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Results were recently reported on statistical properties of phase-modulated laser light. A

detailed analysis is presented here of random-phase modulation. In particular it is shown
that there are two kinds of such modulation: modulation by phase fluctuations, in which the
instantaneous phase is a stationary stochastic process, and modulation by phase diffusion in
which the phase is a diffusion process with an always increasing variance. In the case of a
Gaussian modulation we show that the optical fields in the two preceding cases are very dif-
ferent, and we calculate their coherence functions. This difference can be detected by an
interference experiment, but more easily by photon coincidence or intensity-correlation ex-
periments on a beat between a reference beam and the modulated beams. We present a theo-
retical analysis of such experiments in the two cases of modulation.

I. INTRODUCTION

In a recent paper' Estes, Kuppenheimer, and
Narducci (EKN) reported theoretical and experimen-
tal results concerning some statistical properties
of random-phase-modulated laser light. As phase
modulation cannot be detected directly, they per-
formed an experiment in which beats were created
between a nonmodulated reference beam and a mod-
ulated beam. The optical field obtained by this beat
was analyzed by photon-counting techniques, and
the experimental results were in excellent agree-
ment with a theoretical analysis using a "semi-
classical model of phase modulation due to Glau-
ber. "'

In their theoretic, al analysis, as in their experi-
mental setup, the counting time was supposed to be
very much shorter than the coherence time of the
field, and it is well known that under this condition
photon-counting experiments can only give informa-
tion about the probability distribution of the instan-
taneous light intensity. For more complete knowl-
edge of the statistical properties of the field, other
experiments are necessary. In particular, it is
very important to study the optical spectrum, which
describes the time evolution of the field, and this
can be investigated, for example, by coincidence
or intensity- correlation experiments.

Such experiments are also particularly important
because there are distinct types of fields which give
the same results in photon-counting studies. In-
deed, we will show in the following that it is possible
to obtain by phase modulation of laser light differ-
ent fields which cannot be distinguished by photon-
counting techniques. Examples of such fields are
given in Sec. II in which we define modulation by
phase fluctuation or by phase diffusion. In the first
case the phase is a stationary stochastic process
(sp), while in the second one the phase is a diffusion
(i. e. , nonstationary) process.

After showing that such fields are quite different
we calculate their most important statistical prop-
erties. In particular we show that even though the
photon-counting statistics are the same, all the
higher-order coherence functions are different. To
illustrate this point we compute some statistical
properties which can be easily obtained by stan-
dard optical techniques.

In our analysis we use a classical description of
the electromagnetic field which is represented by an
appropriate sp. A semiclassical description, as
that of EKN, is also possible and even a full quan-
tum treatment. All these descriptions are equiv-
alent according to the equivalence theorem of quan-
tum optics, and for many calculations the classical
is the simplest and the shortest.
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II. DESCRIPTION OF PHASE MODULATION OF
LASER LIGHT

Z (t} ei(vino((t&3
)

where

C (t) = X,(t) = h,R(t) . (4)

If R(t) is a sp this random modulation is called
modulation by phase fluctuation.

The second type of modulation is obtained by using
a (random) vibration of one of the mirrors defining
the cavity of the laser, as indicated in Fig. 2.
Thus the function R(t) is now the length of the source
cavity. For small variations of R(t) there are vari-
ations of the instantaneous frequency which are

The complex optical field generated by an ideal
amplitude- stabilized monomode laser is

z(t)=Mt, e",
where ip is the light intensity and the angular fre-
quency. This field is evidently purely monochro-
matic, and experimentally there are always slow
frequency fluctuations which are neglected, at least
in our theoretical discussion.

By phase modulation this field is transformed in-
to

z~(t(= ~& ei(rat+I((&+a ]
zp e

where C (t) is the instantaneous phase, and o( some
arbitrary phase difference with Z(t). In the first
part of our discussion we assume, to simplify, that
i p = 1 and o.'= 0.

We have a randomly modulated field if C (t) is a,

sp. It is supposed, for convenience, to have a
zero mean value.

Two kinds of modulation are particularly inter-
esting, because easily obtained experimentally.

The first one, used by EKN, is obtained by re-
flecting the field Z(t) on a (randomly) vibrating
mirror, as shown in Fig. 1. If the position of the
mirror (for example, the distance to an arbitrary
reference system) is R(t) and if the motion of the
mirror is slow enough to neglect relativistic and
quantum effects, the instantaneous phase of the field
is proportional to R(t). Thus the modulated beam
can be written as

M.B.

FIG. 2. Principle of modulation by phase diffusion:
L. C. , laser cavity; M. B., modulated beam.

proportional to R(t), and the modulated beam be-
comes

z (t) i (at~ o~(t&3 (6)

where

C2(t) = Jo X2(t&) dt&

Xs(t}= h2 R(t) . (7)

t
X,(t) = f, X2(B)de+((&, , (8)

For random vibrations R(t) this modulation is
called modulation by Phase diffusion. Indeed the
instantaneous phase C2(t) can be a diffusion process,
i. e., a process whose variance is an always in-
creasing function of time. In particular this is the
case when Xs(t) is a white noise: Thus C&s(t) is a
Brownian motion with the variance g& = Dt. The
quantum noise of the laser source is described by
such a process. ' In a fully quantum-mechanical de-
scription, this modulation corresponds to an har-
monic oscillator with random frequency.

It is obvious that if the mirrors in the two modu-
lations have the same motion described by the func-
tion R(t), the tu&o fields Z, (t) and Zs(t) are quite
different But the .most interesting question is to
know if it is possible to associate to every function
X, (t) another function Xa(t) so that the optical fields
obtained, Z, (t) and Zs(t), are identical. If this
were true, we could conclude that the two kinds of
modulation are not different. But we will show in
the following that this is not always true: There
are fields obtained by phase diffusion which cannot
be obtained by phase fluctuation.

Defining the instantaneous phases of the fields
C &(t} and Cs(t) by Eqs. (4) and (6), we consider that
the fields are equivalent if it is possible to find two
different modulation functions X,(t} and Xs(t) such
that

e.s. V.M.
r
/

r QPOP +

M.B.

FIG. 1. Principle of modulation by phase fluctuation:
L, laser beam; B.S. , beam splitter; V. M. , vibrating
mirror; M. B. , modulated beam.

where yp is an arbitrary phase.
In the case of nonrandom modulation this equation

can be generally satisfied, and this implies that
Xs(t) is the derivative of X,(t). As the modulation
is obtained by the vibration of one mirror, we see
that if X,(t) is proportional to the position R(t),
Xs(t) becomes proportional to the velocity v(t) = dR/
dt of the mirror. But evidently there are cases in
which X,(t) has no derivative, at least mathemati-
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cally. This occurs, for example, if X,(t) is a
clipped signal with two values only and has sudden

changes at time instants t, .
In the case of random modulation the difference

is mvch stronger, and not at all a mathematical
artifice. This fact can be shown very directly. To
simplify the discussion let us consider only the
case of a zero-mean stationary random modulation.
Thus, X,(t) or Xz(t) are zero-mean second-order
stationary sp. ' This means that (X(t) ) = 0 and

(X (t) ) = o ', which are finite and independent of
t. Hence, we deduce that X(t) has a finite correla-
tion function,

P»z(t), Eq. (8) can be verified, and the two modula-
tions are equivalent. Moreover, as for nonrandom
functions, Xz(t) is the derivative in the quadratic
mean sense of X~(t). This condition can be stated
as a condition for the power spectrum y„(v) of
Xz(t) in the vicinity of the frequency v=0. Indeed,
if we write

(14)

rrL&1 . (15)

y», (v)= v f(v),
where f(0) &0, we show in Appendix A" thatX, (t) has
a second-order primitive if, and only if,

r (r)=«(t)X(t —~)) (8)
In particular this condition implies that

From Eq. (4) we see that @,(t) is also a zero-
mean stationary sp. On the contrary, the phase
4»(t) given by Eq. (6) is evidently zero mean but
not stationary. Moreover let us now show that its
variance

o,' =(Czz(t)) =1, f, r„,(e e')de-de' (10)

is not always finite. First, we will express this
variance in terms of the power spectrum y„z(v) of
Xz(t), which is the Fourier transform of 1"»z(t).
Thus we obtain from Eq. (10)

ooz(t)= J y» (v)[(sinvvt)/vv] dv

If y„(0)40, which can be very easily obtained
. 2

experimentally with noise sources, we deduce from
Eq. (11) that for large values of t

ooz (t) =t y» (0) J [(sinvvt)/wvj dv =y» (0) t .
(12)

Thus, this variance is always increasing, and
Cz(t) is a diffusion process which is neither a sta-
tionary process, nor a second-order process.
Therefore, it is impossible to find a stationary
function X,(t) such that 4»(t) = 4 z(t), and the fields
obtained by phase fluctuation and phase diffusion
cannot be identical. A particular and important
example of diffusion process is evidently the
Brownian motion, obtained if y» (v)=D; then, for
every t

oo (t)=Dt, (13)

and D is the diffusion constant of the phase.
Nevertheless, there are cases in which the two

modulated beams ean be identical, but the discus-
sion of this point needs more mathematical argu-
ments, using some particular properties of station-
ary sp. This discussion is presented in Appendix
A, and we give here the main results.

Case a. If Xz(t) has a second-order primitive

y, (0) =0. (16)

Case b If .Xz(t) is a second-order stationary
process but without second-order primitive, i. e.,
if

—1& m&+1, (17)

III. COHERENCE FUNCTIONS OF FIELDS OB-

TAINED BY GAUSSIAN PHASE MODULATIONS

We know that the statistical properties of optical
fields are corngletely defined by the whole set of
coherence functions, which are the moments of the
complex field Z(t). Particularly, the first-order
coherence function is

r ( )=z(rz(t) z~(t —r)), (19)

the variance of Cz(t) for large values of t can be
written as

o,', (t) = ot' (18)

This shows that 4z(t) is a, true diffusion process,
with ever increasing variance, and Eq. (8) cannot
be verified, because X,(t) is stationary.

In this case optical fields obtained by phase fluc-
tuation or phase diffusion are completely different,
and it becomes interesting to study their differ-
ences. In all the following we suppose that Eq.
(17) is verified, i.e., that Cz(t) is a true phase dif-
fusion process.

The case of the Browniian motion is evidently
obtained for m=0, and Eq. (18) becomes Eq. (13).

If —1 & m & 0, the power spectrum y» (v) is in-
finite for v= 0. The limiting case m= —1 is evi-
dently the famous flicker noise with 1/v spectrum.
This kind of noise cannot be considered in this
study, because its variance is infinite, and it is
not described by a second-order sp.

If 0= m & 1, y„(0)= 0, but its derivative is in-
finite, while if Eq. (15) is true this derivative is
equal to zero. Thus it is clear that the character
of diffusion process is strongly connected with the
structure of the power spectrum in the vicinity of
the frequency v= 0.
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the Fourier transform of which is the optical
spectrum of the fields. In the case of optical mod-
ulation of laser field defined by Eq. (2), calculation
of the coherence functions is generally extremely
hard to perform. But this becomes quite possible
if we assume that the instantaneous phase 4(t) is
a Gaussian sp. In the case of modulation by phase
fluctuation or phase diffusion, this assumption is
evidently true if, and only if, X,(t) [or Xz(t)] are
also Gaussian sp which is evidently frequently the
case for modulation by physical noise. In this sec-
tion we take for granted this assumption.

Using Eq. (2) we obtain

I' (r) = e' '(e' ""') (20)

where

t 4 (t, r) = C (t) 4(t —r), — (21)

which is obviously also a Gaussian random vari-
able. Hence we deduce' that

2I, (r) i(ov -a~o(v)/2
Z (22)

where o~o(r) is the variance of t)4(t, r) It is .in-
dependent of t, because X,(t) [or Xz(t)] are station-
ary.

Moreover it is possible to show that all the high-
er-order coherence functions can be expressed in
terms of the first-order one. The detail of the caI-
culation was given in Ref. 11 and the result is
I' (t, , . . . , t „)= (Z(t, ) ~ ~ Z(t„) Z*(t„,,).. . Z"(t „))

o' (r) =2 [o' —r (v)], (24)

and the first-order coherence function becomes

(23)

Therefore, we obtain from Eqs. (22) and (23) that
all the statistical properties of Gaussian modulated
fields are given by rz(r) or by v~o(v). Thus the
comparison of the fields is deduced from a study of
o~~(~)

A. Modulation by Phase Fluctuations

In this case we use Eq. (4) and (21), and we ob-
tain

I,=2[1+
l r, () )

l
coster] . (29)

Thus Eqs. (27) and (29) show that the interfer-
ence pattern is decreasing but never vanishing.
The visibility of the interference fringes is evident-
ly a function of o„,. For a small modulation, this
visibility is almost equal to one, while it becomes
zero if there is a strong phase-fluctuation modula-
tion.

These properties can be established more pre-
cisely. The modulation function X,(t) is a zero-
mean stationary sp. We know that if this process
is wide sense ergodic'

lim I'z (v)= 0 .
1

Hence we deduce from Eq. (25) that

lim r, , (v)=e ~~)'"', (30)

which gives, by using Eq. (29), the structure of the
interference pattern for large T, and shows, by
Fourier transformation, that the optical spectrum
of the modulated beam necessarily has a discrete
component on the frequency ~. Thus, the power
of the optical field, which is equal to unity be-
cause I Z(t) I

= 1, has a part e z) distributed on the
frequency ~ and another part with a continuous
distribution. The shape of the latter distribution
depends evidently on the structure of the correla-
tion function I'z, (r).

B. Modulation By Phase Diffusion

In this case, Eq. (11) [see Eq. (38) of Ref. 11],
gives

& )) q (&) = f )'z (v) [(„sin &vt )/v v]z 1v (31)

and by the procedure of Appendix A we deduce that
for large values of &

I
r.,(~)

l

- e "') ~ (27)

This property is very important, and means that
even for large ~, there is always a correlation be-
tween Z, (t) and Z, (t —r) .This fact could be verified
experimentally. Indeed we know that the mean
light intensity obtained in an interference experi-
ment is"

I,= 2[I'z(0) + Rerz(v)],

which is in our case

I (y) la&t -) ax -I'x ~~)]
1

(25) (Tgo (&) —Q7, —1 &m&+1 .' (32)

From Eq. (24) we deduce that

o'o, (&) - 4ox, (26)

Thus we have

lim rz (r)= 0,
QQ

(33)

which gives, from Eq. (22), and the spectrum of the optical field has no discrete
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component at the frequency ~. The shape of this
spectrum is evidently a function of yrz(z), the pow-
er spectrum of the modulation function Xz(t}.

IV. DISCUSSION OF EXPERIMENTAL METHODS
FOR STUDYING MODULATED BEAMS

We have seen in Sec. III that fields obtained by
phase fluctuation or phase diffusion can be studied
by interference techniques, and that the interfer-
ence patterns are quite different. Nevertheless
these methods are not very practicable, because
they need in general very long optical delays. The
same problem appears in the study of the bandwidth
of laser sources, which cannot in general be ob-
tained by interference spectroscopy.

Thus, it seems interesting to use photon coinci-
dence or counting techniques. ' But these methods
cannot be used directly, because, even with phase
modulation, the optical field given by Eq. (2) has
a constant light intensity, and the effect of the mod-
ulation cannot be detected. Therefore, the only
way to obtain information on phase fluctuation is
to perform, as in the experiment of EKN, an op-
tical beat between the modulated beam and a refer-
ence beam. By this method, phase fluctuations are
transformed into intensity fluctuations which can
be analyzed by photon-statistics techniques.

The optical field obtained by superimposing the
reference beam Z(t}, Eq. (1), and the modulated
beam Z'(t), Eq. (2), is

tions of the source, and we will discuss this prob-
lem in another paper.

Moreover, we see [from Eq. (35)] a significant
difference between the two modulations. We have
shown that @,(t) is stationary, while the phase

C,(t) of a diffusion process cannot be stationary
(see Appendix B). The same property is valid for
I&(t) which is stationary for phase fluctuation but

not for phase diffusion. Thus the experimental
study of this case needs in general methods adapted
for nonstationary sp, and in particular ensemble
averages instead of time averages. These methods
will be discussed elsewhere, but we may remark
that in the present paper we have calculated ensem-
ble and not time averages. The situation is exactly
the same when we use a quantum description of the
field. "

Now let us calculate some statistical properties
of I&(t) for the two possible modulations. In the
following calculations, as in the previous ones, the
modulation is supposed to be Gaussian.

A. Mean Value and Variance of the Intensity

From Eq. (35) we deduce the mean value of I,(t)

(I&(t) ) = 2io [1+cosu (cos4&(t)) —sino (sinC»(t) )) .
(36)

As 4, (t) is a zero-mean Gaussian sp with vari-
ance a&(t}, we have ( sinC &(t) }= 0 and ( cost&(t) )
= e 'i "~'. Thus the mean value of the intensity is

Z (t) ~ i&et (I zloty(t &+&i) (34)
&t) 2(I&(t)) = 2io[1+cosoe '& "

] . (37)
where j= 1 or 2 for modulations by phase fluctua-
tion, Eq. (4), or by phase diffusion, Eq. (6).

The instantaneous light intensity of this beat is
iZ (t)I or

I,(t) = 2io (I + cos [4,(t) + n ]) . (35)

In their experiment EKN have used a modulation
by phase fluctuation 4, (t), but with o = 0. This
means that without modulation there is no constant
phase difference between the reference and the
modulated beam. Moreover, they used only one
laser and a Michelson interferometer with one ran-
domly vibrating mirror. The advantage of this
procedure is that Eq. (35) is still valid, even if the
laser source is not ideal but has a finite bandwidth
due to frequency instabilities: In the interference
pattern the frequency fluctuations of the laser source
were suppressed.

This is no longer possible in the ease of modula-
tion by phase diffusion, because the source itself
is modulated, and we are obliged to use two inde-
pendent sources for the beat. In this case Eqs.
(34) and (35) are valid if the fluctuations or the
sources are small enough compared to the modula-
tion. There are other methods to cancel fluctua-

In the case of modulation by phase fluctuations
o,(t)=a i, independent of t. If o, =0, we have the
classical interference formula, and if 0&-~, the
effect of modulation cancels the coherence between
the beating beams. In the case of modulation by
phase diffusion, oz(f) is an always increasing func-
tion of time, and the factor coscz e 'I"'i tends to
zero.

In order to calculate the variance, we must ob-
tain (I&(t)). This is performed in Appendix C, and
the result is

oz, (~) = 4zo [z(1 —e "&"')

If there is no modulation [&r (t}= 0], we obviously
have no intensity fluctuations. In the case of mod-
ulation by phase fluctuations, the variance of the
intensity is maximum if zr = —,'(2k+ 1)zz, which is
the best value for observing the intensity fluctua-
tions. If o &(t) —~, we obtain oz=2zo.

B. Photon-Counting Experiments

It is well known that the time instants {I,] at which
photoelectrons are emitted by a detector immersed
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in an optical field constitute a Poisson-compound
sp. ' Thus the probability p„ to obtain n events in
the time interval [t —T, t] is given by

p„=(e™M"/n! ), (39)

where M is deduced from the instantaneous light
intensity I(t) by

&&(a"[I+cos(y+ o.')]"/n! j e " ' "' dp, (41)

M=& f I(e)de . (40)

Hence, we obtain from p„ information on the
probability distribution of the integrated light in-
tensity. If T« t„which is the correlation time of
I(t), we have approximately M = oIT, and the effect
of integration disappears. In this case we obtain
only information on the probability distribution of
the random variable I(t) On t.he other hand, if
T is not so small, it is possible to obtain informa-
tion on the time evolution of I(t), but the calculation
of the distribution of M is extremely hard to per-
form.

By assuming T« t, and taking a=2aioT, we de-
duce from Eqs. (35) and (39)

p (I) (2&)-1/2 [&(I)] I f e-a[1+cos&ma)3

(42)o„=uT(I)+ (nT)a o', ,

where (I) and az are the mean value and the vari-
ance of the intensity I(t), respectively. The first
term in Eq. (42) is the mean value (N), and is due
to the Poisson distribution; the second one comes
from the fluctuations of the light intensity. Thus,
we deduce from Eqs. (37) and (38) that

which is due to the Gaussian distribution of the
random variable 4 (t&

From n = 0 this equation must give the same dis-
tribution as Eq. (23) of EKN. The algebraic struc-
tures of the two equations are very different, and
we do not report here the long calculation which
shows this identity. Nevertheless for numerical
calculation we have performed a direct computer
program of Eq. (41), and numerical results are
given in the Table I. It is clear that the description
of the optical field by an appropriate sp gives a
much shorter analysis than the semiclassical cal-
culations of EKN.

The discussion of Eq. (41) is not very simple
without a numerical calculation of p„(t) Nev.erthe-
less, we can obtain directly the variance of the
photocounts, which is an interesting feature con-
cerning the distribution.

From Eqs. (39) and (40) we deduce that

TABLE I. Comparison between some results of quantum calculation (Q. C. ) bye EKN and classical calculation (C.C. ) by
using Eq. (41). The parameter ) ep I of EKN is equal to 4 &ipT in our notations.

0
1
2

3
4
5
6
7
8
9
10

lc p
I'=1.80

0 = l. 15

Q. C.

0.274
0.318
0. 226
0.115
0.0458
0.0149
0.0041
0.00099
0.00021
0.00004
0.000007

[ap ) =1.71
0 =2. 08

Q. C.

0.366
0.307
0.191
0.0893
0.0330
0.0101
0.0026
0.00059
0.00011
0.00002

C. C.

0.27449
0.31861
0.22611
0.11509
0.045690
0.014868
0.004099
0 ' 0009803
0.0002070
0.0000391
0.0000067

C. C.

0.36737
0.30685
0.19098
0.088892
0.032789
0.0099911
0.0025905
0.00058419
0.00011652
0.00002083

I o'p I =1.35
g =1.55

Q. C.

0.404
0.331
0. 174
0.066
0.0196
0.0048
0.0010
0.00018
0.00003
0.000004

fop I 2=1.38
0 =2. 84

Q. C.

0.476
0. 299
0. 148
0.0553
0.0164
0.0040
0.00084
0.00015
0.000024
0.000004

C. C.

0.40409
0.33068
0.17380
0.06603
0.019614
0.004781
0.0009877
0.0001771
0.0000280
0.0000040

C. C.

0.47465
0.29950
0.14870
0.055675
0.016555
0.0040698
0.0008515
0.0001549
0.0000249
0.0000036
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o„=u'(e '/"' —I)+u+a+-,'a (1-e '/"'}, (43)

where u= acosue &"' and a=2+zoT. We note
in this expression that for o

&
= 0, o „=(N) because

in this case we obtain a Poisson distribution. On

the other hand if o,- ~, which can appear in the
case of modulation by phase diffusion, o „=(N) (1
+ —,'(N)}. This value gives an indication on the
bunching effect of the photoelectrons which appears
also in coincidence experiments described in the
following. Moreover, for a given value of sr~~ it is
possible to calculate the value of u which gives the
maximum or the minimum of fluctuations of ¹

There is no general result on this point.
Finally, it is clear that Eqs. (41)-(43) are valid

for the two kinds of modulation discussed in this
paper, because the only property used in the cal-
culation was the Gaussian property of the phase
4/(t). The only difference is always that for modu-
lation by phase diffusion ca(t) can become infinite.
Thus photon-counting experiments do not give direct
means to distinguish the two kinds of fields, and
other experiments are more appropriate.

C. Coincidence or Intensity@orrelation Experiments

As we have previously noted, the most significant
difference between optical fields obtained by the
two kinds of modulation is the structure of their
coherence function, and particularly the limit for
~- ~, as shown by Eqs. (30) and (33). These co-
herence functions can be measured by means of
interference techniques, but not very easily. Now

we will show that coincidence or correlation ex-
periments can also be used for this purpose.

The aim of such experiments is to measure the
correlation function of the light intensity I/(t) of
the optical beat. As this light intensity is in gen-
eral not stationary, the result is a covariance
function

variance of 64» = C»(t) —4 &(t —7), as in Eq. (22).
First, let us consider the case of modulation by

phase fluctuations, where a, (f) =c( and I')(t, r)
= I'„,(r), the correlation function of the stationary
phase X,(t). From Eq. (44) we deduce that

2
I'z (r) = 4i 0{1 + 2 cos o. e

+-,' [l I'~(~)
l

+ cos2o. e ') e ")")]]. (45)

It is easy to express this correlation function
only in terms of the coherence function I'~(r) by
using Eq. (25). This expression becomes very
simple if cos2n=0, and for n= —,'m or —,'m we obtain

r, (~)=4i'o[I+W e-')" +-,'lr, (~)
l
]. (46)

Equations (45) and (46) show that it is possible
to obtain I I'z(r) I from measurements of I'z, (r).
As I'~(v) = e'"'i I'~(r) I, we conclude that the first-
order coherence function can be measured by coin-
cidence or intensity-correlation experiments. In
the case of thermal light, the solution of the same
problem is not so simple, because the modulus of
I'~(~) does not give its phase unambiguously. ~o~'

Moreover, we deduce from Eq. (45) that

lim Ig) (7') ='( I) )
T~'e

(47)

a= r, (o)/I, ( ) . (46)

As 1;(0)=(I ) =o,+(I), we deduce from Eq.
(42) that

which shows that the spectrum of I,(i) has no dis-
crete component, as the spectrum of Z)(t) [see Eq.
(3o)].

Finally, an interesting parameter concerning the
distributions of the photoelectrons is their bunching,
or Hanbury, Brown, and Twiss effect. It can be
described by the parameter h defined by~~

r„(f, r) =(f,(f)z, (f —~)) . h= I+a', /(I, ) (49)

There are many ways of carrying out such ex-
periments: true coincidences, " lifetime measure-
ments, ' shift register correlations, ' etc.; but
we will not discuss and compare these methods
here.

Starting from Eq. (35) the calculation of the co-
variance function is performed in Appendix C, and
the result is

( ) 4 2 [I (
-I) (() /2 -Ir ( )/2()«ff2

I~

which can be directly obtained from Eqs. (37) and
(38).

Let us now consider the case of modulation by
phase diffusion. As o z(t) is always increasing, we
will study the situation where t is sufficiently large
to assume that o z(t) is infinite. So we obtain from
Eq. (44)

2r, (7)=4i 0[1+—,'e '~O2"' 2]

+ cos 2 n e -l a
y

(t )+e
&

(t-7'3+2 I
&

(t, T )3 /2
2

2

+
)

& ()g o/(T) /2 ] (44)

and with Eq. (22)

I';(~) =4il[I -'I l'. (~)
I ] ~ (51)

In this expression cr&(t) is the variance of 4»(t),
I'/(t, v) its covariance function, and a ()o (r) the

This relation shows a very simple relation be-
tween the first-order coherence function of the
field and the correlation function of the light inten-
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sity of the beat. Moreover, we can notice that this
expression has the same kind of structure as the
correlation function obtained for general Gaussian
fields studied in Ref. 22. For example, in the
case of thermal fields we have

F, (r) = (»' [I. IF, (T) I'),
where I"x(r) is the normalized coherence function.

Finally, the parameter of the bunching effect
deduced from Eq. (51) is

(52)

h=1, 5 (53}

while for Gaussian fields we have 2 - h - 3. This
coefficient appears also in the study of the fluctua-
tions of the photoncounts, because, as we have al-
ready shown,

ox= (N ) (1+ x (N ) ) . (54)

Thus, it appears clearly that coincidence experi-
ments constitute the best methods to study modu-
lated beams, and to distinguish modulation by phase
fluctuation or by phase diffusion.

In conclusion, we can indicate that the results of
this study can be applied to many problems. Arti-
ficial modulations of the two kinds can be used for
the verification of the theoretical result, as per-
formed by EKN and it would be particularly con-
venient to measure coherence and correlation func-
tions.

But it is well known that the optical noise of a
laser is a phase noise, and we have not yet infor-
mation to decide if this noise is a modulation by
phase fluctuation or diffusion. ~ Finally, in some
problems of propagation of laser beams in ran-
dom media, there appear phase-modulation prob-
lems, for which the methods of this study can be
applied.

APPENDIX A

Let us consider a zero-mean second-order sta-
tionary sp X(f) Its varian. ce can be expressed in
terms of the power spectrum by

ox= f' yx(v) d„"v +" (A1)
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For our discussion it is necessary to introduce
two linear filters D and P defined by their transfer
function Gz&(v) and Gp(v),

Gn(v)= 2' v,
Gp(v)= I/2xiv .

(A4}

As we have introduced the linear filter G p(v), it
is interesting to use the harmonic expansion of the
sp X(f) which is

X(t)= f dx(v)„e ""' .
Thus we have

Px(f)= f (I/2xiv) dx(v)e '"' .

(A8)

(A9)

By integration of Eq. (A8) and using Eq. (A9) we
obtain Eq. (A7) directly.

We can now study more precisely the sp @2(t) de-
fined by Eq. (6) and describing the instantaneous
phase in the case of a modulation by phase diffusion.
The question is to know exactly in which case 4'2(t)
is a diffusion process with an always increasing
variance or not.

If X2(t) has a second-order primitive Px, (t}, we
can use Eq. (A7), and thus

From Eq. (A4) we see that the filter D associates
to every function X(f) its 'tierivative" Dx(t) Fo.r
stochastic processes, this derivative is meant in
the quadratic mean sense. ' Conversely the filter
P, which is the inverse filter of D, associates to
X(f}its "primitive" in the quadratic mean sense
Px(t). For a stationary sp X(f}, the derivative or
primitive does not always exist. In particular Px(f)
does exist if and only if

f [yx(v)/4x v ]dv&+~ . (A6)

As Eq. (Al) is verified, this new condition con-
cerns only the values of yx(v) for v=0. More pre-
cisely, if we use Eq. (A2) we see that Px(f) does
exist if m )1~

In conclusion we have three eases: (a) m & —I:
X(f) is not a second-order sp; (b)- 1 &m &1: X(f) is
second order, but without primitive; (c) m ) 1:X(t)
and Px(t) are second-order sp.

Moreover let us show that if Px(t) does exist we
have, as for the nonstochastic process, the relation
between integral and primitive, i. e. ,

' xe de=a, t, -r &, . (A7)

In particular, if we write yx(v} as

y (v)= v f(v),
where f(0) 40, Eq. (Al) means that

(A2)

@2(t)= Px~(f) —Pxq(0) .

We obtain directly the variance of 42(t) by

o (f)= 2[v —I' (t))-4o'„,

(A10)

(A11)
m )-1. (A3)

Thus, the power spectrum can be infinite for v
= 0, but only with the condition of Eqs. (A2) and
(A3).

where o'px and I'pz(x) are, respectively, the vari-
ance and correlation function of the stationary
second-order sp Px2(f). This equation shows that
oo (t) is bounded, and thus C2 (f) is not a true dif-
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x, (t)= f,
' x, (e) d8+P (0} (A12)

is stationary, and therefore, Eq. (8) can be veri-
fied. In this case the two modulations are equiva-
lent, and, as for nonrandom functions, X2(t) is the
derivative Dx, (t) of X,(t) .

Now let us consider the case where X2(t) has no
second-order primitive, and then let us calculate
the variance of 4'2(t).

Using Eqs. (11) and (14}this variance can be
written as

o~2{t}=f v f(v)[(sinvvt)/vv] dv (A13)

fusion process . Moreover, even if 4, (t} is not sta-
tionary, itis clear from Eq. (A10) that 4, (t)+ P„(0)
is stationary. This means that

is stationary. From Eq. (6) we deduce that 4z(0)
=0, and thus

F(0)=F .

Hence we obtain

(B2)

4'2 (t ) = F (t) —F (o),
where F (t) is stationary, which means that

(B3)

o', (t) = 2 [o' —I', (t) ] - 4o',
which is impossible, because of Eq. (18}. Thus,
42(t) cannot become stationary.

(B4)

could become stationary as in Eq. (A10), it would
be possible to find a random variable F such that

F(t)= 4~(t) +F

where f(0}&0 and m &- 1. By putting 2n = 2 —m a.nd
x= mvt, we obtain

APPENDIX C

o2 (t) 2a-3d (t) t2a-1

where

(A14) From Eq. (35) we have

I' (t, 7')= &f(t)t(t —r)&

(A15) =4io [1+&cos$(t) &+ &cosg(t —r))

This integral can be divergent for x —0 or x -~.
In the neighborhood of x= 0 we have

do —-f(0) J [(sinx)/x']'dx
with

g(t)= 4'(t)+ n .

i &eostt'(t) costt(t —r)&] (Cl)

(C2)

=f(0) J, x""dx,
which is convergent if

2&&3 or 'fly & —1 .

{A16}

(Ai I)

J(~)= f(0) f [(sinx)/x ]'dx, {A18)

which is convergent if —1 & m &+ 1, i. e. , if Xz(t)
is second order without primitive sp. Thus, we
can write

This condition, equivalent to Eq. (A3), is satis-
fied because X2(t) is a second-order sp.

The integral (A15) is convergent for x-~, be-
cause Eq. (Al) is verified. Thus o~, {t) is bounded
for every t. Now let us calculate the asymptotic
value for large t. As d(t} is convergent, we have

As 4 (t) is Gaussian and zero mean,

&cos g (t) &
= cosn e """'.

Moreover we have

(eos P(t) cos g(t —r) &

(C3)

= '(&eos[&(t)+ &(t —r)]&+ &cosl 0(t) —&(t —r)]&] .

(C4)
The mean values can be written as

&cos[t}p(t)+ tt(t —r)]&= &cos[4(t)+ 4(t —r)+ 2a])

= cos2a &eos[4 (t)+ 4 (t —r)] &

= cos 2 & 8 -[ty ( 0) +@2 ( t-T) 21 ( 0, T ) j/2

o2 (t) v-(m+1) d(~) ti-m (A19)
and

(C 5)

which shows that 4'z(t) is a diffusion process. The
Brownian motion is a particular case obtained if
m = 0 and f(v) = D.

APPENDIX B

We assume that X2(t) has no primitive. If 4'2(t)

&«s[4(t)- 0(t- r) ]&= &cos[@(t)-4'(t- r) ]&

2-e~ C, (v)/2

By addition of the different terms we obtain Eq.
(44).
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