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This gives a general formula for the dynamical
level shift Z; z ~ q I c~ I and the dynamical width
gql', 6Ic&I . For two levels, the width formula is
equivalent to Eq. (50) for the time rate of change

tulate of phase incoherence of components of the
Schrodinger wave function made in quantum statis-
tical mechanics. Since the total radiation density
obeys Planck's law, there is no conflict with ex-
perimental data on blackbody radiation in which
total radiant energy is measured.

As has been shown by Jaynes and co-workers, '
the semiclassical theory describes dynamical ra-
diative level shifts as well as radiative lifetimes
due to spontaneous emission. These two phenomena
both follow from Eq. (48), when applied to the
total effect of all levels Ez on a given level E .
This equation becomes

of l~1l'.
Crisp and Jaynes' found that for electric dipole

radiation the 1s-2P level shift obtained from Eq.
(77) for nonrelativistic wave functions agrees within
experimental error with the experimental value, as-
suming that I c„I is unity. The 2s-2p level shift (the
Lamb shift) is roughly two-thirds of the experimental
value when computed with nonrelativistic wave func-
tions, assuming that I c2, I is unity under the conditions
of the Lamb-shift experiments. These calculations
need to be refined before they could be considered to
provide a definitive test of the semiclassical theory.

It is important to note that irreversibility is
built into the theory of spontaneous emission given
here by assuming retarded solutions of the inhomo-
geneous wave equation, in Eq. (15). In conse-
quence, the rate of energy production given by
Eq. (21) is positive definite, at least for electric
dipole radiation. If advanced potentials had been
used, the energy production rate would change
sign, and it vanishes if half-advanced, half-re-
tarded potentials are used. Thus the choice of re-
tarded potentials establishes an "arrow of time, "
in that energy is dissipated from an excited ma-
terial system as time progresses, and an eventual-
ly established equilibrium would not be disrupted
by reversing the time sense.
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The Ginzburg-Pitaevskii phenomenological theory has been extended to include the effects
of vortex lines. The model calculations are compared with some of our recent experimental
results on the He II—He I transition in the presence of a heat current.

I. INTRODUCTION

Several years ago Ginzburg and Pitaevskii pro-
posed a phenomenological theory of superfluidity
near T,. Some of the results of this theory have
been discussed in recent papers by Mamaladze,
Kramer, ' and Mikeska4 and in an unpublished re-
port by Burkhardt and Stauffer. ' A salient feature
of the theories is the preaiction that the superfluid
density p, should be reduced for finite values of the
counter-flow velocity w=(v, —v„). Concomitantly,
this implies an instability in a driven superfluid
current p,zo. In other words, for any given temper-

ature there should exist a maximum current consis-
tent with superfluidity. In addition, the theory pre-
dicts that, barring the instability, the superfluid
density should vanish at high enough values of gu,

i. e. , the He II-He I transition temperature should
be lowered for finite zo. To our knowledge, until
recently there has been no unequivocal experimental
evidence to support this view. In a recent paper
(hereafter referred to as I) we have reported an
experiment in which the He II-He I transition was
investigated in the presence of a heat current. Fig-
ure 1 [cf. Fig. 3(b) of I] shows the thermograms
observed at two points along a thermally isolated
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Q =7.4 x IQ erg/cm~

G '
adjustable parameters. However, for a reasonable
choice one again gets a satisfactory description for
the measurements. There is one experimental sit-
uation for which the present model should be quite
accurate, i. e. , when the HeII-HeI transition is
studied in the presence of a uniform rotation. It is
very gratifying that our model accounts for the
negative results of the experiments of Andelin
et al "
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FIG. 1. Thermogram for two thermometers, TH 1
and TH 2, placed 5 and 10 cm away from the heater. As
noted in I the points E are simultaneous and the points
I" occur at the same temperature.

column of He II when the main helium bath was
allowed to warm up slowly. As explained in I, the
points E were identified as the instant at which the
He II-He I transition occurred at the heater and the
points F measured the temperature of this transi-
tion7 for an applied heat current Q. The results
were summarized by the relation

T„—= T (Q) = T (0) —(5. 9 x 10 )q

for 10 - Q - 106 erg/cm2 . (1)
This equation represents a least-squares fit to
several hundred data points taken with cylindrical
flow channels of 0. 4- and 0.6-cm diameter, the
thermometers being placed 3, 5, 10, and 12 cm
away from the heater. Equation (1) differs con-
siderably from the results predicted in Refs. 2
and 4. It was proposed in I that in order to account
for such discrepancies, one has to take explicit
account of the fact that in the experimental situation
there is likely to be a considerable density of vortex
lines in the superfluid. In this paper we present
further details of a model calculation based on this
idea and show that by introducing a reasonable
number of vortex lines one can account for the ob-
servations. Admittedly, the model is very ideal-
ized and, although no approximations are made, the
results are no better than the model itself. Fur-
ther, we have used the model to calculate the tem-
perature distribution in the fluid incorporating. some
of Ahlers's suggestions regarding the behavior of
the Gorter-Mellink mutual friction force near T,.
Unfortunately, such a calculation involves many

II. MODEL CALCULATIONS

A. Critical Heat Current

As described in the Introduction, the present
model differs from that used in Refs. 2- 5 in that
we wish to include the effects of vortex lines in
the superfluid. The effects of having vortex lines
in a rotating mass were discussed by Ginzburg
and Pitaevskii. In the present problem we wish
to consider the superfluid flowing with a uniform
velocity v, through a cylindrical tube of radius a.
In addition, we will superpose on this motion a
velocity field due to N vortex lines each of strength

The vortices are assumed to be uniformly
distributed in the fluid. In addition, since there
is no net flow in the plane perpendicular to the
z axis, one is also assuming that neighboring vor-
tices have opposite circulations. In essence this
implies that on the large scale the presence of the
vortices does not spoil the simple hydrodynamic
situation.

With these assumptions, the only effect of intro-
ducing the vortices is to deplete the superfluid den-
sity. Presumably, this effect is independent of the
orientation of the line and is controlled only by the
magnitude of the circulation ~, the number of lines
N, the correlation distance f, and the radius of
the Bernoulli hole ao. Thus, if the distance be-
tween two vortex lines, a/u N, is much larger than

(, the hydrodynamic interaction between them will
not contribute to our results. '

It is clear that the actual distribution of vortex
lines in the superfluid is likely to be very complex
and will perhaps bear no simple relationship to
our model. Simplicity is, of course, the main
justification for taking such a model although one
could also argue that a picture in which the vortex
lines are anchored at one or two points on the tube
walls and are sensibly parallel to the walls over
considerable lengths is not entirely invalid.

The assumption of a uniform v, may also seem
surprising since there is likely to be coupling be-
tween normal and superfluid flow, the former
velocity having the familiar parabolic variation
along the radius. However, for T close to T,
and flow induced by a heat current, n„«v„and
the variation of v„across the cross section will
become unimportant. Presumably, at the tube wall
itself v, will go to zero in some manner. In cal-
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where ~ =h/m and the other symbols are as defined
in I. The term involving ~ has essentially the same
form as that derived earlier by Ginzburg and
Pitaevskii. Anticipating the results of the sequel,
Ne « I and N6« I, and are therefore neglected.
Minimizing the free energy gives2

culating the free energy this could, in principle,
be taken into account by reducing the effective ra-
dius of the channel. This effect may also be ne-
glected because the excluded region will have a
thickness of order $ and in our regime $/a «1. As
shown in I [Eq. (7) ], the free energy per unit volume
may be written as

~)T = (- n+ z mvg) y „(1—Ne) + z P X„(1—N5)

(6)

For nonzero N, the value of [Q,]» predicted by Eq.
(5) is likely to be smaller than that obtained from
Eq. (6). In addition, the temperature dependence
of [Q,]r„may also be altered by the presence of
vortex lines.

In order to compare Eq. (5) with the experimental
results, as summarized in Eq. (1), one proceeds
as follows. In a driven situation, if the applied
heat current Q exceeds [Q,]» at any point in the
fluid, the excess heat Q —[Q,]~„must be transported
by other means. This is likely to raise the local
temperature, thereby lowering [Q,]» further,
which will cause a further increase in temperature.
One gets a cascade of processes such that p, (Q, T)
vanishes locally. Thus one should expect that once
[Q,]» is exceeded, the He II-He I transition will
ensue. Obviously, this will occur first of all in the
neighborhood of the heat source, as observed in I.
If this interpretation is valid, Eqs. (5) and (1) de-
scribe essentially the same physical discontinuity.
Since there is no a priori way of calculating N„
we have used the data to determine the value of N,
which brings Eqs. (5) and (1) into agreement, and
obtain

I a
Q-' ——,mv, —» 1 ln +0

p
' a 4m VNao

which gives for the free energy at equilibrium

I ~ 2 ¹ a
(~Fr)sa =-2—n- zm'. —vz zm ln + g

2P ' a 4m vNao

Again, we have the superfluid density
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4v o(a 3 p[T, (0) —T]
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In other words, N, is the number of vortex lines
required to give the observed shift in the transition.
Following Mamaladze n = (1.11x10 ' ) [T,(0) —T)' '
erg and p = (3. 52 x 10 ")[T,(0) —T]z ' erg/cm'.
With p, (0) /p = l. 44[T,(0) —T]z z one gets

Nln 9) ,= (6 x lD") [T,(0) —T)
aoMNc

where p, (0) = C[T,(0) - T]z~ z is presumably the den-
sity measured in the experiments of Clow and
Reppy'z and of Tyson and Douglass. 'z As before, the
maximum heat current [Q,]» (see Fig. 1 in I and

Fig. 2 below) that the superfluid can carry corre
sponds to the point 9 (hE~) „/Bv, = 0, and is given
by

(O) ( (o) l-

(5)

Here, we have utilized the fact that se = v, —v„=v, .
N, represents the number of lines at the critical
point. It is interesting to compare this result
with that of Mamaladze, ' namely,

x (I —0.045[T,(0) —T] zi'] . (8)

For the range of [T,(0) —T] covered by our experi-
ment this equation can be approximated by

n, =N, /va =(4x10 ) [T~(0) —T]

There is no calculation or measurement in the
literature to which this result can be compared di-
rectly. To our knowledge the only attempt at trying
to obtain the equilibrium density of vortex lines in
liquid He II is due to Vinen. ~4 He showed, from sim-
ple hydrodynamical considerations, that for T-2 K
and v, -10 cm/sec the density of vorticity is -10'
lines/cm . At higher temperatures one should ex-
pect a somewhat larger density although no direct
extrapolation is possible since all his assumptions
break down for T close to T,. Further, it is im-
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TABLE I. Observed values of f(L) and g, along with
values computed from Eq. (14) fol two sets of the ad-
justable parameters.

E (cm) f, g,

p=5
&=1,14

&o=0.023
gcalc fca~~

p=4
7=0.67
o=1

gca~o

3 11.3
5 10.3

10 9.1
12 8.7

1.07 11.4 1.06
1.08 10.2 1.07
1.09 8.8 1.08
1.09 8, 4 1.08

12.4 1.09
11.5 1.08
9.8 1.08
8.4 1.08

'f is in units of mW/cm2/(In 'K)».

portant to note that neax" T~ the generation of vor-
ticity also becomes favorable due to thermal fluc-
tuations. " The values implied by Eq. (9) therefore
do not appear to be unreasonable. As expected,
Eq. (9) shows that the farther one is from the T~(0)
the larger the density of vorticity required to cause
the transition.

Next~ lt ls interesting to note that N~$ —8x 10
cm, i. e. , the transition appears to take place
when the average distance between vortex lines is
about 20$. Also, since X,)3/a'-N, a20/a « I, ne-
glect of ¹ and M is indeed reasonable.

It is instructive to note from Eqs. (5) and (6} that
the superfluid density for Q = [Q,]» has the form

p. ,=-,' p, (o) (o. o45} [T,(o) —T] "' (io}

while the critical counterflow velocity [ro,]» has
the value

[~,],„=( 2n/sm)"' {0.O45 [T„(O)—T] "'P' . (ii)
In the Mamaladze theory these quantities were

given by p, ,=-', p, (0) and (w,)T„=(2n/3m)' '. Thus,
the presence of vortex lines x educed p, , by a
larger factor than it does (ur,)». The usual Q-vs-
K cux've, shown as a dotted curve in Fig. 2, gets
replaced by the full curve. It has to be admitted
that only the end points in the full curve have been
computed by us. However, the trend is quite clear.

8. Temperature Distribution in Fluid

As mentioned earlier, E in Fig. 1 marks the in-
stant (same for all thermometers) at which the
HeII-He Itransition occurs in the liquid close to
the heater. The temperature T~ can thus be used
to describe the temperature variation ln liquid
He II as a function of l, the thermometer-heater
distance. Since the temperature at the heater is
T,(Q) one may be inclined to study the relationship
between [T,(Q~ —Ts] and the applied heat current
Q. This was tried first. It was found that in prin-
ciple one couM write Q =f [T,(Q) —Ts]'. However,
in such an expression both f and g turned out to
be functions of /. Following the results of earlier
measurements by Leider and Pobell' and Ahlers,

Present Calculation

p

FIG. 2. Q (heat current) vs ao (counterflow velocity)
for a temperature T= T&-0.001'K. The dotted curvewas
calculated using the theory of Mamaladze (Ref. 2) and
the fuG curve from Eqs. (5), (10), and (11). The sharp
drop at I' follows from the discussion in the text.

we next tried fitting the data to the form

Q =f(I) [T,(o) —T,]'
and were very gratified to note that the present
results gave for g the value 1.OS + 0.01, which is
in extremely good agreement with the results of
Refs. S and 16. Also it was found, in agreement
with the earlier measurements, that f(l) (Table I)
is a slowly varying function of /. Ahlersa has sug-
gested that the relationship given by Eq. (12) can
be understood in terms of a mutual friction term of
the Gorter-Mellink form, i. e. , VT= —Ap„Q /
S(p,ST)', provided that A ~ [T„(O)—T] '~' and p =4.
However, in his analysis Ahlers took no account
of the possible Q (or so) dependence of p, . In addi-
tion, one must include the fact that the heater tem-
perature does not exceed T,(Q). This is accom-
plished by writing

2a 4v'o. a' aorsÃ

for T&T,(Q),
(IS

p, (u) =o for T & T,(Q) .
The temperature at a distance l from the heater
will thus be given by the equation

T(~)
P"„,df =- A '(T) p', (u)) dT . (14)

0 &), (0)

We retain Ahlers's assumption that A =Ao[T,(0)
—T]" although, of course, this relation is meaning-
ful only for T & T~(Q). Unfortunately, Eq. (14) con-
tains a large number of undetermined parameters.
In ordex' to compare with experiment the foH.owing
steps were taken: (i) Since the temperature dis-
tribution is measured when the heater end is at
T,(Q), one can take for N in Eq. (13) the value
N=N, (Q). (ii) On the right-hand side of Eq. (12)
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the second term in parenthesis is small and was
therefore neglected. (iii) The resulting t T,(0)
—T(l) ]-vs-Q relationship was expressed in the
power-law form [Eq. (12)]. The results for two
choices of the parameters, along with the experi-
mental values, are exhibited in Table I. In hind-
sight, it appears as if the extra terms have not al-
tered Ahlers's conclusions too drastically, since
he obtained good fits for P =4, y =+0. 67.

C. He II-He I Transition in Rotating Liquid Helium

The model proposed here should also find applica-
tion when discussing the He II-He I transition in the
presence of a uniform rotation with angular veloc-
ity &. In this case, indeed, one expects a uniform
distribution of vortex lines in the fluid. All the
vortex lines will have their circulation in the same
direction, which is also the direction of macro-
scopic rotation. It is well known that for Nv/wa
= 2' such a vortex pattern will simulate solid-body
rotation. Since v, =0 it follows from Eq. (13) that
for a bucket of radius a, one should expect a shift
in T„given by

&T, = T,(0) —T,(~) = (5. 39 x 10 ') ~'«

(2. 6 x 10') (~T,) '~ ' '~ 4

x ln „, +0.36, (15)
~

~

~

which, apart from logarithmic factors, is the same
as Mamaladze's result T~(0) —T,(~) = (5.4x10 ')

This equation should also be compared
with the results of an experiment due to Andelin
et fvl. ' They found that for ~ -35 sec ' no observa-
ble shift in T, took place. For this value of +
and their geometry, Eq. (15) would predict a shift
of 0. 2 pdeg. (Mamaladze's result would be 0. 1

pdeg. ) Since Andelin et a/. had a precision of only
10 ' K, it is not surprising that they obtained a
negative result.
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