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then

r, r 2r, /t I+f/(1+D, /E)' "]-=r, . (4)

The helium and neon data of CDRB ' provide both
an example of the utility of Eq. (4) and a test of its
validity. As an example of the utility, we have used
only the high frequency periodicity which these data
reveal, together with some intuition' about the ratio
ro /r to obtain the bounds r, and r„shown in Table

I. In seeking an adequate potential function, these
bounds would provide guidance. As it happens, very
adequate potential functions are available for these
systems" as CDHB have sho~n, ' and we take the
agreement between our bounds and the calculated
values as evidence for the validity of Eq. (4).

Note that the "crude" approximation to Eq. (2},
he = v/kr, provides a surprisingly accurate rule
of thumb.
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A comparison of the recent experimental data for He II of Cowley and Woods for the shift
of the peak of the distribution of the inelastically scattered neutrons from the free-particle
value appropriate for large momentum transfer is made with the phenomenological theory of
Kerr et al.

In a recent paper' (hereafter referred to as I},
the authors presented a phenomenological theory
of the large-momentum-transfer neutron-scatter-
ing experiments on liquid He II performed by Cow-
ley and Woods. ~ More extensive data on these ex-
periments have become available recently. ' Some
of those data are relevant to the calculations which

were presented in I, and a further comparison of
the theoretical and experimental results is given
here.

The theory in I was based on a generalized mean-
field form for the density response function, from
which the scattering cross section is obtained by
the fluctuation-dissipation theor em. The expres-
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FIG. 1. Frequency (in units of temperature) of the

peak of the scattering minus the free-particle recoil fre-
quency hq2/21' as a function of wave-vector transfer q.
The theoretical results are given by the filled circles.
The experimental points are taken from Ref. 3.

sion assumed for the density response function had

two unknown functions in it; these were determined

by requiring that the zeroth, first, and third mo-
ments of the approximate cross section be identical
with the exact moments.

The cross section S(q, &u} obtained by this proce-
dure had two distinguishing features in common with

the experimental results. First, for a given wave
1vector q in the range 3 ~ q & 9 A ', the frequency

~„of the position of the peak4 in the cross section
is at a slightly lower frequency than the free-par-
ticle recoil frequency &u, =hq'/2M. Secondly, the
width of the peak showed oscillations as a function
of q. In I most attention was paid to the oscillations
in the width of the peak.

In Ref. 3 extensive data on the shift (d„—~, are
given. Here we give a more detailed comparison
with experiment of our calculations for this shift
than was given in I.

The width and shift have also been calculated by
Sears' by expanding the cross section in a Gram-
Charlier series. The first four coefficients of this
series can be calculated from the moments of the
cross section.

The results in Ref. 3 show that oscillations also
occur in the magnitude of the shift. In Fig. 1, the
experimental results and the calculation from the

theory of I for co~ —co, are given. The calculated
results assume a condensate fraction of 6% which

was found in I to be the optimum value, and are
based on the values of the moments calculated from
the pair correlation function of Schiff and Verlet.
(See I for a complete explanation of these details. )

The theory is valid only in the region of q where
the strength of the one-phonon scattering has be-

0

come negligible. This is the case for q& 3 A, and

thus the calculated point at q=2. 5 A ' shown in Fig.
1 should not be taken very seriously.

It is evident from Fig. 1 that the calculated shift
also shows oscillations as a function of q, and that
for 3 & q & 6 A ', there is semiquantitative agreement
with experiment. Experimentally ~„ is diff erent
from v, for all wave vectors up to q = 9 A, where-
as the calculated shift vanishes for q & 6 A '. This
is because the static structure factor S (q), which

is required to be put into the theory, is not known

beyond q =6 A ', either from experiment or theory,
and thus in the calculations S(q) has been set to its
asymptotic limit of unity for these larger values
of q. Doing that precludes the theory from showing

a shift. Any improvement in knowledge of the de-
viations of S(q) from unity at these q values would

lead to an improvement in the calculated value of
the shift ~„—&u, . A careful measurement of S(q)
for values of q beyond 6 A ' is highly desirable.

The structure in both the widths and the shifts is
produced in the theory by forcing the approximate
expression for the cross section to satisfy the low-
order moment relations. These moment relations
themselves possess variation as a function of q which
then shows up in the properties of S(q, ~}. This
structure in the moments is characteristic of high-
density liquids with a strong short-range repulsion
in the interparticle potential.

Although we were unable to make calculations for
nonzero temperatures and in particular for He I,
due to our lack of knowledge of the momentum dis-
tribution function, it is worth mentioning that it
was stated in I that similar oscillations in the width
function would also exist in He I. This prediction
has been confirmed by the experiments of Cowley
and Woods. '

In conclusion, the theory put forth in I possesses
all the qualitative features of the experimental re-
sults, and in restricted ranges of the wave vector
the agreement is semiquantitative. We feel that
this strengthens the conclusions reached in I con-
cerning the magnitude of the condensate fraction and
the desirability of performing inelastic scattering
experiments at very large values of momentum
transf er.
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supported by the Argonne National Laboratory Center for
Equcational Affairs, that of another (K. N. P. ) by the
Advanced Research Projects Agency through the North-
western University Materials Research Center, and that

of another (K. S. S. ) by the National Science Foundation
under Grant No. GP-11054.
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An approximate solution is given to the master equation describing the cooperative spontan-
eous emission from a large number of excited two-level atoms. Our solution allows an easy
analytical computation of the statistical properties of the radiated optical field. Comparison
with previously reported computer results shows a satisfactory agreement. Furthermore, a
formal justification is provided to a recent heuristic model of superradiant pulses.

I. INTRODUCTION

Many theoretical papers have recently dealt with
the cooperative spontaneous emission from a col-
lection of N excited two-level atoms. The time
evolution of the system has been described by a
master equation for the reduced-density opera-
tor involving only atomic variables. An exact solu-
tion of the master equation has been derived, ' but
it is so complicated that the relevant features of the
phenomenon can hardly be inferred. Computer
calculations have been performed' for some special
cases.

We present here an approximate analytical solu-
tion to the master equation. This solution allows
a rather easy computation of the statistical proper-
ties of the radiated optical field, and reproduces to
a good accuracy the computer results presented in
Ref. 5 for N= 200 and 10000. Furthermore, it
provides a formal justification to an intuitive statis-
tical model of superradiant pulses which gives
quantitative results for arbitrary N.

The most interesting feature of the solutions ob-
tained in Refs. 5 and 6 is that, if the N atoms are
initially all excited, relative fluctuations in the
emitted light intensity I(t) are very large, even at
the peak of the average pulse, and do not decrease
as the number N is increased. Differentconclusions
have recently been drawn in other papers ' by
using the drastic assumption that the state of the
atomic system is represented at every time by a
product of single-atom states. This approximation
is not appropriate if the atoms are initially all ex-
cited because, in this case, correlations between

r
(I(f)& =I, E g(m)p(m, f), (3)

r

n(f) =(I(f)) Z g(m)g(m —1)P(m, I) —1. (4)

In Ref. 6, Eqs. (3) and (4) are evaluated, in the
particular case of a fully excited initial state, by
taking the rate-equations intensity for large N,

different atoms are no longer negligible. ' Our
approach relies essentially on the assumption that
N is a very large number, and gives a satisfactory
approximation to the exact master equation solution
because it does not destroy a Priori the atomic
correlations.

The time-dependent probability distribution
p(m, I) for the variable m representing half the
population difference between excited and ground
state has been shown in Refs. 1-5 to obey the fol-
lowing master equation

p (m, t) = I, Q(m + 1)p(m + 1, t) —g(m) p(m. , I) ] . (1)

The constant I, is defined in terms of cavity and
atomic parameters and represents the radiation
rate from a single atom in the cavity. The func tion
g(m) reads

g(m) = (r+m)(r —m+ 1),

where r =N/2.

Once p(m, I) is known, the average of any ordered
product of field operators is evaluated by using a
theorem stated in Ref. 4. In particular, the aver-
age intensity (I(t)) and the associated relative
variance n. (t) are computed as follows:


