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The density fluctuation in a Bose gas interacting via a strong short-range repulsive potential
and a weak long-range attractive potential is studied by the methods of quantum-field theory.
The density-density correlation Rnction is generated by taking the functional derivative of the
single-particle matrix Green's function G~(1, 2) with respect to an auxiliary scalar field. For
G~(l, 2), we use the Hartree approximation for the attractive potential and the Hartree-Fock
approximation for the short-range repulsive potential. We show that the density fluctuation
spectrum is identical to the Beliaev approximation for the single-particle excitation spectrum.

I. INTRODUCTION

Beginning with Bogoliubov's classic work in
194'7, there have been many studies of an interact-
ing Bose gas using field-theoretic techniques.
We mention specifically the important work of
Beliaev, '3 Hugenholtz and Pines, 3 and Hohenberg
and Martin. With few exceptions, these calcula-
tions are mainly concerned with the spectrum of
the single-particle Green's function C~(k, v). In

the present paper, we compute the density-density
fluctuation spectrum at finite temperature using
the Green's-f unction method. To be more specif ic,
we study S(k, ar) for a system of bosons interacting
via a strong short-ranged repulsive potential and a
weak long-ranged attractive potential in the Hartree-
Fock approximation. This model of an interacting
Bose gas has been studied by Huang' and more re-
cently by Singh and Kumar. ~ However, these
authors only considered the single-particle spec-
trum.

We believe our results give further insight into
the general question of the equivalence between
elementary excitations and density fluctuations in
a condensed Bose system. As is well known, it is
this equivalence which is at the center of the phe-
nomenological theories of Landau and Feynman.
Moreover, it is this equivalence which makes it
possible to study the single-particle excitations
(which determine the thermodynamics) by neutron
scattering. At the present time, the only rigorous
nonperturbative results are those of Gavoret and
Nozieres. Summing up self-energy contributions
to all orders in perturbation theory, they obtained

((u &0)

S(k, (o ) = 2vnk 5((o —c,k ),
ImGn(k, (o) = (vno/n)me~25((oa —c)k2)

in the limit A -0 and 0 K. The phonon velocity
c, is given by the usual thermodynamic expression.
In their derivation, it was assumed that the Dyson-
Beliaev self-energies could be expanded in powers
of k and &u.

In Sec. II, we use the Hartree Fock (Gir-ardeau-
Arnowitt or GA) approximation to generate the
two-particle Green's functions by functional dif-
ferentiation with respect to an external field. This
is an example of a conserving approximation in
the sense of Baym and Kadanoff. e The two-

particle potential is assumed to have a Fourier
transform V(k) and is split into a short-range re-
pulsive part Vs (k) -=Vs and a long-range attractive
part V„(k). The Hartree self-energy involves
Vs(k)+ V„(k) but in the exchange term we only con-
sider Vs(k). The neglect of V„(k) in the exchange
term is justified in one limit discussed in Sec. III.

In Sec. III, we solve the equations of motion ob-
tained in Sec. II using perturbation theory and
show that the spectrum of the density-density cor-
relation function is phononlike at very low momen-
tum. This is obtained for zero temperature and
is identical to the single-particle spectrum in the
Singh-Kumar approximation. '

In Sec. IV, the equation determining the density
fluctuation spectrum for a purely repulsive short-
range interaction is shown to be identical to the
Beliaev expression for the single-particle spec-
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trum. This equivalence is not limited to 0 'K and

long wavelengths.
Partly for pedagogic reasons, in the Appendix

we compute S(k, ur) using functional differentiation
of the self-consistent Hartree approximation for
the single-particle Green's function. This gives
the so-called random-phase-approximation (RPA)
result for S(k, u&) and corresponds to a special case
of the more general results of Sec. II.

II. DENSITY-DENSITY CORRELATION FUNCTION IN
HARTREE-FOCK APPROXIMATION

In the following discussion, we assume that the
reader is familiar with Sec. VI of Hohenberg and
Martin, whose notation we follow quite closely.
The full 2x 2-matrix Green's function is given by

G, (1, 1')= G~(1, 1') +G~g2(1) G;g2 (1'), (2. 1)

where

(2. 6)

We choose units such that 5=m =1. Equations
(2. 6) and (2. 7) determine G, and G&qa in terms of
the self-energy Z(1, 2) and the condensate source
function rl(1).

In the limit V,„,-0, Eqs. (2. 6) and (2. 7) de-
scribe a homogeneous condensed Bose system.
In this case we may take

~i 4 (1) = (-(no)" (I ),
where no is the number of atoms in the condensate.
In this limit, (2. 7) reduces to an equation deter-
mining the chemical potential p. .

We may use functional differentiation with re-
spect to the auxiliary scalar field U(1, 2) to gen-
erate the two-particle correlation function

Gq(1, 1 )= —i((414(1) 414 (I')},),
(2. 2) L(1 2 1' 2') —=

5U(2', 2)
(2. 9)

and

G&~2(1) = (- i)'"&@(I))=
g3(1 One may easily verify that the equilibrium time-

ordered density-density correlation function is
given by

L»(1, 2) —= —i [((n(1)n(2)), ) —(n(1)) (n(2) )]

In addition to the system's effective Hamiltonian
K = H —p N, we assume the existence of external
fields given by

=iL(1, 2; 1, 2) . (2. 10)

In terms of the Fourier transform of this correla-
tion function, Van Hove's dynamical structure fac-
tor is simply

V,& (t, ) =
& Z dr, 414t (1) U z (1, 2) 414() (2)4xt T & J T 44 S(k, (() ) = —2 [N ((4) ) + 1] ImL» (k, (4)), (2. 11)

+Zf4& 4 (()4' ((), (4. 4)

where barred coordinates imply a space and (imag-
inary) time integration and

U ()(1, 2)—= 5
T) U(1, 2) =5 () 5(t, —t~) U(r„r, )

(2. 6)

ext(1) OT ( )
rig'*' (1)

The equations of motion can be written in the form

G() (1, 2) G, (2, 1') =5(1, 1')+Z (1, 2) G|(2, 1 )

where N ((d) =[e~ —1] ' and P= (ksT) '. Inelastic
thermal neutron scattering enables one to directly
measure S(k, (d).

It is useful to define the matrix inverse of Gj by

G ~(1, 2)GT (2, 1 ') = G) (1, 2)GT (2, 1 '
) = 5 ~() 5 (1, 1

'
) .

(2. 12)

Using (2. 6), we have

G (1, 1;U) = G(~) (1, 1 ) —U(1, 1 ) —Z(1, 1'; U) .
(2. 12)

A somewhat lengthy but straightforward calculation
gives the identity

+ U(1, 2) GT(2, 1') (2. 6)

with

G() (1, 2)G)g2 (2) = (-'i) 'q(1) (-+i) g'"' (1)

+ U(1, 2)GTTq(2) I (2. 7)

x G„() (4, 1')

Z G ~ (1, 2')G,() (2, 1')
iy=1y 2
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— 5Z.„(3,4)' ~ '"""5U(2, 2) .,
V„(k)= —4'(a+5),

~
k~ (k

=0, fk/&k, (2. i7)

&& G„2 (4, 1'), (2. 14)

where we have made use of (2. 13) in the last step.
Our major aim is to obtain 8(k, 01) using (2. 9)

in conjunction with the conserving Hartree-Fock
(or GA) approximation for G1. The results of such
a calculation have been reported by Hohenberg
(see Ref. 4) for a purely repulsive potential in the
long-wavelength low-temperature limit.

The Hartree-Fock approximation for the Dyson-
Beliaev self-energies in the presence of a scalar
field U(1, 2) is given by

where a is the zero-momentum scattering ampli-
tude for the strong repulsive part VR (= 4&a). This
model of an interacting Bose gas was first employed
by Huang. ' In the self-energy terms due to ex-
change, we only consider the repulsive potential.
Under certain conditions, it can be shown that the
exchange term for the long-range attractive po-
tential is of higher order.

Substituting (2. 15) into (2. 14), we obtain

5Z„2(1,1') . , — 5G1,(3, 3)
5U(2 2) ' ' 5U(2 2)

Z(1, 1' ) = 2 i V(1, 2) [G,I2 (2) O', I2(2) + G,(2, 2)] 5(l, 1 )

where

+i VR(1, 1 )[G,(2 (1)G;g2(1')+ G,(1, 1')],
(2. 15)

V(1, 2) = [VR5(r, —r2)+ Vz(r, —r2)] 5 (f, —t2),
(2. 15)

Vg(1, 2) = VR (r1 —r 2) 5(t, —t2).

The Green's functions in (2. 15) are the true ones,
self-consistently determined by (2. 6) and (2. I).
By V„(r) we denote the weak long-range potential
between two He4 atoms. For later purposes, we
further specify the form of Vz(k), the Fourier
transform of V„(r):

15(i, i') V„",' . (2. I&)
iU 0

Inserting this approximate result into (2. 14) and

setting 1'= 1, 2' = 2, we find a set of coupled equa-
tions for

L (1 2)
25G»»2(1, 1)

»»»2» 5 U(2)

(1 2) i5G~2(l, 1)
5U(2)

(2. 19)

Fourier-transforming this set of equations, we ob-
tain finally

L11(k, 01„)= [X1(k» 00„)+ j(2(k» 01» )] + [2VR+ Vg(k)] [X1(k, 01„)+ X2(k» Dp„)] L11(k, 01„)

+ VRX3(k» (d»») L21(k, 01»»)+ VRX3(k» &»») L12(k» &»»)» (2. 2O)

L12(k, u», ) = 2p3(k, —&u„) + [2VR+ V»1(k)] 2p3(k, —(o„)L11(k, u»„)

+ VRX2(k (d„)Lp1(k, &d„) + VRX4(k (d„)L12(k» (0„) (2. 21)

L2,(k, 01„)= 2p3(k, u»„) + [2VR+ Vg(k)] 2X3(k, 01p) L „(k, 01p)

+ VRX2(k» —»d „)L2, (k» 01p) + VRX2(k, |d„)L,2(k» 01„), (2. 22)

P(1, 2) = iG1,(1, 2) G „(2,1)= P(2, 1),

X2(1, 2) = iG 12(l, 2) G,p(2, 1)= Xp(2, 1),

P(1, 2) = iC12(1, 2) C„(2, 1),

P2(1, 2) = iC„(1,2) G„(1,2).

(2. 24)

where we have used the identities

G,2(1, 2) = G2, (1, 2), G11(1, 2) = G22(2, 1) (2. 23)

and introduced the following abbreviations:

One can show quite generally that

11= &11+(- '~0)"'i [L1)2+L1i 21,

L12 L12+ ( 3RD) 23L1/2»
1/2 ~

L21 ——L21+ (- ip20) 2iL1g2»g/2

where the three-point function is defined by

5g1(1)
L1(2(1, 2) =—5U(2), etc.

(2. 25a)

(2. 25b)

(2. 25c)

(2. 26)
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Now in the Hartree-Fock approximation, the
source function is given by

(- i)"'g,(1)= iV(i, 2)g, (i) G„(2, 2)

+ iV„[g,(l) C»(1, 1)+gg(l) G„(1,1)], (2. 2Va)

(- I)"'fi,(1)=iv(l, 2)g,(1)G„(2, 2)

+iV [g,(1)G„(1,1)+g (1)G„(1,1)]. (2. an)
Taking the functional derivative of Ebs. (2. I) ln

conjunction with (2. 27) and then Fourier tra»form-
ing, we obtain

(fop- —,
' k + p) I )f 2(k, fop) =xVa[G»(l, 1)+G i(1, 1)]Lifa(k, fop)+sVaGia(l, 1)L,f 3(k, fop)

+ (-in, )'f'f V„[L„(k,(o„)+L„(k,fo„)+L,a(k, Io„)]+1)

+i V„G„(1,1)I.„,(k, ~„)+(-in,)"'V„(k)L„(k,~„), (2. 28)

(-fop —
~ k + p) L~fa(k, (op) =& Va[G»(1, 1)+G„(l, l)]Lgf2(k, fop)+iV„G~a(1, 1)L,fa(k, fop)

+ (- ino)"'(Va[L»(k, ~.)+L»(k, fo.)+La~(» &.)j+1)

+iV„G„(1,1)L,f,(k, fo„)+(-ino)' ' V&(k) Lgf(k, fo,) (2 29)

We have made use of g, (1)=ga(1) = (- ino) fo»
homogeneous system and V~ = V~ (k = 0).

Equations (2. 20)-(2. 22), (2. 28), and (2. 29) form
a closed set of linear algebraic equations which can
be solved for I», 1.~3, 1.3~, I~~3, and L~~z. The

I

density-density correlation function in (2. 11) is di-
rectly related to I.«(k, &o„). The polarization func-
tions p(k, fo,) (i = 1, 2, 3, 4) are determined by the
Hartree-Fock single-particle Green's functions
Q

APO ]
X,(k, &o„)= ——Z, ,3 G»(k', &o„.) G„(k' —k, fo,.—(o„)

P pa (2&)

= Pg(k, —fo.),

dk'
ga(k) fop) = — 5 I q3 Gpa(k q fopr) Gfa(k —kq fop' —fop)

P p& $2ff j

= g(k, —fo„),

Xg(k fo„)= Z 3 Gfa(k &
fop ) Ggf(k —k (d„—fo„)

P p (2&)

dk'
Q(kq fop) = ——Z ~ ~g G»(kq (ops) Ggg(k —k q Q)p —fo a), p

P tp~ (21f)

In terms of spectral densities, we have (for exam-
ple)

d k' dfo d&o' No(fo) N(fo')-
(2F) 2v 2ff fo —fo —fo„

x g„(k, fo)g»(k' - k, fo'), (2. 21a)

dk' I'de d(o' & ((u)+N~(fo')+1
(27f) J 21f 2' (o + fo —fo p

x &„(k',~)&„(k'-k, ~'). (2. Slb)

Finally, the chemical potential P is determined by
inserting (2. 27) into (2. 7). We thus obtain

q =iV,[G„(1,1)+G„(1,1)+G„(1,1)]

+iV~6„(1,1) (2. 32)

in the Hartree-Fock approximation.
The Hartree-Fock approximation summarized by

(2. 15) and (2. 27) is a so-called "conserving approx-
imation" in the sense that both the self-energy and
source function can be generated from the same
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functional C(C„G,~a} by differentiation. 4' We are
thus ensured that the spectrum exhibited by L

13

&& (k, u&) will be gapless in the limit of long wave-
length. However, the chemical potential p in (2. 32)
does not obey the Hugenholtz-Pines equality

p = Zgg(0, 0) - Zia(0, 0) (2. 38)
and hence the spectrum exhibited by G & in the long-
wavelength limit will have a gap.

Making use of (2. 25) and (2. 82), we may rewrite
Eqs. (2. 20)-(2. 22), (2. 28), and (2. 29) as follows:

[1 —2VXq —2VXa]Lgg —VRXa Lqa —V„XaLa) —i(-ino) L~& a i-(- ino) Lemma= Xt+ Xa,

Xa gf+ [1 VRX4] Lga VBXaLaf 2a( ano) L1/a 2Xa y

—4VX3L11 VBXaLla+[1 VRX4 ]Lal 2i(-ino)' Lita=2Xa,

(2. 34a)

(2. 34b)

(2. 34c}

—( —inp)' 2VL« —(-inp)' VsLia+[a&„—ak +ivsGa(1, 1)+3novs]L, ~a

+ [-ivsG(a(l, 1)+npvs]Lpga = (- in()) (2. 34d)

—(- ino) 2VL« —(- inp) VsLa~+ [-iVsGqa(1, 1) +nod)Lpga

+[-(o„--a'k'+iVsGia(l, 1)+3noV, ]Lira=(-ano) ' (2 34e)

where 2V=-2V„+ V„(k) and Xp =-X a(k, —~„), etc.
It is a straightforward but lengthy task to solve
this system of five linear algebraic equations and

hence determine the density-density correlation
function S(k, p}). Since we are working in a con-
serving approximation, the resulting expression for
S(k, &) will satisfy the f-sum rule. o

In closing this section, we note that the solution
of system of equations in (2. 34) is very simple for
an uncondensed Bose gas (no = 0), namely,

A(k, ~„) by analytic continuation from the discrete
set of points ~„.

A. Lowest-Order Approximation

To begin with, we only keep terms in b, (k, ~„)
which involve explicitly the interaction potentials
to first order. We obtain, after a lengthy calcula-
tion,

n'"(k (g ) =[-(oa„+(-.'ka)a]

Xi(» ~.)
1 —2V(k)X, (k» (up)

(2. 35)

x [1 —2v(p&+ x') —v„(x4+ x4 )1

+no[V + V„(k)]k —iV G, (1, l)k . (3. 1)

A more "physical" way of expressing this result is
to write it as a sum of polarization bubbles,

X~(k, (o„)
1 —[V +V (k)] (k )

(2. 36)

where each bubble Xs(k, &u„) now contains particle-
hole multiple scattering arising from the repulsive
interaction

X1(k M )
XE(kp +v) 1 V -0(k )

(2. 3'7)

III. DENSITY FLUCTUATION SPECTRUM INCLUDING
ATTRACTIVE INTERACTIONS IN LONG-WAVELENGTH

0'K LIMIT

The spectrum exhibited by L a(k, &u), L, ~a(k, &u),

and Lf~a(k, ~) can be obtained from the condition
that the determinant b, (k, po) of the coefficients in
(2. 34) must vanish. h(k, co) is obtained from

If we restrict ourselves to a strictly perturbative
solution of b, '"(k, &„)=0, we see immediately that
the density fluctuation spectrum is given by

—(uaa+ (—,'k ) +no[vs+ Vg(k)]ka =0 . (3.2)

If we specialize to the use of purely repulsive in-
teractions, this expression reduced to single-parti-
cle spectrum derived by Bogota, iubov. Equation
(3.2) also coincides with the lowest-order results
of Singh and Kumar, who evaluated the single-
particle spectrum in the case of a system of bosons
including attractive interactions. However, the
total scattering length of the potential (repulsive
plus attractive) in the present case is negative,
and hence ~~ becomes pure imaginary as k ap-
proaches zero. It is therefore necessary to include
higher-order terms in n(k, ~„). We note in passing
that in going from (3. 1) to (3.2}, we have assumed
that the functions P(k, +„)do not exhibit any singular
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structure and hence we can multiply (3. 1) through
by

B. Higher-Order Approximation

=1+2V(Xl+ ~30)+ V.(Xl+ Xl*) (3.3)

On examining the various high-order terms in
(0((k, (d„), we find that the density fluctuation spec-
trum is determined by

~' '(»(d )= & +8k ) +2nD& [Vs4 &4 )+4VV (X -Xs)]+nok'[Vs(X4+X4 )+4«(&~s+Xs)+4V'(Xi+Xa)l

+k [no[V„+ V~(k)] —iG»(1, I)]- 4no[2V„V —V„]iG»(1, 1) = 0 . (3.4)

In the derivation of (3.4), we have again assumed
the functions )(0((k, (d„) are well-behaved functions
of k and (0(„and thus D(k, &o„) does not introduce any
new singularities (see Sec. 5 of Beliaev').

In the limit k-0, the coefficient of +„ in (3. 4)
vanishes. Making use of the fact that the last term
may be neglected since it is of higher order, we
are left with

I

and
v = koa/(16vnoa~)'~~. (3.11)

The density fluctuation spectrum at very small mo-
mentum is then

+„=4vnoa[- b/a+ 16(noa'/v)'~2 G(v)]k~, (3. 12)

where

Jgt

&u~= —4zbnok +Ak —i4ma G»(1, 1)k

where

(3. 5)
G(v)

-=—,'[(1+v')'~'+ (1+ v') '~' —v] .

It is phononlike provided

A=n~(4ma) 2)('4(0, 0)+4 1+
4 +4
V„(0) 1 Vg (0)
4ga 4 4ga

V„(0)/4va = —1,
and (3.6) simplifies to

(3.7)

A=n (4va) [2)( (0, 0)+ go(0, 0) +)( (0, 0)+4)(,(0, 0)] .

(3.8)

Proceeding in a perturbative fashion, it is suffi-
cient to use the Bogoliubov propagators in (2. 30).

I.et us now restrict ourselves to the case of zero
temperature, in which case the functions P(k=0,
+„=0)can be computed directly from (2. 30) using

1 . f cfQ)
$P„. 2g

It turns out that these integrals have already been
evaluated by Singh and Kumar, to whom we refer
the reader for a detailed discussion. One obtains

A = I(:[(I+v') '~'+ 2(1+ v')'~' —2v],

iVsG»(l, 1)=z[(1+v )'~ —v],
where

z = 32noa(vno a')'"

(3. 9)

(3. 10)

x(x|'(0, 0)+ xt(0, 0)]~ 0(1 ~ — "
) 14(0, 0(I .

(3. 6)

We now assume that V„(k) is given by (2. 17) with
b/a«1. In this case, we have

b/a & 16(noa'/v)' ' G(v) .
A plot of G(v) can be found in Ref. 6.

In evaluating the integrals involved in )f;(0, 0),
the momentum integrations are restricted to
Ik' t ) ko. It can be shown that the contributions

from the interval (0, ko) are of a higher order in
b/a than those given in (3. 12). It is easily seen
that this justifies our neglect of exchange terms for
the weak long-range attractive potential in the
Dyson-Beliaev self -energies.

This completes our proof that in the long-wave-
length 0 K limit, the density fluctuation spectrum
in the Hartree-Pock approximation is identical to
that of the single-particle spectrum in the Singh-
Kumar approximation. While Singh and Kumar did
not discuss the density fluctuation spectrum direct-
ly, they did show that the thermodynamically de-
fined sound velocity was equal to the velocity of the
phononlike single-particle excitations.

While the above discussion was limited to 0 'K,
we recall that (3. 8) is valid at finite temperatures
as well. In this connection, we note that Singh and
Kumar' have recently extended their work on the
single-particle excitations to include the lowest-
order temperature corrections.

IV. EQUIVALENCE OF DENSITY FLUCTUATIONS AND
SINGLE-PARTICLE EXCITATJONS FOR REPULSIVE

INTERACTIONS

In this section, we wish to show explicitly that the
density fluctuation spectrum predicted by h(k, (0()
= 0 is formally identical to the single-particle ex-
citation spectrum based on the Beliaev approxima-
tion, for arbitrary values of the temperature and
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wavelength. We shall set the attractive potential
V„(k) to zero for simplicity.

We recall that the poles of G, (k, w) are determined

[& —3(Z11 —Zi1)]' —[3k'- t1 + 3 (Z11+Zi1)]'+Z'13 = o

(4. 1)

where Z,', -=Z„(k, a p1). To second order in the ex-
plicit dependence on V„, the Dyson-Beliaev self-
energies are given by E1I. (6. 48) of Ref. 4. This
neglects terms of the kind V~ G, ~ G, ~ G™„which
turn out to be of higher order in a dilute weakly
interacting Bose gas. One may verify after some
calculation that

Z11(k, p1) = nV„+ npVs[4(X1+X3) +8X3 +2X ],
(4. 2)

Z»(k, —~) = 2n Vs+no Vs[4(x1+ x3)+ 8x 3+ 2x~4*]

1 —2Vs(x1+ x3) —Vs(x4+ x4 ) = 0

ha.s no solutions. To the extent that this is true,
the density fluctuation spectrum using the Hartree-
Fock conserving approximation is given by either
(4. 5) or (4. 6).

The reason that we must include terms of order
V'„ in (4. 6) is only clear after we have evaluated
the coefficients involving Xo(k, 4o). We are not

dealing with a simple perturbative expansion in
powers of the interaction. If we limit ourselves
to 0 K for simplicity, we find that the expansion
parameter is ( npV3s)'~ 3, the condensate gas pa-
rameter. Explicit calculation using (4. 2) and (4. 3)
in the long-wavelength limit gives

Z11(k + (dp) = 211pVs +
3 3 npVs (npVs) + '

2 3
14 3 g]2 noVz k

3' 2g

+ -3 (npVs) k +
79 3 )]2

Z13(k, cp) = [no+ iG13(l, 1)]Vs

+n V'[4X'+6X'+4(X'+X )I (4 3)

Inserting (4. 2) and (4. 3) into (4. 1) and using

i1 = V„[iG„(1,1)+ iG„(1,1)+ iG,3(1, 1)]

3
13(k, p13) = no Vs + 3 npV&(no V&)

720m
, (no V,3)'tpkp+ ~ ~

t1 =no Vs[1+ (5/3v ) (noV„)'t3],

(4. 8)

(4. 9)

= V„[2n - n, +3G„(1,1)], (4. 4)

we find that (4. 1) can be written as

(g + (3k ) + (g(Z11 Z11) + pk (Z11 + Z11 2P')

+no Vs(Z11 + Z11 211 2Z13)

or, more explicitly,

p1 +(3k ) +2no&Vs[(x4 —x4 )+«x3 x3)1

(4. 5)

+k Vs[no —3G13(1, 1)]

+npk Vs[4(X3 + X3 ) + 4(X1 + X3) + (X4+ X4 )]

—4npiG13(1, 1)V„+2npVs[(x4+ x4 ) —2x3] = 0 .

(4. 6)

Here we have kept certain terms which are of third
order in their explicit dependence on Vz, although
we omit terms of the kind noiG»V~y, as giving rise
to higher-order corrections. Now, if we work out
the determinant 4(k, rc) using (2. 34) to third order in

V, neglecting all terms involving products of two
or more Xo(k, p1) functions, we find that h'"(k, p1)

=0 is identical to (4. 6). As in Sec. III, this deter-
mination of the density fluctuation spectrum is
based on the assumption that

as first obtained by Beliaev. 2 If we simply used
Z'„(0, 0) and Z,3(0, 0) in (4. 5), we would have found
the slightly different expression

c =(npV„)"'[1+( / 32)(1n13V'„o)'"]. (4. 11)

This shows that the last term in (4. 6) must be in-
cluded if we are to obtain the complete lowest-order
correction to the Bogoliubov velocity (no Vs)
Moreover, it suggests that it may not be adequate
to use X, (k =0, 4p = 0) in evaluating the phonon veloc-
ity in the presence of attractive interactions, such

where p1„= (-,'k ) + (np Vs)k is the Bogoliubov approxi-
mation for the excitations. It is easy to verify that
(4. 8) and (4. 9) satisfy the Hugenholtz-Pines relation
(2. 33) and hence there is no gap in the single-
particle excitation spectrum. This is not surprising
since (4. 6) also determines the density fluctuation
spectrum and the latter was obtained using a con-
serving approximation. It is interesting to note
explicitly that in the long-wavelength limit, the last
two terms in (4. 6), each of order nppVs3 (npV3s)'13,

exactly cancel each other.
Making use of (4. 8) and (4. 9) in (4. 5), one may

show that in the long-wavelength 0 'K limit, the
dispersion relation describes a phononlike excita-
tion with a sound velocity given by

c = (npVs)' [1+(7/6w )(noVs )' + ~ ~ ~ ], (4. 10)
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as we used (following Singh and Kumar) in obtaining
(3. 12). This question requires further investigation.

APPENDIX: DENSITY FLUCTUATIONS IN RPA

Lrgg(k, Q)„)

[- (u„'+ (-,'k')'] X,'(k, (o „)—nP '
[-cg2+(~k~) ] [1—V(k) g)0(k, (o„)] +nok V(k)

(Al)
It is of interest to compare the denominator with
the Hartree-Fock expression to lowest order given
by (3. 1). It is convenient to rewrite (Al) in the
form

Xi(k, ~.)
11( 7 v) 1 V(k) 0(k )

where

1g(k, ar„) —= )(y(k, M„) +spk p gy 2)2 (A2)

Since the single-particle propagators are given by
the Hartree approximation, we have simply

0( )
dp No(eg) —N (eg, -„)

Xl k&&v
(2 )3 [~ „~]

(A3)

Finally, we obtain the HPA expression for the den-
sity-density correlation function

In Sec. II, we used functional differentiation of
the self-consistent Hartree- Fock single-particle
Green's functions to obtain the density-density cor-
relation function. We arrived at a closed set of
algebraic equations (2. 34) from which we could ob-
tain S(k, v). Since the functions X, (k, u„) involve
the true Hartree-Pock propagators, the set of
equations (2. 34) are really nonperturbative in
nature. In Secs. III and IV, we examined the den-
sity fluctuation sepctrum using these equations in
conjunction with a perturbative approach appropriate
to a dilute weakly interacting Bose gas.

If we use the Hartree single-particle Green's
functions (neglecting the exchange self-energies
completely), the structure of the equations of mo-
tion in (2. 34) is much simpler, although they still
describe a conserving approximation. We find

—2[N ((g) + 1]Imps(k, (g)

[1 —V(k)Req', (k, ~)]'+[V(k)r q,'(k, ~)]'

(A4)

This result has been derived by many authors using
different techniques (see, for example, Etters").

One sees that the structure in Sap„(k, ~) comes
mainly from structure in Imp, (k, +) for V(k) ~0 and
from the zeros of the denominator

1 —V(k) Redo, (k, &u ) = 0 (A5)

&g, (k, (o„)= noZ G~(k, (u,), (AV)

where G~~(k, ~) are the single-particle propagators
given by the Bogoliubov approximation.

In concluding this appendix, it might be appro-
priate to mention the recent work of Kerr, Pathak,
and Singwi' on the density fluctuation spectrum for
large values of k (~ 2. 5 A '). In analyzing neutron
scattering data, ' they used what might be called a
generalized version of the RPA result in (A4).
This involved (a) replacing V(k) by an effective po-
tential P(k), (b) using the true momentum distribu-
tion n~ in (A3), and (c) replacing the sharp 5 func-
tions in Imp, (k, &) by Gaussians in order to include
the damping. Frequency moments or sum rules
were then used to determine the effective potential
g(k) and the width of the Gaussians.

if V(k) & 0. We note that the single-particle spec-
trum exhibited by G 8(k, &) in the shielded potential
approximation also has a resonance given by (A5).
The reader is referred to Ref. 12 for a detailed
discussion of the solutions of Eq. (A5) in connection
with the single-particle excitation spectrum.

The complete neglect of the effect of the excited
atoms (k4 0) corresponds to setting jo(k, ~„) in (A2}
to zero. In this case, the RPA result (A4) reduces
to

S(k, (u) = 2vnok [N ((g) + 1]6((o —(u~) sgn(g, (A6)

where &2~=&, +noV(k)k . It is easy to see that this
expression is equivalent to using
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Transition probabilities for Ox lines emitted in the vacuum ultraviolet were measured using
a wall-stabilized arc discharge operating in a mixture of argon and oxygen. The lines were
emitted from a column of plasma which was observed end-on and which was characterized by
a nearly uniform temperature. Optically thin conditions were achieved by reducing the relative
concentration of oyxgen atoms in the discharge to levels of less than one part per million. Ab-
solute values for the 0 z transition probabilities were obtained by determining the oxygen-atom
density and plasma length through a measurement of the absolute intensity of the 0 x A. = 7773.4 A

line, whose transition probability is known. The following values were measured for lines in
the resonance transition array: &(D2-~&p, ~=1152~)=5. 5&& 10 sec ~; &(Sp- Pf, A, =1218A)
=1.8xl0 sec A(Pp- Sf, ~=1306A)=0.66X10 sec A(P2 g p S] & —]303 5 A) =5.9x10 sec
These values are in excellent agreement with recent lifetime measurements. Existing discrep-
ancies in the literature concerning a previous arc determination of the 0 r vacuum ultraviolet
oscillator strengths by Boldt and Labuhn are discussed. The present method is considered to
be an improvement over the method used by Boldt and Labuhn which relied, first of all, upon
extrapolation techniques to reach the linear part of the curve of growth and, secondly, upon a
complex calculation of the oxygen-atom number density using basic conservation equations.

I. INTRODUCTION

Transition probabilities for Oz lines emitted in
the vacuum ultraviolet have been measured using
a wall-stabilized arc discharge. In particular, the
following wavelengths associated with the resonance
transition array were studied: 1152, 1218, 1302,
1305, and 1306 A. These lines have previously
been investigated using electron excitation phase-
shift techniques, absorption spectroscopy, beam-
foil lifetime determinations, and arc emission
methods. Nevertheless, there exists in the litera-
ture a rather wide range of f values for these tran-
sitions.

Several measurements of the D, —D2 transition
at ~=1152A have been reported. The lifetime mea-
surements' agree almost exactly with one another
and correspond to a transition probability value of
5. 3&& 10 sec . Boldt and Labuhn, using a dc wall-
stabilized arc discharge, obtained a value of 16.5
&&10 sec-', a very puzzling discrepancy since sev-
eral N x' and C r transition probabilities obtained
using the identical method are in much better agree-
ment with the various lifetime measurements.

There has been only one reported direct mea-
surement of the 'So- P, transition at ~=1218 A:
Boldt and Labuhn obtained a transition probability
of 4. 3&&10 sec '. However, Lawrence has mea-
sured the lifetime of the 'P, level and, having as-
sumed a branching ratio of 0. 34 for So-'P& decay

out of the 'P, level, he has found it to be inconsis-
tent with the ar c measur ement. If in addition auto—
ionization processes are significant as Lawrence
has suggested, the discrepancy between the two ex-
periments is even greater.

The resonance triplet 'P-'S' has been the object
of much attention mainly because of its aeronomical
significance. An accurate determination of its
transition probability is useful also for plasma
diagnostic purposes, since the resonance triplet
is readily observed in laboratory plasmas in which
trace amounts of oxygen are present. There exists
in the literature an order-of-magnitude spread be-
tween the oscillator strength of 0.021 reported by
Parkes et al. using absorption techniques and the
oscillator strength of 0. 18 reported by Boldt and
Labuhn. Lin et al. have recentlyrepeated the ab-
sorption measurement and obtained an oscillator
strength of about 0.045 in apparent agreement with
the current lifetime measurements of Lawrence.
There still remains, therefore, a discrepancy of
about a factor of 4 between these values and the
arc measurement. Since the wall-stabilized arc
discharge is generally a rather reliable source for
determining transition probabilities, it was decided
to reexamine the oxygen vacuum ultraviolet (vuv)
lines emitted in an arc discharge in order to resolve
the existing discrepancies. At the same time it was
decided to replace the complex plasma diagnostic
method of Boldt and Labuhn with a simpler more


