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the impulse approximation.
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It has already been reported that a laser subject to an axial magnetic field and having end
mirrors which exhibit relatively high x-y-type loss anisotropy can be described by two theoret-
ical methods. The first method uses self-consistent-field equations with distributed losses,
whereas the second one is based on a resonance condition for a complete round-trip pass. The
following study of a Zeeman laser with different x-y-type loss anisotropy at each mirror shows
that the localizationof the losses and the nonreciprocal character of the Farady rotation re-
quire a different formulation for each initial system. The rotation of the plane of polarization
is different at each end of the laser, but it is shown that there always exists for central tuning
a real or virtual average polarization vector which obeys Lamb's theory. The equivalence of
the two methods is discussed.

I. INTRODUCTION

Lamb's self-consistent theory, which supposes
distributed losses within the laser cavity, has been
shown to be correct when extended to treat the elec-
tric field polarization properties of lasers with iso-
tropic or weakly anisotropic cavities. '

In a recent paper, Greenstein stated the difficul-
ties of the self-consistent-field method, and com-
pared the results with those given by a resonance
condition for a complete round-trip pass in a single
centrally tuned laser, for a particular cavity where
all x-y anisotropic losses were localized at one
mirror. It was seen that, in general, the two sets

of results did not agree except in the limit of small
anisotropy. Consequently, Greenstein concluded
that the two methods are not equivalent and only
the resonance condition gives a correct description
of the polarization for large cavity anisotropy. In
particular, he points out that the maximum amount
of rotation of the plane of polarization is always
somewhere between &m and &p, andapproaches 90'
in the limit of strong anisotropy (e - 1); this result
is inconsistent with that given by the self-consistent
method, which however predicts much more in the
limit of small anisotropy.

The following paper discusses the general case
of a cavity with an anisotropic x-y mirror at each
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FIG. 1. Schematic diagram of a resonator with two
anisotropic mirrors, ~& and ~&.

end of the laser. It shows that the two methods do
not really give different results but instead comple-
mentary ones, and that there always exists an av-.
erage polarization vector which strictly obeys the
self-consistent method. The localization of the
losses and the nonreciprocal character of the Fara-
day rotation seem important, however, for the reso-
lution of this type of problem.

We show that the theoretical maximum-rotation
value of the polarization can be anywhere between
0 and —,'~, that rotations are different at each end,
and that it is always possible to define an average
polarization vector, real or virtual, according to
the laser cavity, which we shall call "Lamb's vec-
tor. "

The application of our results to the particular
case of cavity considered by Greenstein shows that,
in this case, the average polarization vector is lo-
cated on the isotropic mirror.

II. RESONANCE CONDITION

PRpPRg Ei ——Eg

Let us consider a centrally tuned single-mode
laser in a homogeneous axial magnetic field with
anisotropic losses at each end, either on mirrors
or on Brewster windows. It has been shown theo-
retically' "for very weak anisotropies that the
initial linear polarization rotates through an angle
of &m, this limiting angle arising for a critical H,
value of the magnetic field. Furthermore, this re-
sult has been verified experimentally, " for ex-
ample in the case of the 1. 15-p, line of neon
(a J = l —J= 2 transition). Since the medium ro-
tates the initial polarization vector, and the unequal
x-y losses of the end mirrors counter-rotate it, we

suppose that there exists a polarized standing wave
in the anisotropic cavity. To facilitate the compar-
ison of our results with those of Greenstein, we
shall use the same notation, extending it to the more
general case studied here.

In a circular basis, we write the two cr' and 0
polarized components E, and E of the electric field
E in terms of a rectangular coordinate system

E, = —2 (E„+fE), E =2 (E„—i )E

For any laser cavity the resonance condition can be
written at one end as either

PR)PR~ E2 ——E
~ / ~ f

RpPRj. P Eq ——E2

(2)

(4)

In the presence
tion along the z
components cr'

central tuning,

of the magnetic field, the propaga-
axis of the right and left circular
and cr is described by e ~~". For
let

with
g" + I. - jg' ~ I.

p~ e

&'=(&&c)(i+ lx,'), Pl'= l(&/ c) Xl'- fo,
where (d is the frequency of the electric field, X,

'

and X,
"are the real and imaginary parts of the sus-

ceptibility of the circular waves, and lo is a phe-
nomenological isotropic loss term for the cavity.

In the general case, we notice that there would

be off-diagonal contributions to P, but in the special
case of central tuning (v = &uo, where &uo is the atom-
ic line center frequency) one can avoid complications
by the assumption that the two intensities of oppo-
site circular polarizations are equal, i.e, we as-
sume that X',(&uo) and X,"((uo) obey the symmetry re-
lations

x."(&0)= x"(&0), x,'(&0) = —x'(~o)

The calculation of the polarization direction will
then be independent of nonlinear effects contained
in the susceptibility y.

In a Cartesian basis, the x-y-type loss anisot-
ropies are represented by diagonal matrices so
that at each end the reflection matrices are

o ~ (~,„o)
0 xi 0 r2

In a circular basis these are written'

(a —b) (c —d)
Rg —— R, =

(-b aj (-d c)
where

or

Rj PR2P Eg = Ei (2)

where R, and R~ are the reflection matrices for
each mirror and where P represents the propaga-
tion matrix relative to a cavity of length I. (Fig. l).
The eigenvector E, of Eq. (l) represents the elec-
tric vector before reflection at mirror 1: By mul-

tiplying by the transmission matrix of mirror 1,
one obtains the outward observable vector. The
eigenvect'or E, of Eq. (2) represents the electric
vector reflected from the mirror 1. Similarly at
the other end we have
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2(rl +r1y} b = z(&l.-rl.}, %e deduce that

c=-'(r .+rR,}, d=-'(rR. -rR, ) .

Anisotropy at each end mirror mill be described by
Rl=b/a and tR —d/c-, where tl and eR may theoret-
ically take any value included between —1 and + 1.
For example, 0' or 90 values of the skew angle
between tmo Bremster windows, i.e. , the angle
betmeen the planes of incidence of the Bremster
plates, correspond to possible variations of e~ and

e~ from about + 11x 10 to —11& 10
Equations (1)- (4) each admit the same eigenvalue

equation, namely,

P.'P'[(a' b')(c-'-d')]-2bdp, p -«(P.'+P')+1=o .
(6)

Let r—=P, P and cr=P, /P =e/" /, where P, and P have

the same magnitude for central tuning. Then
ra is equal to pR and r/o' =PR.

%hen the mode is centrally tuned in the Doppler
curve (tl= coR)i. we can write, from relation (5),
o =e~ "~~ with relative phase angle

-'~=(~2/2 )(X'-X.')f =X'(~2)(~2/C)L .

e162+ cos2p +[(ERE'2+ cos2+) —(1 —el) (1 —62)]
«(1- el) (1- e')

If both && and &2 are positive, the solution with
the minus sign before the radical, which requires
less gain, mill dominate and give rise to the laser
oscillation.

In these conditions, there exists an eigenvalue,
or a standing wave, only if the expression under the
radical is positive, that is, if me have

cos-2" q - a[(1—t, )(1—22)]' '- e,eR

In a helium-neon laser oscillating on a J = 1 J'= 2

line with weak gain (the 6328-A line for example),
the fact that the Bremster windows have relatively
high losses, z, = ma= 11x 3.0, leads to a linear po-
larization for any value of the magnetic field H.

The calculation of the eigenvectors of (1) gives
the ratio

Eli bdp~ p + acp —1 t i@2+ 1/0' 1

E, adp, p +bop eR+e, /a ac(tR+e, /a)r

where E&, and E& are the complex numbers associated mith E„andE, , the two components of the electric
field E,.

Therefore, me have

El~ —g sln2(7(el+a'2/(7)6 (el+f2/(7)[(eleR+cos2&p) —(1 —t'1)(1 —6RR)] e/(y+&1&/2

el+ t2+ eleR(&+ 1/&)

in which

1cosp Kj =
—628111 2//7 6 (61+eRcosRQ)(61+ ER+ 2 eleR cos2+ —8111 Rp )

1f g + 63+ 2 6'gE2 cosy p

—Sln21/1 (el+ eRCOSRp WAR(61+ fR+ 2 6162CO8291 —81ll 2(p) ]'2 2 21 f/2
sing Kg = 3 1

6&+ 62+ 2 6~63 cos ~Ep

The reflected E', vector eigensolution of (2) is obtained directly by the product E', =ft, E,. Specifically,
we have

E1+ 1 el cos2 P + 62 0 (f 1+62 cos2 p) 6 (61+62 8) (61 +42+ 261 62 cos29 sin 29 ) /lrts +) /2
2 2 1 1

Z,' cr ~, +~, +2~, ~, cos-, y

eR sin Ry+ (t, +eRcos2y)(@1+&2+2&, tRcosRcp —sin Rq&)'
cos2Ky =

2 2
&&+ &3+ 2 t& &acos~q

8»RP[&1+~RCO82% +&2(tl+&2+2tl&RcoszP»n RP) ]
slnpKg =

Z6g+6g+2&gEpcosp p

Corresponding expressions for eigenvectors E2
and E 2 are given by (9) and (10), in which the sub-
scripts are interchanged.

In all cases only one sign before the radical is
valid; It mill be imposed by the oscillating mode,

that is, by the mode which requires the less gain
defined by (7).

%e can easily prove the following useful relations:

1 I 1 1 i 1yK&-yK3 —-2K&-~K&=~@ .
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III. INTERPRETATION AND DISCUSSION

When Eq. (8) is verified we conclude that there
exists in the laser cavity a stationary wave of po-
larization defined by E./E .

The direction of polarization with respect to the
initial direction for H =0 varies as a function of
magnetic field H and increases until H = H, . Here
the critical field P, is derived from Eq. (8) and
defined implicitly by

+l(1 &)(I ~28 e&~»

where y corresponds to the maximum of fI().

The corresponding values of p K& and 2 K2 are
then defined by Eqs. (9) and can be written

cos-', K,„=& ~, sin-", K, = (c,+q 2cos-," y„)/sin-', cp

1
Cosp+2m ~1 s singK2 = (I 2+ 6 g cos? cp )/sln2 p

In particular we deduce
1 1 1
—.&~m+-. &2m = ~ --.V. ,
1 1 p 1 1
a&am+ a&1m = a&2m + a&2m = & ~

Two interesting cases appear:
Case (a):

(g &62+ 0;
Case (b):

Case (a). The first case corresponds, for exam-
ple, to a cavity with one plate at each end, having
the same plane of incidence, but inserted at differ-
ent angles to the laser axis. We obtain different
maximum rotations 8, and 82 at each end:

81m = 4 9'm +a cos & 2 ~

1
82m 4 Pm+g cos -1

In the same way, the angles of the reflected beams
8', and 8', are given by

8Im 4+m+p W —
p COS

-1

1 1 1 -f
82m 49 m+pW —2COS

For &2=0 (particular case considered by Green-
stein) we have

cos2q = (1 -e', )'~', sin-', y
and

8jm=4~+-.'»n ~], p 8/m 4~ 2S1n

82m psln 6 f + p cos
( 1 1 ~ ~]=p&-2sln 6}-pCOS &g ~

For the limiting value e, = 1 we have

1 I I 1
8im= o 82m = 82m = 4& .

Thus the theoretical maximum rotation of the polar-
ization vector is —', m on the && = 1 mirror, in agree-
ment with Greenstein's result, but exactly 4r on
the other mirror whatever the value of E&.

Let us see if there exists a single eigenvector
for the laser system. We postulate the existence
of such a vector E at a point of the coordinate z be-
tween the mirrors M& and M2 on the axis of the la-
ser. First we introduce the matrices defining this
point and which permit the calculation of the eigen-
vector.

By analogy with the preceding notation we shall
write

p I +1 P, 2 0

Case (5). The second case corresponds, for ex-
ample, to a cavity withone plate at each end, having

orthogonal planes of incidence, but inserted at dif-
ferent angles to the laser axis. In this case mirror
1 always determines the polarization for a J =1 J
= 2 line in a zero magnetic field. The preceding
equations are then written

1 1 -$1 I I 1 1 -11
49m+2s ?«s [~2) I 81m 49m+~«s I&el~

1 1 g p 1 1 1 -1
82m = 4Cpm+p COS 6y ) 82m ——4@m+2 Z —

p COS

If we have e, = 1, then cos? p =
l esl and

1 I
81m p ~& 81m

82„=,cos
l a, l, 82„=,s —,cos

As the anisotropy ratio &2 approaches —1, the angle
of maximum rotation of the polarization on mirror
2 is given by 82 - 0 and 8', - —,

' ~. In all cases the
difference rh, 8„=8,„—8,~ = ';(K,„-K~„)is defined
by

cos-,"(K, -K, ) = [(I -e,') (1 —c', )]'~'+e,e, .
At the limit, if e2- —

&& with E,=e, then we have
cos? (K,„-K2) = 1 —2e, and for c- 1, &8 - -', v.

With respect to the symmetry of the system and
the nonreciprocity of the Faraday effect, we show
that it is theoretically possible to obtain maximum
rotations of the polarization vectors anywhere be-
tween 0 and p m, with &, and E2 varying between —1
and +1.

In reality, for the most common neon-laser lines
~ith weak gain the maximum deviation 68 between
the polarization at each end of the cavity will be
small (for the 3.39-p, line, with one plate of quartz
at the Brewster angle presenting a E =11~10 ' loss,
one can theoretically obtain a deviation 68„=3').

We also notice that for the maximum rotations we
have

,'(8,.+8',„)=,'(8—,.+8,'„)=-", s-,

and the question arises whether it is not possible in
all cases to define an average eigenvector of the
system, of maximum rotation 4m for H =H„in
agreement with the result given by the self-consis-
tent-field theory of Sargent, Lamb, and Fork.

IV. EXISTENCE OF AVERAGE POLARIZATION VECTOR



294 A. LE F LOCH AND R. LE NAOUR

The eigenvector for the wave propagating toward
mirror 1 is defined by

PiBiPiE = E

In the same way, for the wave propagating toward
mirror 2 we have

P2R2P2E = E . (12)

The uniqueness of the solution is assured if we have
the commutator

[PlA1P» P2RZP2] =—0,
that is, if we have

5C

Pygmy

g Ppy P
2 2QdP 2P2 P 2 P

(13)

Letting o, =p„/p,=e '1, and 7', =p, ,p» and
using similar expressions for 02 and 72, this condi-
tion reduces to

e2/a, = sinp2/sing&, . (14)

(E /E ) ~ % JK2/2

with
sill —2'K2 = (si112y 1)/e, = (sill —,

'
cp2)/f 2 . (15)

So there exists a unique eigenvector of the system,
the maximum rotation of which is given by

sin2KL = 1

that is, by

1
2~Lryt 2~r |) m ~4

Since the Faraday effect adds up for both directions
of propagation, we can write

%~+02=%

and verify that

cos2 p~ = [(1 —&1) (1 —62)] —tl E2. '

The position of EL, called the "Lamb's vector, "
is given by

Z)+Z2 —I r

with
62 Sin2+y = 6y Sin2 /2,

and will depend on the values of the anisotropy
ratios a, and &2.

Three cases arise:

This is a necessary and sufficient condition for the
existence of the eigenvector denoted by EL and de-
fined by

(
F., aP2, —1 1 1
E ~ bp. p , e,a, b 7;

where

cos-,'p, + (e2, —sin'-,'y, )'/2

a(1 —C2, )

Then we have

Cgse (g). ff e, and e2 are of the same sign, then
—2'p, and —2'y2 are also of the same sign. Since

+ 2+2 2 Q we deduce that z, & L and z2 & L.
Thus there exists an eigenvector in the cavity; the
"Lamb's vector" is real.

Csse (b). For ~2= we have ~2+2 and z2 i
here the "Lamb's vector" is situated on the isotropic
mirror. We again meet Greenstein's particular
case.

Case (c). For e, /E2&0, —2y, and —
2@2 are of op-

posite signs, and if Ia& I &
I &2 Ir we shall have z,

—z2 = L. The average eigenvector is then outside
the cavity; the "Lamb's vector" is virtual.

Whatever the anisotropy of the system, there
exists an average polarization vector EL whose
rotation, with respect to the initial direction, i. e. ,
for H = 0, is given by

1
~L 4KL .

with
sin 2'K2 = sin 2'y, /a, = sin 2'p2/e2 .

Remark. Inasmuch as the rotations of the inci-
dent and reflected eigenvectors are given on the
mirrors, respectively, by

el —4(P+Kl) 1 el ——c(g —Kl) 1

we obtain —,'( e, + el) =~a(K1 +Kl) and 2 ( ep+ e2)
= 2(K2+K2). Since we have

COS2 (K2 +Kp) = COS2 (Kl+ Kl)

&g+ f2+ 2Egf2 cos—,'y —2sin —,'y
2 2

&y + &2+ 2 &yE2 cos2cp1 r

cos—', y = [(1 —e, sin —', Kz ) (1 —e 2 sin —', Kp )]'

~ 21—&g&2sm 2KL r

sl112 p = el stn2K2(1 —62 sill 2K')

+ ~2 sin-2'Kr. (1 —~', sin'-', K&)' ' .
By comparison with expressions (15), we deduce
that

—,(K, +K,) =2(K2+Kp) KJ, y

and so
e, =-, (e, +e, ) =-.(,+e,);

that is, the average rotation of the eigenvectors de-
fined at mirror 1 by (1) and (2), or at mirror 2 by
(3) and (4), coincides with the rotation of Lamb' s
average vector defined here.

V. CONCLUSION

In a single-mode laser, subject to an axial mag-
netic field, with different anisotropic x-y-type
losses at each mirror, there always exists in the
locking region (H &H,) for central tuning an average
polarization vector, real or virtual, which obeys
the self-consistent-field theory of Sargent, Lamb,
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and Fork. Nevertheless, taking into account the
localization of the losses in a highly anisotropic
system, the polarization vectors at each end of the
cavity are different and the angle between them can
reach the theoretical value —,'7i. The self-consistent-
field theory and the resonance- condition treatment

for a round-trip pass appea. r to be complementary.
The nonlinear effects, which have been ignored in
the calculation of the polarization, will reappear in
the expression of the intensities, ' which one can
evaluate, at first approximation, by the self-con-
sistent method. '

~M. Sargent III, W. E. Lamb, Jr. , and R. L. Fork,
Phys. Rev. 164, 436 (1967); 164, 450 (1967).

%. J. Tomlinsonand R. L. Fork, Phys. Rev. 164, 466
(1967).

3%. Culshaw and J. Kannelaud, Phys. Rev. 141, 228
(1966).

4H. Greenstein, Phys. Rev. 178, 585 (1969).
5H. De Lang, Ph. D. thesis (University of Utrecht, 1966)

(unpublished) .
M. I. D'yakonov, Zh. Eksperim. i Teor. Fiz. 49, 1169

(1965) [Sov. Phys. JETP 22, 812 (1966)).

'H. Pelikan, Z. Physik 201, 523 (1967).
B. L. Zhelnov and V. S. Smirnov, Opt. i Spektroskopiya

24 355 (1968)[Opt. Spectry. (USSR) 24 185 (1968)].
G. Durand, Ph. D. thesis (University of Paris, 1966)

(unpublished) .
C. H. F. Velzel, Phys. Letters 23, 72 (1966).

~~W. Van Haeringen, Phys. Rev. 158, 256 (1967).
R. Diindliker, J. Opt. Soc. Am. 58, 1062 (1968).

~3A. Le Floch and P. Brun, Compt. Rend. 269, 23
(1969).

PHYSICAL REVIEW A VOLUME 4, NUMBER 1 JULY 1971

Density of States and Mobility of an Electron in a Random System
of Hard-Core Scatterers

Michael H. Coopersmith
Department of Physics and Center for Advanced Studies,
University of Virginia, Charlottesville, Virginia 22901

(Received 20 November 1970)

The mobility and density of states as functions of the energy are computed from the mobility
and free energy reported previously by Neustadter and Coopersmith. The results are shown
to be equivalent to the recently published calculations by Eggarter and Cohen based on a semi-
phenomenologica1 model. Some difficulties with both theories are noted and commented upon.

I. INTRODUCTION

The purpose of this paper is to provide a connec-
tion between the mobility transition reported by
Neustadter and Coopersmith' and the model of
Eggarter and Cohen2 for the calculation of the den-
sity of states and mobility of an electron in a gas
(random system) of hard-core scatterers When.
the free energy is computed in a manner analogous
to the mobility in Ref. 1, the density of states
(which is related to the partition function by an in-
verse Laplace transform) will be shown to exhibit
a tail which is identical to that found in Ref. 2. To
avoid further confusion regarding nomenclature, we
shall follow Cohen and refer to the average mobility
which is a function of temperature as the conductiv-
ity. The quantity p(E) which occurs in the Kubo-
Greenwood formula will be referred to as the mo-
bility. The reader should note that other papers
by Cohen and co-workers, notably Ref. 2, a,re not
consistent with this and use the word mobility to
refer to both quantities.

The details of the calculation are contained in a

II. FREE ENERGY AND CONDUCTIVITY (PRELIMINARIES)

The Helmholtz free energy for the system under
consideration is given by

—8F=lntre ~

where
p2R= T, + V= +f +v(r&,),2m

v(r) is the hard-core potential,

v(r) =~, r&a

=0, ~&0 (2)

m is the electron mass, and P is the inverse tem-
perature (P = I/kT). In the original treatment by
the author, the free energy was evaluated using the

number of works by Coopersmith and Neustadter' 7

and will not be repeated here. However, we shall
have to refer to the details as the interpretation of
the final results is somewhat different from the
original calculations. We begin with a consideration
of some of these details.


