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Correlation effects in the quantum crystals He3 and He4 are studied in detail. The single-
particle wave function is obtained in the harmonic effective-field approximation; the parameters
of the harmonic-oscillator potential are determined self-consistently from the two-body cor-
relation function and the bare interatomic potential. We determine the two-body correlation
function by solving numerically an equation derived by decoupling the three-body correlation
function into a product of two-body correlation functions. This equation is similar to one
derived on the basis of the T-matrix approximation, but yields the correct behavior of the
correlation function as the distance between the particles tends to zero. The ground-state
energy, pressure, and compressibility are computed over a wide range of molar volume for
He in the bcc and hcp structures, and for hcp He . In bcc He we employ two different inter-
atomic potentials, the Lennard- Jones 6-12 potential generally used in calculations of this
type and also the Yntema-Schneider potential. We find a ground-state energy about 1& K too
low with the former and about 5'K too high with the latter, demonstrating that the choice of
potential is of considerable importance for detailed comparison of theory and experiment.
We also examine the effect of three-body correlations oo the equation for the two-body correla-
tion function; the result suggests that the effect is to force the twoparticles toward one another,
which also seems physically reasonable, as the atoms surrounding a particular pair of par-
ticles should tend to push them together. We incorporate this effect into the two-particle equa-
tion by including a potential linear in the interparticle distance; for a given molar volume,
its magnitude is chosen by imposing a constraint on the average interparticle distance. The
calculated correlation functions for neighboring particles have peaks at about the correspond-
ing lattice distance, and the numerical results for energy, pressure, and compressibility are
in reasonable agreement with experiment. Our approach is compared with other recent theo-
ries of quantum crystals.

I. INTRODUCTION

It was first pointed out by de Wette and Nijboer'
that when atoms of small mass, such as helium,
form crystals, the phonon frequencies cannot be ob-
tained by classical lattice dynamics. The force
constant that is calculated from the bare interatomic
interaction, usually taken as a Lennard-Jones 6-12
potential or some other acceptable form with a re-
pulsive core and a weak attractive well, is negative
and thus gives imaginary frequencies. Similarly,
the small atomic mass and the form of the interac-
tion lead to difficulties in the calculation of such
quantities as the ground-state energy Eo, pressure
P, and compressibility K of these "quantum crys-
tals" as functions of the molar volume. Numerous
theories designed to circumvent these difficulties
have been put forward; we mention two rather in-
dependent approaches.

The self-consistent phonon formalism was devel-
oped by Brenig, Koehler, and Choquard' and sub-
sequently applied by Horner and by Koehler, Gillis,
and Werthamer. The phonon energy is calculated
by assuming sets of force constants which must be
determined self-consistently by taking the ensemble
average. In principle, there are no externally
specified parameters, but in order to determine
the force constants from the ensemble average over

the potential, strong short-range correlations have
to be introduced in an gd hoc manner to remove the
singularity in the interaction.

A second approach is based on the single-particle
aspect of the system. Qne starts by describing the
crystal as a collection of localized particles with
strong short-range correlations. The single-par-
ticle wave functions and two-particle correlation
functions can be found, for example, from a v3ria-
tional principle involving the ground-state energy
Fo which is obtained from a linked-cluster expan-
sion. Nosanow and Hetherington, Mullin, and
Nosanow used this approach, giving the single-
particle and correlation functions specific forms
containing undetermined parameters to be found
from the variational principle. A more complicated
procedure along the same general lines has been
given by Woo and Massey'; Guyer" and co-
workers '3 have modified the approach somewhat
by assuming at the outset a self-consistent simple
harmonic-oscillator potential field at each atomic
site in the crystal. The parameters in this poten-
tial are determined by minimizing the total energy.
Also, Horner' and Iwamoto and Namaizawa" have
developed theories involving the summation of
ladder diagrams. Finally we mention similar work
by Brueckner and Frohberg. '6

Qne weakness of this second approach is that there
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is difficulty in the construction of excited states of
the crystals, '~ effectively limiting the description
to zero temperature.

The numerical results of several of the recent
works for the pressure and compressibility as
functions of molar volume are in very satisfactory
agreement with experiment, and the ground-state
energy pex particle is generally within several de-
grees kelvin of the experimentally inferred energy.
We should note, homever, that these results are
achieved using the Lennard-Jones 6-12 potential a,s
the bare interatomic intera, ction. Thexe are other
empiricRQy determined potentials which must be
considered acceptable choices also, since there is
no one potential which is consistent with all of the
measured thermodynamic and transpoxt pxoperties
of gaseous and liquid helium. As we discuss be-
low, it turns out that the calculated properties of
crystalline He depend rather sensitively on the
choice of potential; therefore, we feel that one has
to be cautious in interpreting the numerical success
of a calculation as a justification of the method or
approximations involved.

Because this paper overlaps in some respects
with several of the earlier morks listed in the sec-
ond appx'oaeh above, me wish to point out some of
the differences and similarities here. First, me

follow Ref. 15 in making a choice of variables such
that a two-dimensional equation must be solved for
the two-pax'tiele correlation function. Also, the
self-consistent single-particle effective potential
field is determined by expanding the averaged bare
interaction as in Ref. 15, rather than by using a
variational principle. "'4

The equation for the tmo-particle correlation
function is obtained by truncating the hierarchy of
equations for n-particle correlation functions.
Syecifically, the three-particle function is written
as a product of three tmo-particle functions. We
neglected, in our first attempts at calculation, those
purely thxee-body correlations which still remain
in this scheme. The resulting equation for the two-
particle function is similar to that obtained in the
T-matrix appx'oximation, ' but there is a diffexence
in the behavior of the functions as the interparticle
distance goes to zero.

This procedure leads to a calculated ground-
state energy Eo which is generally lower than that
found by other workers. For example, in the bcc
phase of He' lt ls about 4p Kjpartlcle below the
result of Ref. 11 and lk K/particle below the ex-
perimentally determined energy. Because the
equations obeyed by the two-particle correlation
function are quite similar in our work and that in
Ref. 11, this difference could mell arise from the
numerical approximations used in each ease to ob-
tain a solution. This point is considered further
in Sec. VI.

Our first attempts at quantitative calculation also
produced pressures considerably below those found

experimentally. We therefore examined our vari-
ous approximations to see which one might have
caused Eo to be insensitive to volume; the most
likely source of exxox seems to be the neglect of
three- (and higher) body correlations which would

tend to force a given pair of neighboring particles
together. It is difficult to evaluate the effect quan-
titatively, so me have introduced into the bvo-par-
ticle equation a potential-energy term which is
proportional to the separation between particles. '8

The magnitude of this potential is determined by
requiring that the expectation value of the projection
of r, —ra along the direction of R,- —R& be equal to
I R,. —R& I, mhexe r& and r3 are the position of par-
ticles 1 and 2 and R; and 5& are the lattice sites
around which the particles are localized. This eon-
stx'Rlnt seems physicaDy reasonable' lt 18 very
close to a constraint used by Krumhansl Rnd %'u'

in a theory of solid hydrogen.
The remainder of th18 pRper 18 organized as

follows. The Green's-function (GF) formalism is
in See. II; at zero temperature this is unnecessary
but makes the approximations more transparent.
Section III contains the derivation of the tmo-particle
GF and the decoupling approximation. In Sec. IV
the cox'rection designed to approximate the effect
of three-body eox relations is introduced. Section
V is a description of the numerical procedures used
to solve the equation„and in Sec. VI me give a dis-
cussion of the 1esults Rnd comparison with othex'

theories and mith experiment.

In a crystalline solid, each particle is associated
mith a given lattice site and is located in a smaQ
volume around that site. Consequently, when the
Heisenberg field operators 4'~ and + are introduced,
it is useful to define them such that operators asso-
ciated mith different sites commute with one an-
other'7; the creation operator is written as 4~ (r, t)
and the annihilation operator as 4, (r, t), where the
subscript j refers to the lattice site located at 8&.
The equal-time commutation relations are

where the upper (lower) sign is for bosons (ferm
ions). The commutation relations exclude the pos-
sibility of exchanging paxticles on tmo lattice sites.
The exchange probability ean be evaluated theoreti-
cally and inferred experimentally and i,s found to
be very sma, ll, 20 so the neglect of exchange is ac-
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ceptable far the calculation of properties not intrin-
sically dependent on its existence. In what follows,
we also make the approximation of neglecting pos-

sible double occupancy of a given lattice site. '
The Hamiltonian of the system of interacting par-

ticles is given in terms of the field operators by~

H = —(2m) 'Z f4t(r, t)mph, (r, t) dpr+-', Q f @t(r, t)4t/(r', t) V(r —r' )@/(r', t) 4, (r, t) dprdpr',

where V(r —r') is the interatomic interaction which
may be taken as the Lennard-Jones 6-12 potential
V(r ) = 4e [(o/r)' —(o/r) ], with a = 10.2 ' K and o
=2. 556 A.

The one- and two-particle Green's functions are
introduced as

gq(1, 1') = —i( T(4((1)%)(1')))

G,/(12, 1'2') = (- i) ( T(4, (1)4'/(2)4/(2')@t(1'))),

where (T( ~ )) denotes the time-ordered ensemble
average; the variables (r„t, ) are abbreviated as
(1), etc.PP

The equation of motion of g, (l, 1') is

Z'i f-V(1, 2)G,/(12, 1'2') ~.. ., d'rp=5(1 —1'),
(2)

where the sum over j excludes the term j =i. The
single-particle self-energy Z,. obeys the equation
(where the bar indicates integrated variables)

+ g] 1, 1

Z) 1, 1g] 1, 1'd1=5 1 —1' 3

or

f Z, (1, 1)g, (1, 1')d 1

=iZ' f V(1, 2)G,/(12, 1'2')~., ..d'rp . (4)

When the interaction V possesses a hard core,
the usual approximation is to sum the ladder dia-
grams, which is equivalent to writing the following
equation for 6,&.

G,./(12, 1'2')
= g~ (1, 1')g/(2, 2')

+i f g, (1, 1)g/(2, 2) V(1, 2)

&& Gq/(1 2, 1'2')d ld 2 . (5)

We next introduce the frequency representation
of the Green's functions, a

G;/(12 I'2')l~, ~,, r, =/;

=iTQ 8-« - i vG, (12 1'2 v)

where ~„=ipvT+ p, ; v is an even (odd) integer for
bosons (fermions), while p is the chemical poten-
tial and T is the temperature. Similar equations
hold for g, and Z, . In the frequency representation,
Eq. (5) becomes, for tp = t, and tp = t,',

G&/(12, 1'2'; v) = (iT)g (1, 1'; v) Zg/(2, 2'; v') +if g(1, 1; v) g(2, 2; v) V(1, 2)G /(1 2, 1'2'; v) dPrd~rp

Similarly, Eq. (4) becomes

((o„+v', /2m) g, (1, 1'; v)

—f Z, (1, 1; v)g, (1, 1'; )d~vr5(r, r', ) . (7)-
Because the particles are localized, g, (1, 1') is

far from being a plane wave in the momentum rep-
resentation; it is more convenient to solve the
equations in coordinate space, although still very
difficult. We make the following approximations to
simplify the problem:

f Z, (1, 1; v)g;(1, 1'; v) d~r, = u, (1)g, (1, 1'; v), (8)

where u, is approximated as a harmonic-oscillator
potential,

u, (1)= up+ n'( r, —R, )'/2m .
From Eqs. (I)- (9), we can solve for g„

g, (l, 1'; v) = Z [y~, (l)&f)~, (1')/((g„z, )], -
where the function P,~ is a (real) solution to the
harmonic-oscillator Schrodinger equation in which
u, (1) is the potential; a, is the corresponding eigen-
value. The ground-state wave function is

(1) (~2/ )p/4 e- a (pg- ~g) /2 (ii)
with energy

Kp = up+ 3G /2m (i2)

The one-particle Green's function is completely
determined by the constants uo and n defined in Eqs.
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(8) and (9); Eq. (8) amounts to a Hartree approxi-
mation for G&&(12, 1'2; v) insofar as dependence on
~„is concerned.

The most general form that G,-& can have is

G;~(12, 1'2'; v) = (-i) Z Q;s(1')P), (2')S;2, ~,(1, 2; v),
pg0

(13)

where S;, &,(1, 2; v) must be proportional to ((2)„-e, )
'

if Eq. (8) is to be satisfied. Difficulties arise from
this form because G,.&(12, 1'2; v) is forced to have the
same analytical behavior as g;(1, 1'; v) as a function
of ~„, therefore, we may say that G,.&

describes the
motion of particle 1 at site j in the presence of par-
ticle 2 at site j without correlations in the motions
of the two particles. But we started out at the be-

ginning with the intention of taking the strong short-
range interparticle forces into account. This in-
consistency has been introduced by neglecting the
energy dependence of Z, (1, 2; v) in Eq. (8). The
meaning of Eq. (13) will be clearer below when we
give S explicitly.

Equations (4), (8), and (13) can be combined to
yield

=g 4(S„„(1,2; v)y„(2)V(1, 2)d'r, .
COV &P, gP g

(14)

Next, operate on Eq. (6) with —(2)„—V,/2m —Vz/2m
+u, (1)+u&(2)+ V(1, 2) and use Eqs. (10) and (13) to
find

[-rt„—v /2m —v /2m+, .(1)+s&(2) v(1, 2)]s& 1,(1, 2; r) —Z(f2,.„(1)/( )22(1) (1v, 2)s,. 1,(1, 2; )dr,

+
&

2 &
&

2 V1, 2S„&,1, 2;v de~ p1 j
V P

where we have used

TZ e'"v (~ —e ) '=[1 —e"& " ] '=f(e )—
Next, S«,&, is expanded in terms of functions 8,& (1, 2) which are defined as the solutions to the equation

{-](.„—g /2m — /Sv2 m+u;(1) +u(2)+ V(1, 2)}8; (1, 2) —[Z f (t),. (1)f(e )((]) . (1) V(1, 2)8; (I, 2) d r

+Z f g& (2)f(e„)(t)&„(2)V(1, 2)8,.&„(1,2) d~r~] = 0 . (16)

Equation (16) determines 8&, up to a normalization
constant. We expand S as a linear combination
of 8's,

S,...(l, 2; v) =Z C; &,(n, v)8;& (1, 2),
where

1, 2;, 1 &, 2 E, d~&d'r&. 18

Because S„&,(l, 2; v) must be proportional to
(ur „—&, ) ', and f(e, ) = 1 for p = 0 while f(e, ) = 0 for
p40 at T =0, we may approximate Eq. (18) in this
limit as

S,s q, (12 2; v) = ((g„—&2) '8,qo(12 2)6206,0 .

Here 8,.&p is that function 8,&
having the lowest

eigenvalue X .
The normalization of 8,gp is determined from'

1=f G;&(12, 12') ~. 2. d2r, d2r2

= TZ„f S;&(1, 2; v)(t);(1)gz(2) d~r, d r2

= f 8o(l, 2)(])),(1)P&(2) d'r, dsr2

f]f,&(-1, )2g', (1)p (2J)2d'r, d'r, , (20)

where we have factored 8;& into y, &
times p;p&,

'

g, &
is the pure correlated part of 8,&.

Notice that S;&(1, 2; v) in Eq. (19) has only a single
pole, located at &p, while the exact S&p J, from
Eqs. (17) and (18) has additional poles at ~„=X„.
The approximation of taking the pole at &p alone is
implied by writing Eq. (8) for the self-energy.

Note also that the claim f(e, ) = 0 for p4 0 cannot
really be justified except in terms of the T = 0 re-
sult for p, , which is to say, in terms of the ground-
state energy per particle Ep, since p, =- Fp in this
limit.

Equations (16) and (20) are the basis of the T
matrix program of calculation. Before proceeding
to Sec. III, let us summarize the approximations
to this point.

(a) No double occupancy or exchange is allowed.
(b) The self-energy is approximated according

to Eq. (8); in particular, its energy dependence is
ignored.

(c) The effective field u; is treated within the
harmonic approximation.

(d) The T-matrix approximation is used for 8, &
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in Eq. (16).
The first assumption should be quite valid, but

the second and third depend on how well particles
are localized around their lattice positions. How-
ever, it is possible to compute the corrections to
these simple approximations if assumption (d) can
be accepted. The validity of the latter can only be
judged from the final results. It contains one un-
desirable feature; namely, at small interparticle
distances t"» =-

I r, —r, I
= 0, Eq. (16) should describe

two particles interacting with a hard core. The
Lennard-Jones 6-12 potential gives InX(x»)- —r» '
in the limit of small r,~,

"but this is not true in
Eq. (16). Whether or not this feature affects the
numerical results is hard to assess. The trouble
originates from the fact that Eq. (16) is not the T

matrix approximation describing two "free" par-
ticles, but describes instead two particles under
the influence of all other surrounding particles.
The square-bracketed terms in Eq. (16) are sup-
posed to cancel the contribution of particle 2 at
site j to ut(1) and also that of particle 1 at site t' to
u&(2), but they do not seem to actually do so.

In addition, the T-matrix approximation contains
two-body correlations only, and there is no way
that one may estimate many-body correlation effects
in this approximation.

III. CORRELATION FUNCTION

In this section we derive an equation for 8,.&„(I, 2)
by decoupling the three-particle Green's function.
The starting point is the equation of motion for t";&,

—i —i — ' — + )'(1, 2))G()(12, 1't)
~t2 2m 2m

Df((»(), s)((,„()tt, )'t't')(„, , ~ »(t, t) ()„,()tt, )'t't')~ .. .,]a'», = -i(( —i' )t (a, t') -i(t- t')i) (i, i'),

(21)

where the sum over k excludes the terms 0 =i, j;
g,» is the three-particle Green's function defined
as

Bt)~(123, 1'2'3')

= (- t)~( T(kt (1)@t(2)@t,(3)4t~(3')4t'(2')4t(1'))) .
Equation (21) is derived assuming no double occu-

pancy of lattice sites. Now let t~- t,' and t~- t, .
Then the equation of motion is, in the spectral rep-
resentation,

[- 2t()„-v, /2m —vz/2m + V(l, 2)]G;&(12, 1'2'; v)

+iZ'f gt»(123, 1'2'3; v) [V(li 3)+ V(2, 3)]dsrs

=6(r, —r', (gt(2, 2')~t; t. ; (22)

8;» is given in terms of its frequency components

=tTZ„e '"' 't'"~ g. ~(123, 1'2'3; v) .

For simplicity of notation, we will work in the
zero-temperature limit where summation over
excited states is unnecessary. Then we may drop
subscripts which refer to the state, as in Sec. II.~'

In this limit,

G, t(12, 1'2'; p)= t(1('))tg, (2')8tt(1, 2.)/((()„—&0),

where 8 „satisfies the equation

[-x, —v', /2m —v,'//2m+ v(1, 2))e „(1,2)

+Z' J 8„„(1,2, 3)y,(s) [v(1, 3)+ v(2, s)]d't, =o,

This is the most general form that 8,» can have
consistent with the effective-field approximation
equation (8).

%e now approximate 8,» by products of two-par-
ticle functions, thereby truncating the hierarchy
of equations for n-particle functions. First, we
introduce g,» in analogy with y, &,

e;, (1, 2, 3) = 4 (I )4,(2)g, (3)x;„(I,2, 3) .

The most obvi. ous choice of y, & is

x;~a(1, 2, 3)=xt&(I 2)x~a(2, 3)xta(I 3) (25)

A simpler choice which should preserve those
important features of y, &~ in the present problem
is to use

V(1, 3)Xtt~(l, 2, 3) = V(1, 3)Xtt (I, 2)X;t, (1, 3)

V(2, 3)Xttt, (l, 2, 3) = V(2, 3)Xtt(l, 2)Xt~(2, 3) (26)

in the integrand of Eq. (23). This amounts to
keeping short-range correlation where necessary
to screen out the short-range repulsive interaction.

and 8,» is related to g,» by

g;))t(123, 1'2'3; v)

= —tyt(I')y, (2')y, (3)e„,(l, 2, 3)/(~„- ~,) . (2&)
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Using the second decoupling scheme in Eq. (23),
we find after some algebra that

$- Z, —V,'/2m —V, /2m+u, (1)+u,(2)+ V(1, 2)

—[f p, (2}V(l, 2gy, ,(1, 2) d'ia

+ f y', (Bv(I, 2)&„(1,2) d'y, ]c

&& 4';(I)4,(2)v;, (I, 2) = 0 . (27)

In order to obtain this equation, it is necessary to
employ the definition of the effective field u;.

Note that the T-matrix approximation equation
(16) corresponds to replacing V(1, 3)y. ..(1, 2, 3)
by V(1, 3)y;,(I, 3) in Eq. (23). It is interesting that
the equation used in Ref. 14 to determine the corre-
lation function is similar to Eq. (16).

The difference between choices (25) and (26) for
the three-particle function 0,,~ can be examined by
treating this difference as a, perturbation in Eq. (27).

The equation of motion which results when Eq.
(26) is used may be written as

f- &, —V,'/2m —Vz/2m+u;(I)+ u, (2)+ V(1, 2)

—[f P'„(2)V(l, 2}y,,(I, 2) d'Fz

+ fQ, (1)V(1, 2) y, (1, 2) d'r, ]

+ b; (1, 2)}Q;(I) Q, (2)y„(1,2) = 0, (28)
where
~,„(1,2) =&' f e',(3) ( V(1, 3) [X,,(2, 3) -1]y„(l,3)

+ V(2, 3) [y;,(1, 3) —1]y, ,(2, 3)jd'r, (29)

represents the difference between using Eq. (26) to
decouple y;,„and using Eq. (25). This term can be
considered as a perturbation and its effect analyzed
qualitatively as follows. First y, ~(2, 3) is close to
unity except when ~23== Ir2 —r, I is smaller than the
radius of the hard core in the interaction, in which
case it is essentially zero. Now consider the first
term in curly brackets in Eq. (29). There we see
that the difference between using Eq. (25) and using
Eq. (26) is that the former effectively excludes in-
tegration of r3 over a "hard-core volume" around

r2, the position of particle 2, whereas the latter
allows integration over this region. The region
moves with particle 2, so that it is close to or far
from particle 1 according to the position of particle
2. Because V(l, 3) is large and positive for r, near
r, and negative or zero for r, far from r1, we may
conclude that A, ,(l, 2) should increase with r, 2

Qualitatively, then, 6„.(l, 2) acts as an attrac:tive
potential. It is a complicated function of r& and r2
but for small deviations of &.,2 from A„= I R& —R;I
it will be essentially of the form ao+ p(r, 2

—ft;;) + ~ ~ ~,
where ao is a constant and may be ignored and p & 0.
We have evaluated 6,, numerically for several con-
figurations of particles 1 and 2 using our solutions

y;„ from Eq. (27) and find that this is indeed the

In Sec. III we argued that the principal effect of
three-body correlations is to force nearest-neighbor
particles closer together. This is accomplished
through the term a, &(l, 2) in Eq. (28); rather than
use the complicated form (29} for 6;;, which would
require extensive numerical computation, we have
chosen to approximate it as

&„(I,2) p(rc-2 A„)-; (30)

p is a positive constant. This expression may be
regarded as the first term in an expansion of 6&
in the displacements of particles 1 and 2 from R,
and R~, although the actual expression will be con-
siderably more complicated in appearance. It is
possible to estimate p from

86„.(1, 2))P=
8&12

~

r12

but this in turn cannot be evaluated except as some
sort of average over the positions of particles 1 and
2 subject to the condition F12 =A&&. Thus the deter-
mination of 6, &

from Eq. (30) rather than Eq. (29)
creates a problem in that we need a method of
choosing the constant p. It can be estimated from
Eq. (29) or determined from some criterion placed
on the correlation function. Needless to say, the
latter method is reasonable only if it leads to a p
which is comparable with that inferred from the
former method.

Because the size of P(r, 2
—A„.) depends directly

on x», the criterion may be conveniently related
to the average interparticle distance. One possible
choice is

(31)

where ( f ) denotes the expectation value of f. In
the present formalism, we shall take for this ex-
pectation value the integral of f over the two-parti-
cle Gl een s function,

(y},, = fy(1, 2)G„(12, 12) ~„,,d', d', . (32}

It is probably more nearly correct to define the
average as an integral over the three-particle
Green's function,

case. In actual calculations we do not treat b, ,,
as in Eq. (29} because of the length of the compu-
tations that would be necessary; instead, a simple
potential of the form p(x~2 —R„) is used; this point
is discussed in Sec. IV.

Finally, we should remark that the three-particle
correlation effect is important only when particles
1 and 2 are nearest neighbors while particle 3 is
no further away than a nearest neighbor of one and
a next nearest neighbor of the other.

IV. CONSTRAINT
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=Z ff(1, 2) g(;),(123, 123)
~ 4 . s, d'r, d r2d r, ,

(33)

where the sum on k excludes k=i, j and g, » is
given according to our decoupling scheme. The
difference between these averages hardly affects
our results, so we have used Eq. (32) because it is
numerically much simpler.

The criterion (31) is certainly not unique; a dif-
ferent condition has been used by Krumhansl and
Wu, namely,

dy„(r„)/d „i„„„., =0, (34)

where the correlation function is approximated as
depending on the interparticle distance r&2 alone.
This means that the correlation function has a maxi-
mum at the lattice distance which seems very rea-
sonable from a physical point of view. It turns out
that Eq. (31) is a very similar condition; it results
in a correlation function having a peak at a slightly
smaller distance, but the peak is broad enough that
y, &(A, &) is almost equal to the maximum value of ~, ,
In other words, Eqs. (31) and (34) have essentially
the same effect on y, ,.

We have generally used condition (31) to calculate
the results which are presented in Sec. VI. We have
also investigated the choice of p =0, or no three-body
correlations at all. This calculation was done only
on bcc He and is included mainly for comparison.

V. NUMERICAL PROCEDURE

We first reduce Eq. (28) to a simpler approximate
equation which is tractable for numerical calcula-
tion; our notation and procedure parallel those used
by Iwamoto and Namizawa. " With 6, ,(1, 2) replaced
by p(r„R„),-Eq. (28) is

[-),—v, /2m —v, /2m

+u,.(I)+u,.(2)+ V(1, 2) —W, , (1, 2)

+p(r„- R„)]y, (I) y,(2) &, ,(1, 2) =O, (35)

where

W„.(1, 2) = f (p~(2) V(1, 2) )( (~(1, 2) d r2

+ f$, (gl V(1, 2) )(;&(I, 2) d'ri . (36)

It is convenient to work with variables g and X,
defined as q =(r, —R, ) -(ra- R~) and X= —,[(ri —R;)
+ (r2 —R&)]; the dependence of y;~ on X, the center-
of-mass variable, is very weak; in the absence of
the "effective potential" W;, , which is a weak per-
turbation compared to the other potentials in Eq.
(35), )(, &

is independent of X in the state correspond-
ing to the smallest Xo. We shall approximate y, &

as a function of g alone. Then the equation becomes

(
3n 1 2 a2-),+- ———v„+—q + V(Pq+R„i) -W„(g, X)

where
w, ,(f) =(~'/~)"' fw„(q, x). e d'x . (38)

The solution of Eq. (38) which corresponds to the
smallest eigenvalue Xo is invariant under rotation
around the direction of R„.and may be written as a
function of the variables g =-

I g I and ( =
I q+ R;, I;

( is the interparticle distance, and y, ~ will depend
much more strongly on this variable than on g.
Our first simplification is to ignore the dependence
of the correlation function on g; this is less easy to
justify than ignoring its dependence on X, and it
turns out that the manner in which one subsequently
averages )7 in Eq. (38) does make a difference in
the numerical results. Given this approximation,
Eq. (38) is

(
n 1 1 ~2 ~2 (2 g2—)(() + 3————

g ( + V($) +-
m m ( 8( 2m

—tp„((, o) p(s —44„))e p"s;,(()=o,
where W„($, q) = W„(i) ). The averaging procedure
we employ is to integrate Eq. (40) over allowed
values of q, I 8„—$ I & q & I A;, + (I, using the ap-
propriate volume element. The result is

(4o)

(
3Q 1 d Q d-),+ ——,+ V(t)+—(t. - It„)—m md(2 m "dE

—w»(() +p(s — p)) s( )(= o, (41)

where

W (() & 2 ~- u 2((l-)S(y) /4

x f "
)Id)i w„.(t, ))) e "". (42)

In obtaining Eq. (41), terms of relative order
- n2R2e "~s have been dropped.
Various alternatives to this method are probably

equally acceptable. One that has been used by

Because y, , has been taken independent of X, the
dependence of W,.&

on X must also be removed. We
have accomplished this by integrating Eq. (37) over
X, which in effect averages W„. in some way. This
is only one of several reasonable procedures; al-
ternatively, we might evaluate W„. at the most
probable value of X. Insofar as the eventual nu-
merical results are concerned, the difference be-
tween these choices is quite negligible, which sup-
ports the assumption that the dependence of y, ~ on
X is unimportant. After the averaging is performed,
Eq. (37) becomes~

~

3 a 1 2 n
2m m n m

+p((4+44,
(

—p, ,)) 4'"s„(s)=-o, (ss)
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Horner&4 and by Guyerss is to set g equal to the
smallest possible value, which is also the most
probable value, g= t $ —R, ~I. This corresponds to
constraining g to be parallel to R, &, which effective-
ly reduces the motion of the particles to one dimen-
sion. For purposes of comparison, we have used
both this reduction scheme and the average described
above in the particular case of bcc He . The re-
sults are discussed in Sec. VI.

It is easier to solve Eq. (41) numerically if an

integrating factor is introduced to remove the first
derivative; also, this makes the choice of boundary
condition for ( -~ more obvious. We define the
function y, j($) =e '~ "~~' ~4y, &(() and substitute
into the differential equation for y, &($), finding

= [- mXp+2n +mV($)+ —,n ($ —R, &)
d$

the boundary condition at (-0 is y;&=0, while for
( -~ the only choice which keeps y„ from diverging
is y;, ($) -0 as $-~-

This equation has been solved using a Fox-Good-
win numerical integration procedure. The effec-
tive potential W„.($) depends an the solution itself;
consequently the equation must be solved repeatedly
until self-consistency of 8',

&
and y,-& is achieved.

The form of 8'; is described in the Appendix.
When R, and R,. are not nearest-neighbor lattice

positions, the parameter p is taken equal to zero,
since Eq. (31) is always satisfied to considerably
better than 1% and generally to better than 0. 1/o.
When nearest neighbors are treated, p is chosen
such that Eq. (31) is satisfied. Calculations with

p =0 for nearest neighbors have been done in bcc
He3 for purposes of comparison.

And, finally, n must be such that Eqs. (4), (8),
and (9) are satisfied when the right-hand side of
Eq. (4) is expanded to second order in the displace-
ment of particle 1 from its equilibrium position.
Equation (4) includes a summation over all positions
j around position i; we sum over a,s many shells
of neighbors as necessary to obtain convergence of
the ground-state energy to within 0. 1 'K/particle.
This energy is given in terms of up and o. by Ep
= p Qp+ 9n /8m. The number of shells depends on
the crystal structure but is always more than ten.

In order to satisfy simultaneously all of the con-
ditions listed above, a fairly extensive amount of
computing is necessary. With a little experience in
choosing starting values of the various parameters,
we were able to determine the solution at a given
molar volume in about 10 sec of computing time
on an IBM 360/75.

Numerical calculations have been done for crys-
talline He' and He at T=0; He occurs in the hcp
structure and He, in the bcc or hcp structure de-
pending on molar volume (or pressure). The bcc

phase of Hes is used for comparing the constraints
described iri Sec. IV and also for comparing the
one-dimensional approximation g = l R„-( 1 with
the averaging procedure given in Eq. (42). Also,
the effect of using an interaction different from the
Lennard- Jones 6-12 potential is examined in the
bcc phase of He'. In the hcp phase of He' and in
He4, the constraint (R, ,' r,2) =A„, the average
equation (42), and the Lennard- Jones potential are
used exclusively. We turn now to the presentation
and discussion of the results.

VI. DISCUSSION

Before discussing our results and comparing them
with other theories and experiments, we wish to
emphasize the importance of the bare potential used
in the calculation. In addition to the Lennard- Jones
(LJ) 6-12 potential, there are several other empir-
ically determined interactions that must be con-
sidered equally acceptable. In the present problem,
where there is a delicate balance of kinetic and po-
tential energies, a small change in the potential
can produce a large change in the calculated ground-
state energy and related quantities. To investigate
the size of this effect, we have calculated Ep in bcc
Hes using both the LJ potential and the Buckingham
potential which Yntema and Schneider fitted to
their high-temperature second-virial- coefficient
measurements. The latter potential (YS) is
V(r) = [1200e ' "—1.24/r —1.89/rP] X 10 '2 erg,
where x is in angstroms. The two potentials are
shown in Fig. 1; the calculated Ep for bcc He is
plotted as a function of molar volume. As can be
seen, the YS potential is several degrees less at-
tractive than the LJ potential and also has a hard
core of larger radius. The effect on Ep is quite
sizable, all the more so when one realizes that a
small change in Ep at one end of the curve can
change the calculated pressure and compressibility
from good agreement to poor agreement (or vice
versa) with experimental results. The size of the
hard core is very important in this respect and
this part of each potential is entirely empirically
determined.

In view of the uncertainty in the potential and the
approximations made, it should be clear that the
merits of a calculation cannot be judged entirely on
the basis of agreement or disagreement with exper-
iment. To facilitate the comparison of our work
with the work of others, we have used the LJ poten-
tial exclusively to calculate the results described
below.

The most important calculated quantities are z2

and up, which we obtain according to Eqs. (4), (8),
and (9); specifically, the right-hand side of Eq. (4)
is expanded to second order in powers P of (r, —R,)
and a consistent choice of cy is found. There is no
arbitrariness in this choice; z and up are uniquely
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FIG. 1. Lennard- Jones (LJ) and Yntema-Schneider
(YS) potentials V(r) are plotted as functions of r; the bcc
He3 ground-state energy per particle calculated from
each potential is plotted as a function of molar volume.
The dashed line is the experimental ground-state energy
from Ref, 31.

determined. In Ref. 14, on the other hand, o.2/2m

is determined by minimizing E p and, in Ref. 11,
by minimizing Ep. It is clear theoretically why one
should treat o. /2m as a variational parameter.
We believe that the self-consistent method of
Iwamoto and Namaizawa'5 is the most straightfor-
ward and least ambiguous. At the same time, it
is not completely satisfactory because the expansion
of the right-hand side of Eq. (4) may not converge
sufficiently rapidly for the self-consistent field
u&(1) to be accurately determined in the harmonic
approximation. We have checked this point by com-
paring the averages

I = f$,(1)u;(I) d r
and

I2 = 2 ' fV(1, 2)v „(1,2) Q';(I) Q&(2) d'r, d'r2

using the functions Q, and y, , calculated as de-
scribed above. If the expansion of Eq. (4) is good,
these integrals should be equal. The case for which
it is least likely to be good is bcc He', where the
atoms have the largest zero-point motion. For this
case, we find that I, and Iz differ by about 4%%uo, which,
if the diff er ence is ascribed totally to an inaccuracy
in o, suggests an error of about 1'K/particle in the
ground- state energy.

To investigate this point further, we also calcu-
lated n self-consistently by demanding that the
averages I, and I~ be equal instead of by using the
expansion procedure; in this calculation, up was
taken to be u, (r, =R, ) as before. The result is a

25

15
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O
LLj

12 14 16 18 20 22 24

Volume (cm~/mole)

FIG. 2, Ground-state energy per particle of He and
He4 as a function of molar volume. The dashed lines are
experimentally obtained; DF is from Ref. 29, EP from
Ref. 30, and PE from Ref. 31. The present theory is
PT. The theoretical results of Refs. 14(H), 11(G), and

9 {HMN) are also given for bcc He3.

curve for Ep for bcc Hea which is almost exactly
1 K above the theoretical curve in Fig. 2, the

latter being the same as curve B in Fig. 3. Curve
B is the one with which the present calculation
should be compared because, aside from the method

for choosing cy, it was determined under the same
conditions (see below).

As can be seen, rather better agreement with

experiment is obtained using the average, but this
may well be coincidental. What this check does
show, we feel, is that the method by which n and up

are chosen is of some importance, although the
change from average to expansion does not have a
remarkable effect.

In principle, we should incorporate terms of the
form (r, —R,)4 in the expansion of u;(1). The re-
sult of this correction in addition to the effects of

other approximations mentioned in this paper will
be studied in the future.

In Fig. 2, we plot the ground-state energy Ep as
a function of molar volume in hcp He and in hcp
and bcc He . The results of several other theories
are shown for bcc He; the prominent difference
between our results and those of the other workers
is that our energy is consistently lower by several
degrees. This is also true in He4 and hcp He3.

It is difficult to pinpoint the origin of this feature
because there are many differences between the
procedures, the effect of which is not always obvi-

ous; however, we think that one important factor is
the method of handling the second variable, g, in

Eq. (40). We also tried using q =1)—R;;I, as in
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FIG. 3. Ground-state energy per particle in bcc He3

as a function of molar volume. The theoretical curves
A-C were obtained using different constraints on (x&2}
and /or different treatments of the variable q as explained
in the text. The experimental curve is from Ref. 31.

Refs. 11 and 14, in the bcc He' calculation. The
result is the curve labeled A in Fig. 3; it should
be compared with curve B, which was obtained by
treating q according to Eq. (42). This illustrates
the point that in one dimension the repulsive core
occupies relatively more space than in three di-
mensions.

Curves A and B in Fig. 3 were calculated using
the constraint equation (31); curve C, on the other
hand, was obtained by setting p = 0, or by ignoring
three-body correlations altogether. The variable
rI was treated according to Eq. (42), so this curve
should be compared with curve B. The pressure
obtained from curve C is very low because this cal-
culation gives an Ep which is too insensitive to
changes in the molar volume.

The question arises as to why it is necessary to
introduce the constraint at all, since it is not used
in any previous theories of solid helium although
these theories often given good P- V curves. Also,
it is generally claimed in the literature that the ef-
fect of three-body correlations, which we use to in-
troduce the constraint, is small; yet it plays an
important role in our work. We believe that the
reason for the discrepancy is as follows.

The three-particle correlations have the same
effect in Eq. (28) as W„., the term in square brack-
ets, has; this is to force particles 1 and 2 into the
proper positions in the lattice. The magnitude and

functional form of 8",
&

are, of course, all-important
in determining how effectively this "potential" draws
the particles together. However, in order to be con-
sistent with our harmonic approximation to the self-
energy, we have to treat W, z approximately by ex-
panding it to second order also, as described in the
Appendix. After expansion, we find that the strength
of 8',.

&
is somewhat too weak to produce a y;, which

satisfies Eq. (31). On the other hand, the value of

p estimated from Eqs. (29) and (30) is such that

when the term p($ —R, &) is added to W, &, the com-
bined effect is of very nearly the size necessary to
satisfy Eq. (31). The relative importance of the
two terms in achieving this effect is about unity.

At the same time, we must point out that the
addition of the three-body correlation effect alters
Ep by only a small amount; nevertheless, its exis-
tence cannot be denied and its importance should,
we feel, be checked in any calculation. A small
change of Ep over part of the Ep-vs-V curve can
have a sizable effect on the calculated pressure.

The term 8',
&

also appears in Refs. 11 and 14 and

is handled by a different numerical procedure in

each case. A direct comparison of the treatments
does not seem to be possible.

Finally, let us repeat that numerical results are
dominated by z2 and up, which are probably more
affected by the scheme according to which they are
chosen than anything else.

The results for the ground-state energy are
plotted in Fig. 2, while the pressure and compres-
sibility are given in Figs. 4 and 5. The dashed
curves are the experimental results of Dugdale
and Franck (DF) and of Edwards and Pandorf~o

(EP) and Pandorf and Edwards" (PE). As we noted

above, our Ep vs-V curves lie several degrees be-
low those of other workers and are also below the
experimental curves. We have not plotted other
theoretical results for the pressure and compres-
sibility but should remark that some of these, e. g. ,
Refs. 8, 11, and 14, are in very good agreement
with experiment.

In Fig. 8, we plot the correlation functions y, &(r)

for the first two shells in bcc He at a volume of
21.4 cm . Along the abscissa, the variable is r/R, &,

where R„=a for the first shell and a 2/v 3 for the
second. The correlation functions for large shells
become progressively flatter away from the hard-
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FIG. 4. Pressure as a function of molar volume in
He and He; the labels are as in Fig. 2.
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FIG. 5. Compressibility as a function of molar volume
in Hes and He; the labels are as in Fig. 2.

1.2—
Shell I

core region. The distance at which y, ~(r) rises from
zero is determined mainly by the hard-core radius
and so is relatively insensitive to the molar volume.
On the other hand, for nearest neighbors the posi-
tion of the peak tends to vary as the lattice distance
or V', so that the shape of the correlation function
changes with molar volume.

A comparison of our correlation function for near-
est neighbors with those of Hetherington, Mullin,
and Nosanow and of Horner' is made in Fig. 7 for
bcc He' at a molar volume of 24 cm3. Because of
the different method Guyex ' has used to separate
the single-particle and correlation functions, we
cannot make a meaningful comparison with his
correlation function.

~ 2

I

1.20.4 0.6 0.8

(r/Rij)

FIG. 7. Correlation function g~&(x) vs r/R;& for nearest
neighbors at a molar volume of 24 cm3. That of the pres-
ent theory is labeled PT; those of Refs. 9 and 14 are
labeled HMN and H, respectively.

In Fig. 8, n a is shown as a function of molar
volume, where a is the nearest-neighbor lattice
distance. This quantity depends quite strongly on
volume, increasing as V decreases, corresponding
to increasing localization of the particles. This
will lead to a strong dependence on volume of such
quantities as the exchange constant and phonon dis-
persion relation, as discussed by Guyer. ' %'e will
present calculations of these quantities based on the
present results in a forthcoming paper.

On the basis of our calculations, we draw the fol-
lowing conclusions:

(i) The potential used in the calculation is extreme-
ly important insofar as the numerical results are
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FIG. 6. Correlation function g~~(w) for nearest and
for next nearest neighbors as functions of r/R;& for bcc
He at a molar volume of 21.4 cm .

10 I I I I I

12 14 16 18 20 22 24

VOlume (Cm~/mole)

FIG. 8. Quantity & a plotted as a function of molar
volume in He3 and He4; a is the nearest-neighbor lattice
separation.
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concerned. Small changes in the depth of the at-
tractive well or the hard-core radius can signifi-
cantly alter these results; in the absence of a "best"
potential, comparison with experiment cannot in
itself be a satisfactory test of a theory.

(ii) A self-consistent calculation defined in our
program and which ignores three-body correlations
will produce Ep too low at small molar volume and
an average interparticle distance which is too large.
We believe that this feature is caused by taking ex-
clusively the two-particle hard-core effects without
considering the fact that the particles are also
surrounded by other particles which constrain them
to be a certain distance apart on the average.

(iii) We find that the three-body correlations have
the effect of producing a two-particle function 0„.
which describes two particles localized at R, and

R~ and in close agreement with either of Eqs. (31)
and (34). In actual calculations this effect is ap-
proximated by a simple potential whose magnitude
is such that Eq. (31) is satisfied. It is important
to have some such well-defined theoretical criterion
because, by choosing the magnitude p of this poten-
tial more arbitrarily, the volume dependence of Ep
could be significantly altered. In particular, it
would not be necessary to change p by as much as
a factor of 2 to obtain perfect agreement of the cal-
culated pressure with experiment. This point also
illustrates the importance of achieving self-consis-
tency in treating W;J in Eq. (35).
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APPENDIX: EFFECTIVE POTENTIAL

In Sec. III, we derive an "effective potential"
given by

Wg;(I, 2) =f p, (2)V(1, 2)y;)(I, 2)d F2

+f P,(l) V(1, 2) y, ;;(1,2), (A1)

which we wish to reduce to a form consistent with
the harmonic approximation used for the single-
particle self-energy. In the first integral, define
q = Ir~ —Ã; I and $ = Ir, —r2I and make a similar
transformation of variables in the second integral.
Also, assume X;;(1,2) depends only on $, as in
Sec. V; then

~2 3/2
W&;(I, 2) = » —, M V(&) X;g(()

qdq + qdq -, A2

where A, ~
—— j r) —R; ) and A2; ——

) r2 —R; ( . The integra-
tion over q can be done, and the result expanded
in powers of the center-of-mass and relative vari-
ables X and q, a.s far as second order, which is
consistent with Eq. (9). Also, it is convenient to
drop the subscripts i, j and to define the averages

V„= (nR/v v ) f xdxe " " ' V(Rx) y(Rx)(x —1)" .
(A3)

The authors wish to thank Dr. H. T. Tan for use- The resulting expression for W is

W(17, X) = 2VO —7l cose„(VO —2n R V, )/R+ [2X ~P( cosg)/x'R+'g P ( 2c&o„)s/2R ](Vo —2n R V, )

+ [ 2X'( cos'8 x) /R' +q'(c os' 8) /2R'] (- 4n R Vo+ 8n R V~), (A4)

where cos9„= (q 5;&)/R, cos&»= (X R;&)/R, and

P2 is the second Legendre polynomial.
Next, the average over X defined in Eq. (38) is

performed:

W('g) = Vo —n R V~ —icos&„(VO —2n R2V)/ R

+ g P2(cos&„)(VO —2n R V2)/R

+ 'g cos &„(-4n R Vo+ 8n4R4V2)/Ra, (A5)

and, finally, the average over 7l given by Eq. (41) is
done. In this context, it is useful to note that
( = IR+'0 I or cos&„= (5 —q —R )/2qR We find for.
the average

W(() = 2[B,+ B,($ R)/R+ 8,(( R-)'/R'), (A—6)
where

Bo = (2 + 3/n R )Vo —(1+ 6/n R )Vi+ (n R +4)Vg,

B,= (—,
' —3/2n R')Vo+(n R +3)V, —2n R V2, (A7)

B2= (- ,'n R + ,')Vo ——(—,'n R —)Vi+ (,'n R )Vg . —

Equation (A6) gives the function W;&($) which appears
in Eq. (42), provided, of course, g is averaged as
in Eq. (41). If some other scheme is used to re-
move q from the equation for g;&, then Eqs. (A7)
are modified somewhat but remain linear combina-
tions of Vp, V» and V2.

~F. W. de Wette and B. R. A. Nijboer, Phys. Letters
~18 19 (1965).

2see, e. g. , J. O. Hirschfelder, C. F. Curtis, and

R. B. Bird, Mogeculax Theurgy of Gases and Liquids
(Wiley, New York, 1954), p. 197.

3W. Brenig, Z. Physik 171, 60 (1963).



CORRELATION EFFECTS IN QUANTUM CRYSTALS 281

T. R. Koehler, Phys. Rev. Letters 17, 89 (1966).
P. Choquard, The &nhaxmonic Crystal (Benjamin,

New York, 1967).
H. Horner, Z. Physik 205, 72 (1967).

VT. R. Koehler, N. S. Gillis, and N. R. Werthamer,
Phys. Rev. 165, 951 (1968).

L. H. Nosanow, Phys. Rev. 146, 20 (1966).
J. H. Hetherington, W. J. Mullin, and L. H. Nosanow,

Phys. Rev. 154, 175 (1967).
C. W. Woo and W. E. Massey, Phys. Rev. 169, 241

(1968).
~~R. A. Guyer, Solid State Commun. 7, 315 (1969);

in Solid State Physics, edited by F. Seitz, D. Turnbull,
and H. Ehrenreich (Academic, New York, 1969), Vol. 23,
p. 413; R. A. Guyer and L. I. Zane, Phys. Rev. 188,
445 (1969).

B. Sarkissian, Ph. D. thesis (Duke University, 1969)
(unpublished) ~

When discussing the work of Guyer and Sarkissian,
we will generally use the single reference 11, It should
be pointed out, however, that many of the numerical re-
sults described in these articles were first calculated by
Sarkissian in Ref. 12, which is less readily available.

~4H. Horner, Phys. Rev. A 1, 1722 (1970).
5F. Iwamoto and H. Namaizawa, Progr. Theoret.

Phys. (Kyoto) Suppl. 37/38, 234 (1966); and unpublished.
K. A. Brueckner and J. Frohberg, Progr. Theoret.

Phys. (Kyoto) Suppl. Ext. 383 {1965).
N. S. Gillis and N. R. Werthamer, Phys. Rev. 167,

607 (1968).
~ Such a potential has the effect of drawing the particles

together; if one expands the contribution of three-particle
correlations to the two-particle equation, the leading term
in the expansion will have approximately the same form.

J. A. Krumhansl and S. Y. Wu, Phys. Letters 28A,
263 (1968).

H. Meyer, J. Appl. Phys. 39 390 (1968).
~Because exchange is not included and particles are

treated as distinguishable, the statistics of the particles
will not actually play any role. We will write equations
appropriate for Bose statistics only to simplify the nota-
tion.

We use units such that Planck's constant divided by
2m and Boltzmann's constant are equal to unity.

The notation is generally the same as in L. P. Kada-
noff and G. A. Baym, Quantum Statistical mechanics
(Benjamin, New York, 1962).

4Note that in the frequency component of G,
G&& (12 1'2. v) the symbols 1 2 and 1' represent
only the space variables rl, r2, and r&.

~5Because the subscripts p, 0', and & are all zero
starting from this point, we drop them altogether. Also
appropriate time ordering is taken here.

L. Fox and E. T. Goodwin, Proc. Cambridge Phil.
Soc. 45, 372 (1949).

~~J. L. Yntema and W. G. Schneider, J. Chem. Phys.
18 646 (1950).

In the hcp structure, the harmonic expansion is not
spherically symmetric beyond the second shell; for more
distant shells we use an isotropic approximation as in
Ref. 15.

~9J. S. Dugdale and J. P. Franck, Phil. Trans. Roy.
Soc. London A257, 1 {1964).

D. O. Edwards and R. C. Pandorf, Phys. Rev. 140,
A816 (1965).

3~R. C. Pandorf and D. O. Edwards, Phys. Rev. 169,
222 (1968).

PHYSICAL REVIEW A VOLUME 4, NUMBER 1 JULY 1971

High-Energy Neutron Scattering from Liquid Helium in the Impulse Approximation*
H. A. Gersch and Phil N. Smith

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
(Received 19 November 1970)

The impulse approximation is used to describe the inelastic cross section for high-energy
neutron scattering from superfluid helium in terms of a ground-state momentum distribution
of the helium atoms as given by existing variational calculations. The predicted shape of
the cross section is compared with recent experimental data and with a previous theory which
approximated the noncondensate contribution to the dynamic structure factor by a single-Gaus-
sian function. In contrast to conclusions obtained using the single-Gaussian approximation,
our predicted inelastic cross section omitting a condensate contribution provides an acceptable
fit to the experimental data. This fit is worsened by introducing a contribution from a con-
densate fraction in the amount consistent with the variational calculations, namely 11%. If
the condensate fraction is arbitrarily reduced from this value, it is found that a much smaller
value, with an upper limit of about 3%, is consistent with the available experimental data. It
appears that unique assignments of condensate-fraction contributions to inelastic neutron
scattering, for the range of neutron energies presently available, will require an improved
theory of final-state effects on the shape of the condensate contribution.

I. INTRODUCTION

Central to microscopic superfluid theory is the
concept of the existence of a condensate fraction of
helium particles having zero. momentum. ' Re-

cently, experiments in high-energy scattering of
neutrons from superfluid helium have been carried
out, ' the aim being to measure the momentum dis-
tribution of the individual He atoms and thus the
strength of occupation of the zero-momentum level. '


