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The intensity of a-particle-produced scintillations of liquid helium has been measured in
the 1.3—4.2°K temperature range and at pressures varying from the vapor pressure at 1.3°K

to 28 atm.

I. INTRODUCTION

Among the unusual properties of superfluid liquid
helium is a reduction in the intensity of the scintil-
lation of the fluid produced by a particles as its
temperature is lowered.! A number of investiga-
tions have been carried out, involving the effects
on scintillation of an electric field, 2 a heat cur-
rent, ® and rotation of the fluid. *

We present here the results of measurements

of the scintillation of pressurized liquid helium.

An extension of the measurements to lower tem-
peratures is described in the following paper (II)°
and the results interpreted in the light of other
recent investigations. Specifically, these involve
our observations of both the scintillation pulse in-
tensity and the fofal intensity of the He Il lumines-
cence, ® with results which confirmed a suggestion
made earlier by Moss and Hereford! that delayed
emission from metastable states could be responsi-
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FIG. 1. Details of the pressurized scintillation
chamber.

ble for the reduced scintillation intensity in HeII.
The presence of metastable molecular and atomic
states in electron-bombarded HeIl has now been
established firmly by Dennis et al.,” by Stockton
et al.,® and by Surko et al.’®

In view of this situation, discussion of the ex-
perimental data described below will be presented
in the companion paper immediately following.

II. EXPERIMENTAL ARRANGEMENT

In the experiments described here, a liquid
helium pressure cell was located in a stainless
steel Dewar which provided for detection of scin-
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FIG. 3. Scintillation intensity as given by the posi-
tion of the peak (in channels) vs pressure for fixed tem-
peratures.

tillations of the fluid by a photomultiplier tube, as
shown in Fig. 1. The cell was formed by mating
a Cajon 12-VC vacuum coupling to a Ceramaseal
sapphire optical window. A brass scintillation
chamber, 1.59 cm in diam and 1.9 cm high, rested
on the face of the optical window at the bottom of
the cell. A Po®° a source, plated on 0.009-
cm-diam Nichrome wire, ran across a diameter
of the chamber, and the inside of the chamber was
coated with POPOP to “shift” the extreme uv helium
scintillation to the visible wavelength region. A
photomultiplier tube at the bottom of the cryostat
faced the cell and scintillation chamber, and its
pulses were fed to a multichannel analyzer. The
pulse-height spectra exhibited well-defined o
peaks, and the peak positions, proportional to the
scintillation intensity (photons per a particle),
were found reliable to +$%. The collection time
of the analyzer was approximately 1.25 usec.

After filling the outer chamber with liquid helium,
the pressure cell was filled by admitting He gas
via a 0. 32-cm-diam stainless steel capillary.
Pressure was monitored by a Heise bourdon tube
gauge to + 5 Ib/in?

Upon bringing the outer helium bath temperature
to a given value, time was allowed for the pressure
cell temperature to reach a steady value as in-
dicated by an interior Allen-Bradley carbon re-
sistor. The cell temperature was then assumed to
be the same as that of the bath. No effort was made
to calibrate and use the interior resistor to de-
termine the cell temperature because its resistance
was pressure dependent.

III. RESULTS

The scintillation intensity was measured at fixed
temperatures with the pressure ranging up to 28
atm and at fixed pressures with the cell tempera-
ture varying between 1.3 and 4. 2°K. Figures 2
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FIG. 4. Scintillation intensity as given by the posi-
tion of the peak (in channels) vs temperature for fixed
pressures.

and 3 show typical data for the former case. The
intensity was found to drop initially as the pressure
was increased, reaching a minimum, and then to
rise and level off at approximately 10 atm.
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The variation with temperature is shown for four
fixed pressures in Fig. 4. The inhibition of scintil-
lation below T,, which is pronounced when mea-
sured at the vapor pressure, becomes less so as
the pressure is increased. In fact, above several
atmospheres the scintillation intensity appears to
rise slightly below T,.

One aspect of the results shown in Fig. 4 deserves
comment at this point. There is some indication
that, as the temperature is reduced at the higher
pressures, the intensity increases slightly near
2.18 °K (the X point of the outer bath), even though
the pressure cell is well above its A point. We
suggest that this may be due to the cessation of
internal boiling in the outer bath just below the
sapphire window of the pressurized scintillation
chamber which should occur as the outer bath tem-
perature falls below 2.18 °K. Light collection
through the outer bath could thereby be slightly
enhanced increasing the measured intensity.

The extension of these measurements to tempera-
tures ranging down to 0.3 °K has made it possible
to achieve at least a partial understanding of the
phenomena involved. These more recent observa-
tions are reported and discussed in paper II.°

The authors are indebted to Dr. Frank E. Moss
for many helpful suggestions concerning experi-
mental problems and interpretation of the results.
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