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The resistive magnetohydrodynamic "tearing" and "gravitational-interchange" instabilities
are investigated in the linear incompressible limit in the absence of heating. A periodic model
is used for the initial magnetic field. The requirement that the spatial Fourier series of the
perturbation must converge uniquely determines the growth rate of the instability. At the most
unstable wavelength the tearing mode has a growth rate +7.„=3.4$ ', where S is the magnetic
Reynolds number at the Alfvbn velocity and v„ is the resistive diffusion time. The interchange
mode exhibits behavior, at small wavelengths and large gravitational fields, similar to that of
the rnagnetohydrodynamic Rayleigh-Taylor instability. The resistive mode grows for gravita-
tional fields smaller than the equivalent Suydam threshold for infinite-conductivity instability
in a sheared magnetic field. Application of these results to the solar-flare problem is briefly
discussed, in the context of the temporal behavior exhibited.

I. INTRODUCTION

When one attempts to understand the instability
~esponsib1, e for solar flares one is led to the con-
sideration of resistive mechanisms for the de-
coupling of magnetic fields and particles. '~ These
processes allow a transformation into kinetic en-
ergy of the abundant magnetic and/or gravitational
energy stored in the sunspot-connected fields of
"active regions. " The resistivity can be that due
to collisions in the chromosphere or the higher
turbulence-induced value resulting from the "flash-
phase" instability. '

The basic paper on resistive magnetohydrody-
namic instabilities of this kind was written by
Furth, Killeen, and Rosenbluth. ' This massive
work treated, in various analytically solvable
limits, all of the possible linear resistive insta-
bilities of a basic sheared magnetic field configura-
tion. In addition, the relevance of the theory to
laboratory experiments was discussed. The formu-
lation and the solutions were expressed in a unique
system of normalized variables which requires
careful attention in interpretation. The sheer
magnitude of the work and the specialized notation
have generated errors, of partial quotation or
misquotation, in later citations of the results ob-

tain ed.
Furth et a/. were most successful in explaining

the driving forces of the instability. However, in
view of the manifold possible equilibrium configura-
tions and of the many approximations needed to
make the problem tractable analytically, they were
not able to describe the general parameter depen-
dence of the instability growth rates.

Wesson' treated these instabilities by solving
their differential equations on a computer for sev-
eral different equilibrium configurations of mag-
netic field and resistivity. He found that the
growth rate of the tearing mode depends on wave-
length in a different way from that described by
Furth et al. , but showed that their central approx-
imation is valid. He also investigated the grav-
itational interchange mode under conditions in
which the tearing mode is stable.

Barstons put analytic limits on the growth rate
in the case of uniform resistivity and uniform
shear. Van Hoven and Crossv were able to remove
the uniform shear condition in the case of the tear-
ing mode. In this paper we investigate the tearing
and gravitational modes by a new method which
involves a computer search for the unique value
of the growth rate which brings about the conver-
gence of the Fourier series describing the per-



2348 M. A. CROSS AND G. VAN HOVE N

turbations of a spatially periodic equilibrium con-
figurationon.

II. BASIC EQUATIONS

We use the coordinate system of Furth, Killeen,
and Rosenbluth, 4 a two-dimensional sheet pinch
with a/ae = 0. Initially the plasma contains a
periodic sheared force-free magnetic field de-
scribed by

Bo(r) = Bo [x sinPy —2 cos Py],

where p- v/a of Ref. 4. (This differs from our
previous usage in Ref. 7, where P was equivalent
to v. )

The gravitational mode requires a density gra-
dient at the neutral sheet where B„changes sign,
so we choose the initial mass density

po(r) = (1+R sin2Py) po, (2)

where po and R are constants. Since neither the
tearing mode nor the gravitational mode requires
a temperature gradient, we assume that To and
the resistivity go(TO) are uniform.

The equilibrium configuration should have vo
= 0; Ohm's law [E+ (v/c) & B = 'll J] and Maxwell's
equations then require

a5, =q, c' a'B,
ay 4~ ey' (3)

Kl

B„(r,I) = —Q B,(n) cosnPy sinkx e "'
n- a

and

v»(r, t)= —g v, (n) sinnpy coskx e
1f =~++

(8)

where the sums run over even n for B,„and odd n for
v„. (More general functions of y were investigated,
but only the above form was found to grow exponential-
ly. )

We assume incompressibility, then use the con-
tinuity equation and Eq, (2) to get the density per-
turbation

Previous work"'~ assumes aB,„/ay = constant, which
leads to Bo -~ as y-~, a difficult boundary con-
sition. There is controversy over whether the
tearing mode exists in this case. We choose to
satisfy Eq. (3) with the initial magnetic field of
Eq. (1), which retains its form during slow resis-
tive decay. We can ignore changes in Bo during
the growth of the instability if

~» q,c' P'/4v I/r, ,
-

where is the instability growth rate and 7„ is
the resistive diffusion time.

We linearize the magnetohydrodynamic equations,
considering perturbations of the form

p (r, f) = —v, (r, f)ptI (y)/", (7)

where a prime denotes a/ay. There will be no

resistivity perturbation if we neglect compressi-
bility and collisional heating.

The linearized equation of motion is

X go JOX
~p, (y)v, = ' ' + —VPi+ptg i (8}

Maxwell's equations and Ohm's law lead to

8„= - kBov„sinPy

+ (&oc'/4~)(B', —k'Bl, ) (Io)

which, if it is used to eliminate Bq„from Eq. (9),
produces a system of coupled equations equivalent
to Eqs. (13) and (14) of Ref. 4.

III. METHOD OF SOLUTION

We multiply Eq. (9) by sin(nay) and Eq. (10) by
cos(nay) and then integrate from y = —v/P to y
=+ v/P to obtain

4mpo '(k +nP }v„(n}

mgk poPR
[v, (n + 2) + v, (n —2)]

and

+ ,"Bo [[k +—P n(n —2)] B,(n- 1)

—[k2+ P2n(n+ 2}]B,(n+ I)) (11)

g C2
~B~(n)= (k +n P )B,(n)

+-,'kBO [v, (n —1) —v, (n+ 1)]. (12)

In Eq. (11) we have used & ~ v = 0 = k v, (n) + n P v, (n).
B,(n) can be eliminated by using Eq. (12), after
which Eq. (11) reduces to

4p (o +nmw2)+F, (n)+F (n) v„(n)

2GF, (n)+ v, (n+ 2)

+ F (n)+ — v, (n —2) = 0, (13)
2G

where

p=4m ~/'qoc p, (14)

with g=gg. We take the z component of the curl
of Eq. (8) to obtain

—~po(y)(kvt, + vq', ) —~v„po(y}

= (Bo/4v)sinpy [(p~-k )B„+B,", ]

+ (gklu)vg~po (y} (9)
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FIG. 1. Convergence of
the coefficients of the Four-
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fected as p, approaches p, = 1996.
We have inverted the convergent Fourier series

to obtain the perturbations as functions of y. B„(y)
and v,„exhibit the qualitative form of Fig. 3 in
Ref. 5. For large SwefindthatB~„(y)- (sinPy land

v,„(y)- —A ly I /y, where A is a positive constant.

IV. TEARING MODE

form the normalized set of parameters used by
other authors. ~ 7

The Fourier expansion has decoupled Eqs. (9)
and (10). Our trial-and-error method of solution
begins by choosing a test growth rate p, . We then
calculate the coefficients of the Fourier series
using Eq. (13). Starting with n = 1 we note that
v, (- 1) = —v, (1) and find that

v, (3) 4p, , 2G

v~(1) a S 2 (& + v )+E,(l)+ 2F (1)+-
p

F, 1 + , 19

after which we can calculate the ratio of each
higher coefficient to n, (1) by using successively
higher n's in Eq. (13). In general v, (n) gets larger
as n- ~ so the series does not converge. How-
ever, convergence is approached as p, approaches
some critical value p, which can be calculated as
accurately as desired. Since the perturbation
functions must have a convergent Fourier series,
we conclude that p, is the growth rate of the in-
stability. The Fourier coefficients v, (n) are
shown in Fig. 1 for several trial values of P, when
& = 0. 1~, G = 0, and S= 10'. Convergence is ef-

When G=0 we obtain the tearing mode. Figure
2 displays the dependence of the growth rate p on

wave number & for several values of S. This
result agrees qualitatively with the results of
Wesson' and with our proofv that P can be positive
only when 0& && m. Furth et al. appear to find
several different relations between p and &:
p~(S/n) ~5 for moderate n &1, and p = (aS)~~3 for
small n in their Appendix D. '7 The latter result
agrees with our Fig. 2 andWesson's Fig. 1. Also,
the Appendix D assumption p» e~ is similar to our
restriction p» v~, which follows from Eqs. (4)
~d (14).

For every S there is a fastest-growing wave-
length, which we have plotted in Fig. 3. In Fig.
4 we plot the growth rate at this most unstable
wavelength vs S. The straight-line part of Fig. 4
is fit fairly well by

p=- 3 4S ' (S & 10 ) (2o)

the exponent being very close to ~7. This is to be
compared with the oft quoted result p ~ S '~, and
the Appendix D result p ~ S ' of Ref. 4.

In order to apply these results to the solar-flare
problem, we take Spitzer's forms for the resistivity
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unstable wavelength of the tearing
mode.
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account for a range of solar-flare time scales with-
out extreme assumptions concerning plasma pa-
rameters or magnetic scale lengths.

V. GRAVITATIONAL-INTERCHANGE MODES

In this section we investigate the gravitational
instability of Furth et al. 4 and its relation to the
well-known magnetohydrodynamic Hayleigh- Taylor
instability. We will consider both finite and in-

finite conductivity.
When resistivity is present, Ref. 4 found that

the gravitational instability had an infinite sequence
of possible growth rates, corresponding to a series
of eigenvalues of their parameter A. Our trial and
error solution of Eq. (13) reaches a similar con-
clusion. The coefficients of the Fourier series for
the four fastest growth rates are shown in Fig. 5
for the case S=100, @=10m, and G=5. The Fou-

~ ~ ~

P =677.38

X 274.35

-2-

-4

* ~ \

FIG. 5. Convergent
Fourier series for four
fastest growth rates of
the gravitational insta-
bility when S=10, &

=10m, and G =5.
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FIG. 6. Wavelength depen-
dence of the growth rate of the
gravitational instabili ty when
S = 100.
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where P is the inverse of the transverse scale
length and R =1 defines the density gradient in
Eq. (2). This form for the growth rate was also
found in work done by Coppi. '"

The magnetohydrodynamic Rayleigh-Taylor
gravitational instability has plasma moving across
the boundary between denser matter and its sup-
porting magnetic field. The perturbation we have
used, Eq. (6), has v, =0 at the v=0 boundary.
This difference leads us to look for an even veloc-
ity mode, described by the perturbation

rier coefficients»„(n) all have the same sign for the
fastest-growing mode, but they cross the axis one
more time for each higher-order (more-slowly-
growing) mode. The following results concern the
fastest growing mode only.

We wish to study the dependence of the growth
rate on the parameters e, S, and G. We begin
by choosing a particular S, such as S= 100, and
plotting a family of curves p(a) for different G

in Fig. 6. The structure at the left-hand side
of Fig. 6 is the tearing mode, which is dominant
for small G and n. The most unstable region,
a» 1, has p independent of n. This agrees with
the results of Appendix C of Furth et al,

We can eliminate the parameter a by restricting
our attention to the asymptotic parts of the curves
on the right-hand side of Fig. 6, for which p is
independent of n. This maximum growth rate has
the variation p=SG', which is the same as that
of Appendix C of Ref. 4. Examining the definitions
of the dimensionless parameters, Eqs. (13) through
(17), we see that the growth rate p=SGU is equi-
valent to

B„(r,f) = —Q B, (n) sinnPy sinkx e ', (23)

v„(r, t) =
2 Q»„(n) cosnpy coskx e ',

Woo

for which Eq. (13) is unchanged. Since we now
have», (1)= v, ( —1), Eq. (19) becomes

(24)

», (3) 4p(o. '+ 7(')/o('S'+ E.(1)—2G/p
»„(I) Z, (I)+ 2G/p

(25}

F,(n) = [(o('/v'+ n(n+ 2}]w'/p. (26)

Our Eqs. (14) and (16) have p and S-(1 '. Although
this is a poor choice of dimensionless parameters
when g-0, we are able to retain these choices be-
cause p and S now occur only in the ratio p/S.
One could alternatively define new dimensionless
parameters which do not contain g.

In Fig. 7 we compare the infinite conductivity
growth rate with the resistive growth rate when
S= 100. (Identically shaped curves are obtained
when S = 0. 1 and S= 104, but p changes in magni-

In the range investigated (0. 1 &S &106, 0. 1 &G
& ~) we find that the perturbation in Eqs. (23) and

(24) has a, short-wavelength growth rate, p =SG'~2,
which is the same as that for the other perturbation
symmetry in Eqs. (5) and (6). We conclude that
in the case of the resistive gravitational instability
both modes exhibit the same maximum growth
rate.

We can investigate the classical magnetohydrody-
namic Rayleigh-Taylor instability, which has in-
finite conductivity, by dropping the resistive terms
in Eq. (10). We find that this leads to the minor
change of replacing Eq. (17) with
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tude to preserve p~S. ) The infinite conductivity
Rayleigh-Taylor mode is only unstable when
G & v~/4 = Bo„/Bo, as indicated by the gravitational
analog of the Suydam criterion. When resistivity
is present the instability grows for all positive G.

The gravitational interchange instability has also
been proposed as a mechanism for solar flares. '
In Eq. (22) we find that a transverse scale length
on the order of T kilometers gives an e-folding
time I/~-1. 9T'~3 sec which can be short enough
to act as a trigger, ' as measured by the Type-III
flash, or long enough to contribute to the optical
output when the width is greater. There is a dif-
ficulty, however, in conceiving how the mass in-
version could be assembled, and whether this con-
figuration is stable on the time scale required for
its formation. '

VI. CONCLUSION

We have tried to clarify some aspects of linear
resistive instabilities in a sheared magnetic field.
For G & v~/4 the resistive gravitational interchange

mode is unstable but the magnetohydrodynamic
Rayleigh-Taylor mode is stable. At large G there
is little difference between the gravitational modes,
which all grow at the rate p= SG '

Our tearing mode growth rate at the most un-
stable wavelength, Eq. (20), is offered as a. re-
placement for the oft quoted p = S ' of Ref. 4.
Although this previous result has the advantage of
being purely analytical, it ignores the wavelength
dependence of p.

We have shown that the linear growth rate of the
tearing mode can be large enough to apply to a solar
flare. It is known that a solar flare heats plasma
from roughly 10 'K to more than 1Q' 'K. A like-
ly source of this heat, the gJ term in the energy
equation, has been ignored in almost all discussions
of the problem. The tearing mode should be in-
vestigated with both nonl. inear effects and plasma
heating included. Perhaps this will shed l.ight on
the disagreement over which instability drives
solar flares, and on the mechanism for the tran-
sition between the flash phase and the main phase.
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