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An approximate solution is given to the master equation describing the cooperative spontan-
eous emission from a large number of excited two-level atoms. Our solution allows an easy
analytical computation of the statistical properties of the radiated optical field. Comparison
with previously reported computer results shows a satisfactory agreement. Furthermore, a
formal justification is provided to a recent heuristic model of superradiant pulses.

I. INTRODUCTION

Many theoretical papers have recently dealt with
the cooperative spontaneous emission from a col-
lection of N excited two-level atoms. The time
evolution of the system has been described by a
master equation for the reduced-density opera-
tor involving only atomic variables. An exact solu-
tion of the master equation has been derived, ' but
it is so complicated that the relevant features of the
phenomenon can hardly be inferred. Computer
calculations have been performed' for some special
cases.

We present here an approximate analytical solu-
tion to the master equation. This solution allows
a rather easy computation of the statistical proper-
ties of the radiated optical field, and reproduces to
a good accuracy the computer results presented in
Ref. 5 for N= 200 and 10000. Furthermore, it
provides a formal justification to an intuitive statis-
tical model of superradiant pulses which gives
quantitative results for arbitrary N.

The most interesting feature of the solutions ob-
tained in Refs. 5 and 6 is that, if the N atoms are
initially all excited, relative fluctuations in the
emitted light intensity I(t) are very large, even at
the peak of the average pulse, and do not decrease
as the number N is increased. Differentconclusions
have recently been drawn in other papers ' by
using the drastic assumption that the state of the
atomic system is represented at every time by a
product of single-atom states. This approximation
is not appropriate if the atoms are initially all ex-
cited because, in this case, correlations between

r
(I(f)& =I, E g(m)p(m, f), (3)

r

n(f) =(I(f)) Z g(m)g(m —1)P(m, I) —1. (4)

In Ref. 6, Eqs. (3) and (4) are evaluated, in the
particular case of a fully excited initial state, by
taking the rate-equations intensity for large N,

different atoms are no longer negligible. ' Our
approach relies essentially on the assumption that
N is a very large number, and gives a satisfactory
approximation to the exact master equation solution
because it does not destroy a Priori the atomic
correlations.

The time-dependent probability distribution
p(m, I) for the variable m representing half the
population difference between excited and ground
state has been shown in Refs. 1-5 to obey the fol-
lowing master equation

p (m, t) = I, Q(m + 1)p(m + 1, t) —g(m) p(m. , I) ] . (1)

The constant I, is defined in terms of cavity and
atomic parameters and represents the radiation
rate from a single atom in the cavity. The func tion
g(m) reads

g(m) = (r+m)(r —m+ 1),

where r =N/2.

Once p(m, I) is known, the average of any ordered
product of field operators is evaluated by using a
theorem stated in Ref. 4. In particular, the aver-
age intensity (I(t)) and the associated relative
variance n. (t) are computed as follows:
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given by

~NI gt

( 1 0) [1 (Igf Nz) Nlgt] 2 (5)

deviations from the condition (10) if the ratio t/r
is not too small.

Taking now as initial condition

where Io is the initial intensity I(0), and averaging
over Io. The distribution function p(IO) that brings
"quantum fluctuations" into the model is chosen as

p(I,) = (1/I ) e '0 'o, (6)

where I,=NI, . The function p(IO) represents for
large N a good approximation to the Bose-Einstein
distribution typical of the fully excited initial
state.

II. APPROXIMATE SOLUTION OF THE MASTER EQUATION

Since in any physical situation the number N is
very large, we transform Eq. (1) into a differen-
tial equation by putting

g(m+1)P(m+1) =g(m)P(m)+ s(gp)

This leads to

sp I s(gp)
Bt em

(8)

The approximation (7) requires gP to be a func-
tion with negligible higher-order derivatives.
Keeping p constant and using Eq. (2), we verify
that the right-hand side of Eq. (7) is equal to the
left-hand side times [1+(r —m +r+m) ']. This
corrective factor is everywhere negligible for
large N except for an extremely small region
around m = r. For physical reasons we may ex-
pect the probability distribution p to be a smooth
function, slowly decreasing from its peak value.
Save for unrealistic initial states, e.g. , 5 func-
tions, the approximation (7) should therefore hold
with an acceptable a,ccuracy. It could be noted
that, by retaining the term —,'(S'/Sm )(gp) in Eq.
(7), one can allow 6-like initial conditions. How-
ever, the solution of the resulting second-order
partial differential equations would be as unman-
ageable as the exact solution of Ref. 5.

The general integral of Eq. (8) is given by

where r = (NI, ) ', and C is an arbitrary function that
is specified by choosing the initial conditions and

by normalizing P according to

pdm = 1. (lo)

lt should be stressed that Eq. (8) admits solu-
tions which do not conserve the normalization con-
dition (10), whereas Eq. (1) always grants a time-
independent normalization. We shall see however
that the solutions we will discuss show negligible

p(m, O) = 5(m k),-
the solution can be written as

p, (m, t)

g((,'( r ( —r[(v — 1(/(r )( 8

)g(m) 1+[(r—m+1)/(r+m)]e ' '
(12)

Except for the case m =r, this function satisfies
Eq. (10) for any time t.

We must emphasize that the initial condition (11)
clearly violates our assumption (7). Therefore
the expression (12), though being a solution of Eq.
(8), cannot be considered as an approximate solu-
tion of the master equation (1). Since Eq. (8) is
linear in p, we may however obtain a good approxi-
mation of master equation solutions by a super-
position of the type

p(m, t) = J f (k) p~(m, t) dk, (13)

(I(t)) = f f (k) I,(t) dk . (15)

III. "FULLY EXCITED" STATE

We can now apply our solution to calculate the
time evolution of population inversion and intensity
moments starting from specific initial states.

In Refs. 4 and 5 particular interest was devoted
to the "fully excited" initial state defined by P(m, 0)

As pointed out before, this case can be de-
scribed in our approximation by smearing out the
initial 5 function with a suitable probability distribu-
tion f (k) corresponding to a very high excitation of
the atomic system. If we now compare the average
intensity derived from Eqs. (15) and (14) with that
derived from Eqs. (5) and (6), we realize that the
heuristic model of Ref. 6 produces a particular
solution of the master equation (8) with an initial

where f (k) is a normalized and well-behaved func-
tion. The probability distribution thus derived
corresponds to the initial condition P(m, 0) =f (m).

The solution (12) has another useful property.
By inserting it into Eq. (3), we find the following
average intensity

[(r —k+ 1)/(r + k)] e''""" "'"'" (1 [( k 1)/( k)] / )'
(14)

This expression turns out to be a solution of the
rate equations introduced in Ref. 4, with the initial
conditions I(0)=I,g(k); m(0) =k. The average inten-
sity (I(t)) related to the initial distribution f (k)
simply reads
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distribution f (k) give~ by

(16)

n(f) = 2z —z +z'+ (6z +6z' —z')H(z) —6 [(1+z)H(z)]
6[(1+z)H(z) —z] '

This function is well behaved in the whole range
—r & k & r. Furthermore, for large r, it is sen-
sibly different from zero only if k is very close to
r, and gives an average value m(0) = r —1.

The corresponding time-dependent probability
distribution calculated with (12) and (13) is

(n(f)) =N[1 -H(z)], (20)

where z =N e ' ', and H(z) is defined by

H(z) =ze* f, y e 'dy ~

(nn (I)) =(n (t)) —(n(t)) =N [z —(z+H(z))H(z)], (21)

It is easy to see that P(m, I), starting from the very
narrow initial distribution, broadens and exhibits a
maximum which moves towards m = —r as time
elapses. For t- ~ it becomes again a sharply
peaked function centered now around m = —r. Equa-
tion (17) thus gives an analytic form to the computer
graphs reported for the fully excited initial state in
Fig. 1 of Ref. 5.

We have to mention that P(m, I), as given by Eq.
(17), is not a normalized function for short times.
This can be seen by carrying out the variable
transformation x=(r —m+1)(r+m) 'e '~'. The
normalization integral is then

Equations (19), (20), and (21) show that relative
fluctuations of I(I) and n(t) are functions of the
ratio (n(t)) /Nonly.

A comparison has been performed with the com-
puter graphs reported in Ref. 5 for X=200. In
this ease the peak of the average intensity occurs
at the time t~ = 5. 627. We have focused our atten-
tion to the region 2v & t& 12m, which includes practi-
cally the whole pulse. Deviations fronl the com-
puter results are within 1% for (I(t)) and (n(t)). As

expected, larger errors are found for the variances
n(t) and (&n (t)), however, they do not exceed 10%
up to t= 8&. For larger X, an even better agree-
ment is likely to be found.

IV. SUPERRADIANT INITIAL STATE

f, p(m, t)dm =f, Ne' ""' *,
N-iq-t /7'

(I(t)) = Ii N [(1+z)H(z) —z], (18)

which is practically equal to one only for times
t ) 2v. We shall normalize the probability distri-
bution by putting the lower limit of integration
always equal to zero. Qf course, our results will
not be valid for times shorter than 2v, but this loss
of information is not relevant for large N, since
the intensity pulse shows a peak at a time t~= 7 AN

with a half -width duration = v'.

It could seem that there is some arbitrariness in
our approximate solution stemming from the choice
of the initial distribution. However, in order to
approximate with a good accuracy the case of the
fully excited initial state, p(m, 0) must reproduce
the Bose-Einstein probability distribution for the
radiated intensity at I =0.9 The expression (17)
deduced from the model of Ref. 6 satisfies also
this criterion.

We have derived from Eq. (17) the average in-
tensity (I(f)) and its relative variance &(t), defined
jn Eqs. (3) and (4), and the first two moments of
the quantity n(f) =N/2 —m(f). This quantity repre-
sents the number of photons emitted during the
time interval between 0 and t. The expressions
read

(22)

A good approximation for large N is

p(m, 0) = [2/( N)]v'" ™e/N. (23)

By inserting Eq. (23) into Eq. (15), the average
intensity is given by

t /7'

(I(t)) = 1|N
(1 (, )2(1+e ') g N

(24)

Apart from corrective terms of the order 1/N we
have obtained the rate-equation intensity, as de-
rived from Eq. (14) with m(0) =0. A similar con-
clusion has been reached in Ref. 5 through com-
puter calculations.
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We shall now shortly discuss the second example
treated in Ref. 5, which is characterized by an
initial state centered around m =0, with a probabil-
ity distribution
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