight into the physical
content of Eqs. (3.10)-(3.12) let us compare the
incoherent decay I iouvillian Az 2nd the superra-
diant decay I iouvillan A,. As is seen from their

The generalized master equation (3.2) for the
atomic-density operator is then found to read

W~(t) =A„W„(t)+f ds ze "'A, W„(t -s), (3. 10)

with the "superradiant decay I iouvilI~&la" A,

A, x= (g'/~) ([R-,xR']+ [a-x,R']] . (3.11)

Equations (3.10) and (3. 11) constitute the main re-
sult of this section. We emphasize that Eq. (3.10)
is an "exact" consequence of the laser master
equation (2. 1) in the superradiance limit (2. 14).
It evidently is a non-Markovian equation account-
ing for memox'y effects. We shall show below that
the solution W~(t) of (3. 10) changes in time on a
scale much larger than the photon transient timeg, Therefore, apart from what happens for
times t & «(in the nonadiabatic regime}, Eq.
(3. 10) is equivalent to its Markovian approxima-
tion
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respective definitions, (2. 5) and (3.11), they have
a formally similar structure. The similarity be-
comes especially striking if, for the time being,
we imagine them both specialized to the case of a
single atom. A& accounts for upward and down-
ward transitions at the rates /pe and y$0 respec-
tively. In A„on the other hand, there is no up-
ward transition term whereas downward transi-
tions do appear at the rate

I, = Pg'/g . (s. is)

Clearly, upward transitions are forbidden in the
superradiance limit (2. 14)~ Note that the down-
ward transition probabilities y«and I& are not in-
dependent physically. As mentioned in Sec. II,
yq0 may have contributions from radiative as we 11

as nonradiative decay mechanisms. The former
can be calculated with Fermi' s Golden Rule:

yqo '=2g &&(density of modes in the cavity)

= Pg'(4v(u'/e') s'l

=I, (4vs'/~ ), (s. i4)

where l and s~ are the length and the end surface
of the cavity. We see that I& is the photon emission
probability per unit solid angle y&0 '/4m times the
diffraction solid angle A. /s of the "end-fire" mode
under consider ation.

However, in spite of these similarities, Q and

A, describe radically different decay mechanisms
for N» 1. The decay referred to by A, goes "co-
herently, " i.e. , in terms of the macroscopic di-
pole moment operators 8', with the total dipole
moment R =Rf +Rz+R, (R'=RqaiR, ) being a con-
stant of the motion. On the other hand, A& de-
scribes an incoherent decay, i.e. , each atom
moves independently of all the others. This dif-
ference between A& and A, may also be phrased
as the statement that A„ in contrast to A~, does
not allow for an "uncorrelated" solution W„(f),
i.e. , a W~(t) factorizing with respect to the in-
dividual atoms. Indeed, we shall show when pre-
senting the exact solution of the superradiant mas-
ter equations that strong atom -atom correlations
are characteristic for the superradiant process .

Let us emphasize that we have not yet taken full
advantage of the "superradianee limit" (2 ~ 14) in
simplifying Eqs. (3 ~ 2) and (3 ~ 3) to the forms
(3. 10) and (3.11) or to the Markovian version
(3. 12). We have used only A„, L»«A~, i.e. ,
I/T„ I/T~, gMN«&. Consequently, the solutions
of (3 ~ 10) and (3 ~ 12) will in general not describe a

cooperative decay of initial atomic excitation.
This is immediately obvious from the appearance
of these equations. They a,liow for two competing
decay mechanisms, an incoherent (A„) and a co-
operative one (A, ) ~ Clearly, we have to require
the latter to dominate the former . The limit
(2. 14) states a necessary condition for this to be
the case. We are now in a situation to state the
sufficient condition: A~ «A, . Recalling that A,
is constructed (schematically) as f"dsL~I e ~'L»

0
and using the orders of magnitude of A&, L», and

A~ we get A, = (gv N) /a. Then A~ «A, may be read
as

1/T„ 1/T, «(g VN)'/a . (s. is)

W„(f) = V, i 0)(oi, (4. 1)

Vp(t) =1+f ds try exp[-i(1 P)(I»+iA-„+iA~)s]
0

x[-i(1-P)(L»+2Ag)] Wg(f —s) . (4. 2)

Constructing W~(t) is equivalent to calculating all
normally ordered field expectation values

(a"a (f)) =tr„a"a W„(f). (4. s)

The evaluation of (a ' a (f)) has to be carried out,
of course, for the sake of consistency, in the same
limit (2. 14) in which we have determined the
atomic-density operator Wz(f). Hence we may
first neglect Q in the field "propagator" V„(f).
Next, we expand Vr(f) in terms of our small pa-
rameter gv N/z As in Sec. III., the series desired
is formally obtained by developing the exponential
exp[-i(1 —P)(L»+iAr)s] in powers of L„z..

This "sufficient" version of the superr adi ance
limit will be discussed in detail in Sec. VI. It
clearly allows neglecting the incoherent-decay
term A„ in (3 ~ 10) and (3. 12)~ The thus simplified
equations will be solved in a, subsequent paper.

IV. SUPERRADIANT FIELD STATISTICS

The master equations (3.10) and (3.12) derived
above completely describe the statistical behavior
of the atoms in a superradiant laser. Unfortunate-

ly, however, the latter are not directly observable
laser experiments always referring to the em field
output. '

Thus we are left with the task of relating
the field statistics to those of the atoms. This
goal can be achieved by further exploiting the pro-
jector forma, lism. As is shown in Appendix A,
the field-density operator Wz(t) may be expressed
in terms of the atomic-density operator W„(f) as

&a"a (f))= 2 (-i)"'f ds f ds„f "ds„, f ' ds, tr„tr, a" a
n=0 0 0 0

&U(s —s„)QLz~ U(s„—s„&)QL» U(s2 —s~) QI» U(sq) QL»~0)(0~ W„(f —s) . (4.4)
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Here we have again used the abbreviations (3.7).
Note that the first nonvanishing term in the above
series arises for m+1=i+m. This can be seen
as follows. Disregard, for the time being, the
factors U(s„—s„,) Q, which do not affect the ar-
gument; we shall concentrate on them later. Now
consider the nth term of the series which contains
n+1 factors I&~. Use the cyclic invariance of the
full trace trz tr~ to let all I.„z, act to the left.
Commuting a 'a (n+ 1) times with H~z gives apoly-
nomial in a, a, with all exponents in a ' a obeying
i+j & (I +m) —(n+1) because [a,f(a, a )]= (8/Ba~)

&&f(a, a ); if n+1 &I+m, all terms a 'a~ give zero
contribution to the final vacuum expectation value
trr( ) to) «I; if, however, n+I & 3+m, terms
with a a arise whose vacuum expectation values
do not vanish; therefore we have

Z- Z
n=0 f1=i+m-1

in (4.4). Recall now that the expansion (4. 4) goes
in terms of the small parameter gvN/)(. There-
fore we may, and indeed have to, neglect all terms
with n + 1 & l +m:

(a 'a (t)&= (-i)' f ds f ds„(f ' ' ds, ,„2 f' ds&

&&tr„trina 'a" U(s —s„„&QL&r U(s„& —s„„a)~ ~ ~ U(s() QL&+~0) (0~ W~(t —s) . (4.6)

Applying again the argument used above to prove
(4. 5), we see that we may replace all factors
Q= 1-P in (4.6) with unity [this would not be pos-
sible for the higher-order terms in (4.4)]. The
field-damping propagators are then taken care of
step by step in the following way: The first of them
on the left, U(s -s,.„,), is replaced with
exp[- (l+m)(((s -s„„()]according to its definition
(2. 3'). We then let the adjacent L„z act to the
left. The resulting commutator [a ' a",Jfzz] is a
polynomial in a, a which has to be put in normal
order; then again on account of (2.3'), U(s„
—s„s) gives place to exp[- (l +m —l))((s„„&
—s„, s)] and so forth. Note that we may omitin
each step all those a 'a~ which do not have a chance
of getting commuted to field c numbers in the re-
maining steps. On combining a11 arising factors
exp[- t((((s„—s„()], we get

(a 'a (t))=(-i)" f ds f ds, .„,~ f 'ds,

x tr~K„W~(t —s) exp[ —(((l + m)s]

xexp[)((s„(+s„a~ ~ +sz+s()], (4. 7)

with

(-= "[[["["'a,&"],&-], "],If..]/0)«f

=«H[[" [a"a",&.E] ffAp] ''] If+@]/0),

l +m commutators . (4. 6)

Carrying out the (l +m —1)-fold integral over the
s„, we get

( i)(+(a"a (t))=
( I), „„iJ( ds

(i+st)ss (
((s I)(+m (tr ff W-(t s) (4 9)

The evaluation of the operator X„requires the

calculation of a vacuum expectation value of a poly-
nomial in a, a. Some straightforward algebraic
steps yield

tr„Z„.W„(t -s) = (-i)'(t+m) (

xg'" trg R' R Wg(t —s), (4. 10)

whereupon we get our final result:
l+m

(a"a (0)=(-( f (-i)'()+m)

)(f ds Ks. ((+ ) ( s I)(+rll 1 (R+(R lh(t s))
0

(4. 11)

This allows the calculation of field expectation
values once the corresponding atomic expectation
values are known. Note the one-to-one corre-
spondence between normally ordered field and

atomic expectation values.
Equation (4. 11) is the counterpart of the non-

Markovian master equation (3.10). Insofar as the
latter is equivalent to its Markovian version (3.12),
Eq. (4. 11) may also be simplified in a completely
analogous manner. If (R'R "(t)) relaxes much

more slowly than its cofactor in the integrand in
(4. 11), its dependence on the integration variable
may be neglected and the upper integration limit
extended to infinity. This gives the counterpart of
the Markovian equation (3. 12):

(a 'a"(t))=(-ig/)()' ( 1)'(R' R-(t)), t»(( ' .
(4. 12)

This expression clearly exhibits the additional as-
sumption that the field follows the motion of the
atoms adiabatically. ' Let us emphasize that the
Markovian theory constituted by (3. 12) and (4. 12)
does not account for what happens during the first
few photon transient times t & ~ '. As we shall see
when presenting the solutions of the master equa-
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tions (3.10}and (3.12), the nonadiabatic process
taking place for t & z is physically nondramatic
and, moreover, in view of the smallness of ~ ',
extremely difficult, if not impossible, to observe
experimentally. Note, however, that there is one
difference between the non-Markovian expression
(4. 11) and the Markovian one (4. 12) which is in-
deed striking from the conceptional point of view.
The former properly reflects our initial condition:
At t=0 the field is assumed to be in the vacuum
whereupon all normally ordered field expectation
values have to be, and indeed come out as, zero.
On the other hand, (4. 12) assigns to the (a ' a )
initial values which result from (4. 11) for a time
of the order of ~

V. SUPERRADIANCE RATE EQUATIONS

Because a thorough discussion of the solutions
of the superradiance master equations (3.10) and
(3. 12) and their physical implications would re-
quire quite some labor as well as space, we defer
it to a separate paper. A semiquantitative insight
into the underlying physics may, however, quickly
be obtained by treating Eq. (3. 12) in a quasiclas-
sical approximation. The latter amounts to ne-
glecting the quantum-mechanical dispersion of the
total inversion operator R, :

((R,)') —((R,))' = 0 . (5. 1)

&R,(t)) =I(t) -(1/T, ) [&R.(t)) ~],
I'(I) = 2I, I(t)[&R,(t) ) -R„],

(5.3)

(5.4}

with Rgr ——i + «/Pg Ti .
For simplicity we have assumed that the atomic

pump and loss mechanism described by A& is at
zero temperature (yo~ = 0). Commenting on the
above superradiance rate equations '"' "let us
make the following remarks.

(i) Their main difference from the well-known
laser rate equations consists in the absence of a
back-reaction term —2I& I(t) (R,(t)) in (5.3). This
is a consequence of our condition tc»gal% (or
gvN/InN), which we have already phrased as a
no-feedback condition.

(ii) Equation (5.3) describes the decay of atomic
excitation according to radiation into the end-fire
mode [-I(t)) and natural relaxation (i. e. , especially
radiation into other modes of the em field). Note
that it fails to be a balance equation for the total
internal energy (Ri)+(a a) by the absence of a

Let us write down the equations of motion for the
radiated intensity

I(t) =2K&a a(t)) =(2g /K)(R'R (t)) =I (R'R (t))

(5. 2)

and for (R, (t)) which follow from Eqs. (3. 12) and
(5. 1):

term d/dt (a a(t)) on the left-hand side; such an
exact energy balance is indeed entailed by the
original laser master equations, (2. 1) and (2. 10),
which do not yet have the superradiance limit
(2. 14) built in; however, we have

&R,(t)) = —— taW
X+1

if+12
I(t) = I& sech

2 Vp

The width 7'~ of the pulse is given by

~, =x/g'(N+I) .

(5.5)

(5.6)

The time t at which the pulse reaches its (super-
radiant) maximum intensity I&[i(N+ 1)] depends on
the initial condition. For the fully excited initial
state

(R,(0)) = iN, I(0) =I, (R'R (0))=I,N,

we find

= ~ 7'plzdV,

and for the Dicke superradiant initial state

&R,(0})= 0,
I(0) = Ii (R' R (0)) =Ii iN ( i N + 1),
t„=—v'i ln[(N + 2)/N] = —ri /N .

(5.Va)

(5. 7b)

As will be shown in the subsequent paper, the shape
of the radiated intensity I(t) obtained in this section
is qualitatively correct. In particular, the char-
acteristic times 7& and 7' will turn out to be in
agreement with the corresponding values obtained
by solving the superradiance master equation ex-
actly. It is only the statistical features of the
emission process which have to be expected and

indeed turn out to be falsified by the present quasi-
classical treatment which suppresses the quantum
fluctuations of the atomic energy [see (5. 1)].

It is interesting to see that the characteristic
times w~ and t of the emission processes could

dt
—(a a) «2@&a a)=I(t),

if the characteristic time v~ during which the super-
radiant process takes place, fulfills w~» z '. The
latter condition will turn out to be equivalent to the
superradiant-limit condition. Therefore Eq. (5. 3)
may indeed be looked upon as the exact energy
balance for the superradiant limit.

Let us now use the limit (3. 15), i.e. , require
the superradiant pulse elapse in a time very short
compared to the "natural" atomic relaxation
times. We then have to look for a solution of the
rate equations (5. 3) and (5.4) for 1/T„ 1/Ti=0.
In this case it is easily shown that the pulse has
the well-known hyperbolic secant form
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have been determined correctly by an order-of-
magnitude argument based on the discussion at
the end of Sec. II. Recall that the superradiant
decay Liouvillian A, was constructed as f,"dsl „z
xe &'L„z [see (3.6), (3.9), and (3. 10)]. Accord-
ing to the order of magnitude of A~ and L» it
should therefore be of order (gus) /~ (to within
a factor of lnN). This is indeed the inverse width

r2 of the pulse given by (5.6).

VI. LIMIT OF VALIDITY

I et us finally return to the discussion of the
superradiance limits (2. 14) and (3. 15). In antici-
pation of what will be shown presently, we have
already stated this limit to be the necessary
[(2. 14)] and sufficient [(2.14) and (3.15)] condition
(a) for the cooperation of the atoms in generating
the superradiant pulse to be unimpeded by natural
relaxation and (b) for the emitted pulse to be con-
sistently describable in terms of our single-mode
model. To prove that now let us first combine
(2. 14) and (3.15) to obtain

A„«A, «A~,
(6. 1)1/T„ 1/T2«g N/z «z,

where the order of magnitude of A, is specified
up to factors ln¹ Upon dimensional arguments,
the magnitude g N/z of A, is, at least roughly, the
inverse characteristic time 7'~' of the cooperative
decay described by A, . This is corroborated by
the result (5.6) of the semiclassical analysis in
Sec. V. Thus the left-hand inequality in (6.1)
may be read as r~«T&, T2, which is indeed state-
ment (a) above: Natural atomic relaxation is not
allowed to drive the individual atoms out of phase
with each other before the cooperative decay is
over. Next, we observe that the right-hand in-
equality in (6.1) implies that the width of the fre-
quency spectrum of the emitted pulse (-2p/r~) is
much smaller than the frequency spacing of ad-
jacent axial modes of the cavity (2mc/I) This i.s
readily seen using z=c/2l. Equivalently, z=c/2l
»r~' maybe read as l«c7'~, i.e. , the length/ of
the sample is required to be small compared to the
spatial extension of the radiated pulse. Thus the
envelope of the pulse is essentially constant over
the length of the sample. This shows again that
the right-hand inequality in (6. 1) may be under-
stood as ensuring that we need not worry about
propagation of the pulse along the active volume
(i.e. , many-mode effects)

Let us rewrite the superradiance limit (6. 1) in
terms of measurable quantities. To that end we
express the coupling constant g in terms of the
natural linewidth of an isolated atom given by
(s. 14):

Assuming a constant density p =N/V of atoms in
the active volume and using 2 =c/2l, we may read
(6. 1) as a condition for the length I of the sample:

~thr ~ ~c ~ (6.3)

Here the upper (cooperation) limit I, is given by

I, = (2wc /yz2p)'t ' (6. 4)

and the lower (threshold) limit I,„,by

4~(y, /y) . 1 1
~thr = a ~

With y
A, p 2 1

(6. 5)

The labels "threshold" and "cooperative" indicate
the physical meaning of the corresponding quanti-
ties. l «l, = c7'~ ensures that the envelope of the
emitted pulse varies slowly over the length of the
sample and, consequently, that the atoms at one
end of the cavity see the same field as those at the
other end ("no propagation" ). I » f,„„stems from
the left-hand inequality in (6.1). Since it is well
known that icy/g is the threshold inversion of a
laser, this can be read as the requirement that
our system is very far above threshold at E= 0.

Multiplying (6.3) with the density p and the cross
section s' of the sample, we get an equivalent con-
dition for the number of atoms ¹

N, „,«N «N, ,

with'

=4n —~ N =—s s 2' p
thr ~ ~ c

(6. 6)

(6. V)
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APPENDIX A

(Al)

L is an operator acting in the Hilbert space to
which W(t) belongs. In this space the scalar prod-
uct is defined as

(W1 W2) t W1 W2 ' (A2)

If the system under consideration is closed, its
dynamics can be described in terms of a Hamil-
tonian H and L has the Liouville-von Neumann
form

I.x= (I/a. ) [lf,x] . (As)

For the sake of completeness we give a brief
outline of the projector technique. For a thorough
account the reader is referred to Zwanzig's work. '

Let the density operator W(t) of some system
obey the equation of motion

w(t)= -tz, w(t) .

yI2' ' —= y = 2g' 4n V/cA. (6. 2) Then L is Hermitian with respect to the scalar
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product (A2), corresponding to (Al) 11aving t1me-
reversal symmetry. However, I. can also be,
and indeed will be, non-Hermitian if the system de-
scI jbed by W(t) is open and therefore undergoes an
irreversible motion.

Suppose now that W(t) can be split into a "rele-
vant" and an "irrelevant" part with the help of a
projection operator

w„=pw, w, =(i-p)w, w=w„+w, ,

P'=P or P(1-P)=O. (A4)

We may then obtain from (Al) two coupled equa-
tions of motion for W„(t) and W, (t):

W„(t) =-tPLW(t) = -IPLW„(t) -tPLW, (t), (A5a)

w, (t) = —t(1-P)L w(t)

= -t(I -J)LW„(t) —t(I -P)LW, (t) . (A5b

Formally integrating (A5b) we express the irrele-
vant part in terms of the relevant part:

w(t)=e '"-'"'w(o}

If -dse '"-""(I P)LW„(t--s) . (AS)

Inserting this into (A5a} we get Zwanzig's "gen-
eralized master equation" for the relevant part:

and using the algebraic identities following from
the definitions (AS) and (Alo) of P,

PA~=A~I =0,

P(L„,)~"P, ~=0, 1, 2, . . . (All)

we bring (AQ) to the form (S.2).
Suppose we have solved for W„(t) and want to

construct the field-density operator WP(t) =tr„W(t).
This can be done using the formal integral (As) for
the irrelevant part:

W, (t) = tr„[PW(t) + (1 -P)W(t)]

=
i 0& {Oi +tr„(I P)W-(t) .

Inserting (As) and using again {1—P) W{0)= 0 and
the identities (All), we at once arrive at (4. 1).

APPENDIX 8

For the sake of comparison and in order to facil-
itate a qualitative visualization of the preceding
arguments, let us briefly discuss a classical treat-
ment of the superradiant pulse. This may be based
on the original laser master equation (2. 10) by ex-
tracting from it equations of motion for n(t)-=I' {a(t)&, rl(t) -={8'(t)&, r, (t) =- {Rs(t)& and factoring
all expectation values to products of n, xl, and

One finds

w„(t) = —IPL w„(t)

—f dsPLe '" ' '(1-P)LW„(t —s)
0

I'I = 2gIII, —{I/T,) I I,
3 2goII 1 (YI t»too)/TI (Bl)

tPLs I (I P)LI W (0) (A»t)

The irrelevant part is eliminated except for the
occurrence of its initial value, which formally
gives rise to an inhomogeneity.

Adapting the above to our needs, we identify Eq.
(Al) with our atom-field master equation (2. 10}.
We want the generalized master equation (AV) to
become an equation of motion for the reduced
atomic-density operator W„(t) = trPW(t). This is
achieved by defining the projector I' as

I' = Etrpy trgE= 1 (As)

Indeed, after applying the partial trace tr P to (AV)

we get

W„(t) = -t tr, LPW„(t)
—f dstr Le "' ' '(I -P)LFW„(t —s)

0

Itr, Le '-" '"'(1--P-) W(O) . (AQ)

%e fix the "parameter" F in P so that the inhomo-
geneity in (AQ) vanishes identically. In view of our
initial condition W(0) = I 0) {01W„(0), we simply have
to yut

F= ~O&&O~, P= ~O&{O( tr, . (Alo)

identlfylng Ilow L wl'tll LgP +tAg+ tAP Rs i11 (2. 10)»

Q =gP'l —KQ

Now x& and xs may be interpreted as transverse
and longitudinal components of the classical
Bloch vector. I et us find the conditions under
which the Bloch equations (Bl) describe a coopera-
tive decay of initial atomic excitation. First, ob-
serve that the field variable a(t) may be eliminated
by integrating the last equation in (Bl):

n(t)=g f dse "'I' (t-Is), (B2)
0

wllel'e Q(0) = 0 11RS beell used Rs in1'tIR1 colldltlo11.

Assuming, subject to later proof of consistency,
that) I(t) changes very slowly on a scale )I ', we
may approximate (82) by

O»(t) = (g/K) I'I(t) f01' t» K

CleaI'ly this amounts to assuming that K ls so big
that the field can follow the motion of the atoms
adiabatically. Equation (BS) is the classical
analog of the quantum-mechanical result (4. 12).

Next» l)y Illt1'oduclllg polR1' coo1'dillRtes I'I(t)
= r(t) sin»)) (t) and I,(t) = I (t) cos»)) (t) we see that the
total magnitude I'(t) of the Bloch vector is not con-
served owing to the incoherent atomic relaxation
terms (I/T„ I/Tz). This well-known feature of
the Bloch equations parallels the fact that the quan-
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turn-mechanical master equations (2. 10), (3. 10),
and (3.12) do not allow for the operator R to be
conserved as long as the incoherent decay I.iou-
villian A& is present. Clearly, optimal cooperation
of the atoms in building up the field o. (t) can be
expected only if the decay of x(f) is negligible. In

other words, we are interested in a solution of
the Bloch equations describing a pulse whose char-
acteristic times are much smaller than the inco-
herent atomic decay times T& and T2. If such a
solution exists, it can be obtained from (Bl) with

1/T, and 1/Tz= 0. Then, with the help of

r&(t) = r sing& (f), x, (t) = r cosy (f), (B4)

we find the equation of motion for the Bloch angle

p(t) to read

cp(t)+ vy(f) = Sg sing(f) . (B5)

This is the equation for a damped nonlinear pen-
dulum. Having already assumed implicitly that
y(f) changes slowly on a scale x ' [in replacing
(B2) by (B3)], we may as well neglect P as com-
pared to x y(t):

y(t) =~(2g'/x) sing(t) . (B6)

Formally, (B5) and (B6) [as well as (B2) and

(B3)]are equivalent if the pendulum is heavily over-
damped, i.e. , if x»g(2x)' '. This condition is
precisely the right-hand side of our superradiance
limit (2. 14). We still have to obtain the condition
allowing the neglect of 1/T, and 1/Ta in the Bloch
equations (Bl). This is done most easily by com-

paring (B6) with the semiclassical rate equations
(5. 3) and (5.4). The latter may be stated as

j (&) = (2g'/~)(~+-,') sing(t) (B7)

if ],/T&
——I/T2 ——0 and the transformation

(&,(&) ) ——,
' = (~+ —,') cosy(t) (B8)

are used. Since the semiclassical equation (B7)
is identical to the classical equation (B6) for r» 1,
the requirement that the pulse be short compared
to T„T~ immediately leads to the full superradi-
ance-limit condition discussed in Sec. VI.

There is a slight difference between the semi-
classical theory [(B7) and (B8) and Sec. V] and the
classical one [(B4) and (B6)]worth pointing out.
For the fully excited initial state (Rs(0)) = x,(0) = r,
the latter assigns to the Bloch angle the unstable
equilibrium point of the pendulum y(0) =0. The

physical reason for this shortcoming is, of course,
the complete suppression of quantum fluctuations

by the classical Bloch equations. On the other
hand, the semiclassical rate equations account for
the triggering of the pulse by spontaneous emis-
sion: For (R,(0)) =r according to (B8), p(0)
= arccos(x —2)/(r + —,'), which is small but finite.
Let us point out that this advantage of the semi-
classical over the classical approach is less dras-
tic than it might appear. Both approaches will
turn out to be inappropriate for the fully excited
initial state, as wi, ll be shown in the subsequent
paper.
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1969).
'It is easy to generalize A~ to account also for purely

phase destroying mechanisms so as to have T& & 2T&, for
this and other refinements as well as for a derivation of
the master equation, the reader is referred to Weidlich
and Haake, Ref. 3.

The expansion (3.6) may be obtained by first Laplace
transforming &(s) hand then using the operator identity
1/(A —B) = 1/A + (1/A) B (1/A) + (1/A) B (1/A) B (1/A) + ' ' '

~This argument can be made quantitative; see the con-
siderations in Sec. II following Eq. (4. 6).

A similar equation has been considered in Ref. 2(d)
for the case of the atoms confined to a volume with lin-
ear dimensions small compared to the wavelength of the
emitted radiation.

From an "economical" point of view it would there-
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fore seem more rational to eliminate the experimentally
irrelevant atoms from Eq. (2. 10) and discuss a general-
ized master equation for the reduced field-density oper-
ator $~(t) = tr~@'(t). This has actually been done for the
laser by Haake, Bef. 5, which in many respects parallels
the present paper. However, elimination procedures are
ultimately motivated not by economical considerations
but rather the physically sound approximations they
eventually give rise to. As may be seen from Sec. 4 of
Haake's paper, the integral kernel in the generalized
master equation for S~(t) allows for a convergent ex-
pansion if 1/T&, 1/T2» I(: (which is usually fulfilled for
a laser) but does not for the superradiance limit (2.14).

This formula has also been obtained for the far field
in Bef. 2(c).

Becall that ~j =~+~; if no collision broadening
i. e. , nonradiative decay is present, p& equals the natural
linewidth p of the atomic transition.

F. T. Arrecchi and E. Courtens, Phys. Bev. A 2

1730 (1970) ~ These authors have also obtained and dis-
cussed the values for lo and +, given in (6. 5) and (6.7).
Using arguments completely independent from ours, they
show that N, is "the maximum number of atoms that can
cooperate to superradiant emission" and that l, is the
maximum distance between atoms able to cooperate.
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The classical theory for mass defects in crystals is inapplicable to quantum crystals, where
zero-point motion leads to a force-constant renormalization on the introduction of mass de-
fects. We develop a variational theory for handling such problems which simplifies the re-
normalization so that the problem reduces to that of a single frequency-dependent mass defect,
to be calculated in a self-consistent fashion. Various anomalies observed in the properties of
quantum crystals are discussed in light of the present theory. The theory may also be used
to calculate in a simple fashion the properties of extended defects in classical crystals.

I. INTRODUCTION

The traditional theory of lattice dynamics' as-
sumes that the deviations of particles about their
mean positions in the crystal are small relative to
the equilibrium interparticle separation, and that
the ratio of these quantities is a legitimate small
expansion parameter in a perturbation treatment.
In isotopes of helium and hydrogen, such an ap-
proach breaks down. Because of the small mass
of the atoms and their weak attractive interaction,
the zero-point kinetic energy is of the same order
of magnitude as the potential energy, and the rms
deviation is as large as 30% of the equilibrium in-
terparticle separation. Since the peculiarity of
these crystals is rooted in the large zero-point mo-
tion, they have been called quantum crystals. The
work on these crystals in the past few years has
resulted in a clear understanding of the theoretical
framework in which these crystals ought to be re-
garded. From the point of view of this paper, the
salient points in this development have been the
following: Nosanow clearly formulated the prob-
lem of short-range correlations in such solids and
showed that the single-particle variational wave
functions are approximately Gaussian. Brenig
and Fredkin and Werthamer' showed through the
random-phase approximation that the elementary

excitations of even such highly anharmonic crystals
are phonons. Assuming phonon wave functions
(generalized Gaussians in coordinate space),
Koehler obtained a concise formula for the phonon

frequencies by a variational calculation. Hornerv

obtained the result of Koehler through an elegant
perturbation resummation and also showed how one

may go beyond the noninteracting quasiparticle pic-
ture in such crystals. The result of these theoret-
ical investigations may be summarized by saying
that at least for long wavelengths, the excitations
in quantum crystals are phonons, whose frequencies
however should be determined self-consistently
from force constants that are the thermal average
of the second derivatives of some effective inter-
particle potential which includes the effect of short-
range correlations. More precisely, the frequency
„-~ of a mode with wave vector k and polarization
~ is given by

X(&;.&,,v(~;;)),

where m is the mass of an atom; i, j label the lat-
tice sites; o.', P label the Cartesian coordinates;
R, J is the vector joining f to j; e~ (k) is a polarization
vector; v(r;;) is the effective potential between


