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It has recently been shown by Jaynes and collaborators that semiclassical radiation theory
contains a description of spontaneous emission of radiation and of radiative level shifts. The
present paper gives a gauge-invariant derivation of the radiant energy production rate, using
only Maxwell's equations and the usual definitions of electric current and charge density for a
many-particle material system described by Schrodinger's equation. A complementary der-
ivation, using the time-dependent Schrodinger equation, verifies the instantaneous conserva-
tion of energy and probability during the radiation process. The semiclassical rate of spon-
taneous emission differs from the usual formula (Einstein's A coefficient) because it depends
on the occupancy of both initial and final states of the material system. The implications of
this with regard to thermal equilibrium and Planck's law are examined. If a new hypothesis
is introduced, postulating the decomposition of the equilibrium radiation into incoherent com-
ponents, each interacting with a specific pair of energy levels of the material system, then
Planck's law is shown to hold for the total intensity of radiation. If this hypothesis is not in-
troduced, the equilibrium conditions for different transitions are incompatible, and the semi-
classical radiation theory is incapable of describing thermal equilibrium.

I. INTRODUCTION

In semiclassical radiation theory, the electro-
magnetic field is treated as a classical field,
governed by Maxwell's equations, interacting with

a material system governed by Schrodinger's equa-
tion. The Schrodinger wave function can be con-
sidered to be a classical field. The structure of
the theory is essentially that of a classical field
theory, in which the field equations couple the
Maxwell field to the Schrodinger field.

It is commonly assumed that semiclassical ra-
diation theory cannot describe the phenomenon of
spontaneous emission —radiation from a material
system that is not induced by an incident electro-
magnetic field. In contrast, stimulated emission
and absorption of radiation are described correctly
by the theory.

In a. recent series of papers, ' Jaynes and col-
laborators have reopened the question of the limit
of validity of semiclassical theory. They have
shown that the coupled semiclassical field equa-
tions imply not only spontaneous emission, but
also radiative energy-level shifts. Both of these
phenomena appear as dynamical effects depending
on the initial state of the material system in a way
that differs from the prediction of quantum elec-
trodynamics. Stroud and Jaynes~ point out that
definitive experiments testing these dynamical ef-
fects have not yet been carried out. They conclude
that semiclassical radiation theory cannot yet be
ruled out on existing experimental evidence.

If a quantum mechanical system is in a pure
stationary state of energy E, the time-dependent
phase factor e ' '" cancels out of all quantities
determined by the density function $P*. Hence

physical properties of a stationary state are time
independent and do not act as source terms for a
radiation field. However, a mixed state has time-
dependent cross terms e~s& s&" '" in gg*, which
provides oscillatory source charge and current
densities. Through Maxwell's equations, these
source terms produce a radiation field, describing
spontaneous emission from any material system in
a mixed state. Emission of radiant energy continues
until only the lowest initial energy level is populated,
reducing the oscillatory cross terms to zero.

One purpose of the present paper is to give a
detailed formal derivation of the general result
described qualitatively in the preceding paragraph.
This derivation, given in Sec. II, is based entirely
on Maxwell's equations, leading to a general for-
mula for the rate of radiant energy production by
an oscillatory electric current source density.
This provides a generalization, as free as possible
of simplifying assumptions, of arguments given by
Jaynes and co-workers. ' Incidentally, it provides
a complete theory of radiation reaction, since the
full dynamics of the coupled classical Maxwell and

Schrodinger fields is taken into account.
For completeness, the spontaneous emission

rate is derived from the dynamics of the Schro-
dinger equation in Sec. III, using the usual for-
malism of time-dependent (Dirac) perturbation
theory. This derivation is similar to that given
by Crisp and Jaynes. ~ The rate of energy loss by
the Schrodinger field is shown to be equal to the
rate of energy increase in the Maxwell field de-
rived in Sec. II.

The rate of spontaneous emission derived from
semiclassical theory differs from that assumed
by Einstein in his classical derivation of Planck's
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radiation law. This issue, which was not treated
in detail by Jaynes and co-workers, is considered
in Sec. IV. The essential result is either that
thermal equilibrium is not possible in the semi-
classical theory, or that a new hypothesis must be
made, which is proposed here as a way of recon-
ciling the theory with physical reality. This hy-
pothesis restores Planck's law, but requires a
novel interpretation of the nature of equilibrium
thermal radiation.

II. ENERGY PRODUCTION IN MAXWELL FIELD

Any vector field v can be expressed as a sum of
transverse and longitudinal component fields,

Btr curlAtr ftr 1 S gtr
c 8t

From Eqs. (3), the Cartesian components of X'"
satisfy the inhomogeneous wave equation

(s)

(9)

Because the last two of Eqs. (3), for the trans-
verse field components, are of the same form as
the original Maxwell equations, an energy conser-
vation law of the usual form holds for the radia-
tion field (E",5"}independently of F""and of its
source densities p and j'"g. This conservation law

for the radiation field is
~tr ~long

where
divv" = 0, curlv'-g= 0 .

8t
Q +dlv7T = —m ~ j

~ ~ Atr tr

where the energy density is

(10)

curia = ———B~tr i 8 ~tr
c Bt

(3)

This decomposition is unique if boundary conditions
are specified for v""'.

When separated into transverse and longitudinal
components, Maxwell's equations, valid at the
subatomic level of detail, become

divE'-'= 4mp,

8 -,.„4m -...,
c8t c

u = (I/8~)(B".B'"+K".E")
and the Poynting vector or energy flux is

v = (c/4m)(E" x 5")
The right-hand member of Eq. (10) gives the rate
of energy transfer from a material system whose
transverse electric current density is j". If the
material system is an atom or molecule, it can
be enclosed in a volume of finite extent. The total
rate of radiative energy emission is

tr i 8 ~tr 4~ .trcurlB ' = ——a '+ —j '.c Bt c

If E""' is required to vanish at points remote from
the source charge density p and current density

j, the equation for 8E""/St follows from the first
equation here and from the equation of continuity

8
divj+ —p = 0 .

Bt

dW/df=- f K" I"dr,
integrated over all space.

From Eqs. (8) and (9),

A particular solution of this equation is

E"(P) = ——,)~Z„-' —j"(Q)
ret

(13)

(14)

This boundary condition implies that

E""= —grad/,
where

0(P)= J & ' p(Q)dr .

(5)

(6)

A radiation field is defined physically as one
that can remain finite at points remote from the
field's sources. Because E""vanishes in this
limit, the electromagnetic radiation field consists
solely of E" and B". Equations (3) provide a
gauge-invariant definition of the radiation field.
If potential functions are introduced, it is con-
venient to use the Coulomb gauge condition

divX= 0,
so that the vector potential is purely transverse.
Then the electrostatic potential P is defined by
Eq. (6). The radiation field intensities are

~&=-R/c (16}

prior to the time coordinate of the field point P.
In the absence of an incident radiation field, Eq.
(15) describes the field produced spontaneously
by any time-varying transverse electric current
density distribution. If this field is substituted
into Eq. (13}, it gives a, general formula for the
classical rate of emission of radiant energy,

dS' ].
j '(P, f) ~ 8 —j '

Q, f —— dr~ dro.
(17)

A time-varying real current density can be ex-
panded in Fourier components,

(18)

where the source term is evaluated at a retarded
time interval
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where
~ o g (19)

If this expansion is substituted into E(l. (17), the
time-averaged emission rate, obtained by retaining
only nonoscillatory terms, is

[
~ tr(P} ~ tr

(q)
((oR/o

C

j"„(P) P'(Q)e' " ']R 'd7dro '(20)

,.-JtJ Re[j'(P) j'-:(Q)]

Sill (ter /c
))(oR c

This expression involves no approximations other
than time averaging to remove high-frequency
components.

For frequencies of spectroscopic interest, (oR/c
is small if R is confined to the spatial extent of an
atom or small molecule. The expansion

The current density operator for a single elec-
tron (charge —e, mass m) is

p+ —A (28)

—'„='."
„i jl:« ~ i21 dr le(I'lc21'. (29)

There is an additional term in the physical current
density of the form e curlm, where m is the mag-
netization due to electron spin. This magnetiza-
tion current, which contributes to magnetic dipole
radiation, will not be considered here. For a
many-particle system j'„ is a sum of terms of the
form of E(I. (28), with charge and mass appropri-
ate to each particle. The terms in j„that contain
the vector potential A can be neglected when ma-
trix elements of the remaining operator do not
vanish.

If only the constant term is retained in Eq. (22),
for a transition between two stationary states Eq.
(21) reduces to

sin((oR/c) 1 (o2R2

(oR/c 6 c (22)
This can be expressed in terms of matrix elements
of the electric dipole moment operator p,„, such
that

q (f) Q c y ez ti(2

where

(23)

separates Eq. (21) into a sum of multipole-multi-
pole interactions.

The exact Schrodinger wave function of a material
system can be expanded in terms of the stationary-
state eigenfunctions P in the form

f j»«= (f/8)(I I [&2, ~., ]12)

f6012 P'12 &

(30)

(31)
where

(32)

is the trarisition dipole moment. Then E(I. (29)
becomes

(24}
dW (o12 t, t,

~

~2( ~2
dt c (33)

] = C1 C2]12

where j12 is the transition current density.
plicitly, at a point P

(26)

Ex-

j,2 (P) = 2 Z, 6 (a, P ) f ~ ~ ~ f [Q 1*j„Q2 + (j„p1)*$2]

x [dent. ..drR].', (2"I)

where this notation indicates integration over the
coordinates of all but one (the ath) particle (elec-
tron or nucleus} followed by summation over all
particles.

for the unperturbed Hamiltonian operator Ho of the
isolated material system. Unless ( is a pure
stationary state, the charge density p and electric
current density j contain time-dependent terms
that arise from cross terms in the density matrix
tjI g* of the form

(R2 R&t /(2-
(25)

Consider two stationary states 1 and 2, with
E2)&1. Then for tf(o(2 E2 —Et, j„' in E—-(I. (21) is
the transverse component of the vector field

4

d,
= '"," P(2'(sin e) Ic, l'Ic21' (34)

= „2 ~» Iota lc2l (35)

The implied rate of transition from state 2 to state
1 is

1 dW 4oO12
tv2 "1 8& df 38&2 +12 (36)

When Ic& I =-1, this agrees with the rate of spon-
taneous emission given by the Einstein A coef-
ficient,

tu2~",
"=A(2, 1) ~c2~2,

with
A (2, 1) = (4(o,2 /3hc') i1,2 (38)

The transverse component of p. ,2 is of magnitude
p, »sin~, where ~ is the angle between p, » and an
assumed direction of emitted radiation. If Eq. (33)
is averaged over all directions of emission or,
equivalently, averaged over degenerate substates
of the initial and final energy levels,
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In the presence of an electromagnetic radiation
field the Hamiltonian Ho of the unperturbed material
system is augmented by a time-dependent per-
turbing operator

Hq ——Q V„e (39)

if states 1 and 2 are considered to be nondegenerate.
However, the factor )c, t in Eq. (36) is not present
in the usual formula, Eq. (37), derived from
quantum electrodynamics.

III. ENERGY LOSS BY SCHRODINGER FIELD
Similarly,

Re ]pg P

x "" '
) dr, Zr, $c, $'$e, $'. (4S)

dr~d7. g c 2 c 2 50

where

V„=V+ (40)

An immediate consequence of these equations is
that normalization is preserved:

and, neglecting terms quadratic in the vector po-
tential,

V„=——P A„"(a)~ j,"(a) .
C

(41)

In the absence of an incident field, A„ is deter-
mined entirely by the oscillatory current density
of Eq. (26) through the inhomogeneous wave equa-
tion (9). This gives

A"(P) = (1/e) fft 'g'"(@-)],.«ro, (43)

The summation is over all particles of the material
system. Under the influence of this perturbation,
the coefficients c, in Eq. (23) become time depen-
dent. From the time-dependent Schrodinger equa-
tion,

(t) gg (& IV Ip) (t) (se s +h &t/tn (42)
ted g'

(51)

The rate of energy change is

dt.
=

dt, (Iei I
+i+ Ie2 I @2) (52)

(54)

in agreement with Eq. (35), derived from Max-
well's equations, so that

These equations are identical in form with Eq.
(21), applied to a transition between only two en-

ergy levels. For dipole radiation they reduce to

with notation as in Eq. (15). Equivalently,

A„"(P) = (1/e) fR 'e'"" 'j„"(q)dro . (44)
—(W+E)=0 .N (56)

= ——(2
I

Z,, A„"(a) ~ j ~ (a ) I
1)e, (t } (46)

When substituted into Eq. (41), this defines the
matrix elements (a I V„ IP) in Eq. (42).

To simplify the derivation, consider only two
energy levels, E& &E» with Se =E& —Ej. Then
the time dependence of c2, omitting high-frequency
terms from Eq. (42), is given by

ted (t) = (2
I V„ll) e, (t) (45)

Thus the total energy of material system plus ra-
diation is conserved.

IV. THERMAL EQUILIBRIUM AND PLANCK S LAW

(57)

In thermal equilibrium, the coefficients of de-
generate substates can be assumed to be equal
in magnitude. The statistical probability that a
material system is in state 1 or 2, of degeneracy
d(1) or d(2), respectively, is

P(1)=d(1) le~i', P(2) =d(2) I"I'.
A„' P ~ )~q P drpcq t

j2", (P) ~ ft 'e'"" '
j~j~ (Q)drJ, droc

(47) In equilibrium at temperature T, the ratio of
probabilities is

P(2)/P(1) = [d(2)/d(1)]e " "'", (58)

x df (t)c, (t) e2(t), (48)

where jq2 and j2& are defined as in Eq. (2't). From
Eq. (48) and its complex conjugate,

I tg
[ c21 = c2 cp+cpc2

where Sco~p=E2 —E] .
In Einstein's classical derivation of Planck's

radiation law, the total rate of change of P(1) due

to transitions between energy levels E& and Ez
(E~&E,) is
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—P(l) = —P(1)w', "o+P(2)wo", +P(2)wo" . (59)

The three rates of induced and spontaneous transi-
tion are

wi'o B——(1, 2) p((ohio),

wo', B—{2,1)p(& y),

w "'=A(2, 1),

(6o)

(61)

where p(e) de is the energy density of electromag-
netic radiation in the angular frequency interval
dc'. The Einstein transition coefficients, for elec-
tric dipole radiation, are

B{1,2) = (4~'/3~')»o'd(2),

B(2, 1) = (4m'/38') p, „'d(1),

A(2, 1)= (4u&, o /38c ) p, ,o d(1) .

(63)

(64}

(65)

For the radiation field to be in equilibrium with
the materia, l system, Eq. (59) must vanish when

P{2)/P(1) is given by Eq. (58). This determines
an equilibrium radiation density,

p(~ io~ T) = po(~io~ T)~

where po is Planck's radiation density,

po(&u, T) = {h ~'/m'c')(e""~"r 1) ' . -

(66)

(67)

The Einstein B coefficients can be derived from
semiclassical radiation theory or from quantum
electrodynamics by well-known arguments. The
coefficient A. for spontaneous emission is derived
in quantum electrodynamics as an immediate con-
sequence of the quantization of the electromagnetic
radiation field, verifying Eq. (62) for the spon-
taneous radiation rate, in agreement with Planck's
law.

The present derivation leads to a spontaneous
transition rate that differs from Eq. (62). When
degeneracies are taken into account, Eqs. (49) and

(50), in the case of electric dipole radiation, be-
come

p&(tu, T) = po(» T)P(i)/d(i) (72)

for any E& and co.

At first sight, this result cannot be reconciled
with the stated condition of therma. l equilibrium,
since the equilibrium radiation density should be
uniquely defined, the same for all energy levels
of any material system. If so, the semiclassical
radiation theory must be abandoned at this point.

However, a new hypothesis can be introduced
that is not in obvious contradiction with basic phys-
ical principles or with the postulates of semiclas-
sical radiation theory. The hypothesis is that the
total equilibrium radiation density is the sum of
incoherent partial densities associated with each
pair of energy levels, or, as in Eq. (72), with
each energy level and excitation energy Ie. Then
the total radiation density at frequency co is ob-
tained by summing Eq. (V2) over all initial levels
E&, weighted by the degeneracy. The total radia-
tion density is given by Planck's law,

p(&u, T)=Z, d{i)p, ((u, T) =po(~, T),
since

Q (P(i)=1 .

V. DISCUSSION

(73}

(74}

neous emission rate, the equilibirum requirement
that Eq. (59) should vanish subject to Eq. (58) de-
termines an equilibrium radiation density

p&(e&o~ T) = po(e&o~ T)P(1)/d(l) (71)

where po is Planck's radiation density, Eq. (6V).
Equation (71) indicates than an equilibrium ra-

diation density must be associated with each en-
ergy level E& and excitation frequency v of a ma-
terial system. Because all effects of matrix ele-
ments and selection rules have canceled out of
this formula, it can be assumed to hold for any
frequency v, even if transitions between energy
levels E& and E&+Se are immeasurably weak.
This implies the general result

(68)

ol

d
P(1)

d
P(2) A, (211)P(l)P(2)

dt dt d(l )

where A(2, 1) is given by the usual formula, Eq.
(65). The spontaneous transition rate is

woo'&"=A(2, l)P(l)/d(1) .

(69)

(VO)

This agrees with Eq. (62) only if the material
system is in a nearly pure stationary state, with
)c& I'=- l.

With this modified expression for the sponta-

It has been shown here that semiclassical radia-
tion theory contains a description of spontaneous
emission that is part of a complete gauge-invariant
theory of the radiation reaction. Since all Schro-
dinger wave functions describe electric source
current distributions of finite spatial extent, only
finite quantities occur in the theory.

In an attempt to apply this theory to derive the
conditions of thermal equilibrium between matter
and radiation an apparent inconsistency is encoun-
tered. An additional postulate is proposed to re-
solve this difficulty. The new hypothesis is that
the equilibrium radiation field is composed of in-
coherent components, each of which is associated
with a given pair of energy levels of the material
system. This postulate replaces the usual pos-



264 R. K. NE SBET

Nc, (f ) = (hE, ——,
' ihl" ) c (f)

=Z z (~,z- &NI' )8lcz (t) I'c (f),
where

~.,——,
' iI-r.,

(75)

(75)

tr ~ g1e ceo &R/c "tr

(77)

This gives a general formula for the dynamical
level shift Z; z ~ q I c~ I and the dynamical width
gql', 6Ic&I . For two levels, the width formula is
equivalent to Eq. (50) for the time rate of change

tulate of phase incoherence of components of the
Schrodinger wave function made in quantum statis-
tical mechanics. Since the total radiation density
obeys Planck's law, there is no conflict with ex-
perimental data on blackbody radiation in which
total radiant energy is measured.

As has been shown by Jaynes and co-workers, '
the semiclassical theory describes dynamical ra-
diative level shifts as well as radiative lifetimes
due to spontaneous emission. These two phenomena
both follow from Eq. (48), when applied to the
total effect of all levels Ez on a given level E .
This equation becomes

of l~1l'.
Crisp and Jaynes' found that for electric dipole

radiation the 1s-2P level shift obtained from Eq.
(77) for nonrelativistic wave functions agrees within
experimental error with the experimental value, as-
suming that I c„I is unity. The 2s-2p level shift (the
Lamb shift) is roughly two-thirds of the experimental
value when computed with nonrelativistic wave func-
tions, assuming that I c2, I is unity under the conditions
of the Lamb-shift experiments. These calculations
need to be refined before they could be considered to
provide a definitive test of the semiclassical theory.

It is important to note that irreversibility is
built into the theory of spontaneous emission given
here by assuming retarded solutions of the inhomo-
geneous wave equation, in Eq. (15). In conse-
quence, the rate of energy production given by
Eq. (21) is positive definite, at least for electric
dipole radiation. If advanced potentials had been
used, the energy production rate would change
sign, and it vanishes if half-advanced, half-re-
tarded potentials are used. Thus the choice of re-
tarded potentials establishes an "arrow of time, "
in that energy is dissipated from an excited ma-
terial system as time progresses, and an eventual-
ly established equilibrium would not be disrupted
by reversing the time sense.

'E. T. Jaynes and F. W. Cummings, Proc. IEEE 51,
89 (1963); M. Crisp and E. T. Jaynes. Phys. Rev. 179,
1253 (1969); C. R. Stroud, Jr. and E. T. Jaynes, Phys.

Rev, A 1, 106 (1970).
A. Einstein, Physik Z. 18, 121 (1917).
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Hell-He I Transition in a Heat Current: Model Calculations~
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(Received 27 October 1970; revised manuscript received 2 March 1971)

The Ginzburg-Pitaevskii phenomenological theory has been extended to include the effects
of vortex lines. The model calculations are compared with some of our recent experimental
results on the He II—He I transition in the presence of a heat current.

I. INTRODUCTION

Several years ago Ginzburg and Pitaevskii pro-
posed a phenomenological theory of superfluidity
near T,. Some of the results of this theory have
been discussed in recent papers by Mamaladze,
Kramer, ' and Mikeska4 and in an unpublished re-
port by Burkhardt and Stauffer. ' A salient feature
of the theories is the preaiction that the superfluid
density p, should be reduced for finite values of the
counter-flow velocity w=(v, —v„). Concomitantly,
this implies an instability in a driven superfluid
current p,zo. In other words, for any given temper-

ature there should exist a maximum current consis-
tent with superfluidity. In addition, the theory pre-
dicts that, barring the instability, the superfluid
density should vanish at high enough values of gu,

i. e. , the He II-He I transition temperature should
be lowered for finite zo. To our knowledge, until
recently there has been no unequivocal experimental
evidence to support this view. In a recent paper
(hereafter referred to as I) we have reported an
experiment in which the He II-He I transition was
investigated in the presence of a heat current. Fig-
ure 1 [cf. Fig. 3(b) of I] shows the thermograms
observed at two points along a thermally isolated


