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x obeys an equation formally written in the Liou-
ville form. It is not necessary that the evolution
described by the equation be a time evolution. It
may be a formal equation featuring, for example,
the variable 1/kT instead of t. Similarly, J can
have varied forms. In this paper it is 8, the op-
erator corresponding to the response. However,
an equation in the exactform of Eq. (1la) can be de-
rived, for example, for the reduced density ma-

trix Tra a p(t), with j=aLa . These other uses
of our method will be reported elsewhere.
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We compute the correlation functions {So(t)S&(0))and (SIN'(t)S~(Q)) at T = 0 for the one-dimen-
sional XY model in the presence of a magnetic field.

I. INTRODUCTION

Dynamical properties of many-particle systems
which are very near thermal equilibrium are often
studied in terms of time-dependent correlation
functions (A(y„ t, )8(ra, tt)). Here ( ~ ~ ) denotes a
thermal average in the canonical ensemble. Con-
tact with macroscopic measurements is made by
means of the Kubo formulas' and the approximation
of linear response theory.

In view of the importance of these time-dependent
correlation functions, it would be quite useful to
have some nontrivial interacting systems for which
the correlation functions can be exactly computed.
Until recently no such exactly soluble problems
were known. However, in 1967 Niemeijer~ suc-
ceeded in computing exactly the correlation function
at all temperatures,

p (R f) (St(f)SE (O)) ytMtst e tlttSt )-
for the XY model defined by

N

H= -+ [(1+y)StS"„t+ (1 —y)Sttst„+ kS*;],

where S', are —, the Pauli spin matrices. Niemeijer
found that p„(R, t) has the same form as a density-
density correlation function of noninteracting fer-
mions which have the dispersion relation

t:z-—[(cosk —k) +y sin k] (1.S)

In particular, if y40 and h 41, &~ can never vanish
for real values of k, and for fixed R, p„(R, t) ap-
proaches its t- ~ limit of M, as t ',

The purpose of the present paper is to extend
Niemeijer's work to the transverse ground-state
correlation function

(R f) QtHtstl tHtSIP )

where v=lor Y. In contrast to p„ these correla-
tion functions are not expressible as a correlation
function of a finite number of field operators of a
noninteracting Fermi system. Instead we find that
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if h&1, p and p„couple to all states of the cor-
responding free Fermi system (i. e. , to all 1, 2,
3, . . . , particle states). However, if h&1, p„„and
p» couple only to states with an even number of
particles (at least at T=O).

In Sec. II we express p„„(R,t) in terms of block
Toeplitz determinants. This formulation is valid
for all T. However, because of the block nature of
the determinants, we are only able to extract ex-
plicit information when T= 0. For this special
case, we study p„(R, f) for R large and t unre-
stricted in Sec. III. In Sec. IV we do the same for
p». We conclude in Sec. V with a discussion and
summary of the results obtained.

II. FORMULATION

To make precise the system defined by Eq. (1.2),
we must specify boundary conditions. We choose
cyclic boundary conditions so that

(2. 1)

In previous computations of the free energy, the
correlation functions at t=0, ' or p„(R, t), it was
possible to make certain particular modifications
of the boundary condition (2. 1) without altering the
behavior of the quantity computed in the N- ~ limit.
However, for p,„(R, t) and p„(R, t) we cannot be so
cavalier about boundary conditions. The point of
difficulty was recognized by Lieb, Schultz, and
Mattis (LSM)~ in their original paper and also by
Katsura and amplified in a subsequent article by
Schultz, Mattis, and Lieb on the Ising model. For
completeness we briefly summarize this work on
diagonalizing H before we turn to p„„.

LSM approached the problem of diagonalizing
(l. 2) by first introducing the raising and lowering
operators

f-1
= ( —(V eee —ei c,c,) c;-1 t

k=1
(2. 5a)

f-1
~ ~p

bf =cf exp —ni ~ c„c„
4=1

f-1
=( —()'Y, eep(„Z c', ,)0=1

(2. 5b)

In terms of these Fermi operators the Hamiltonian
(1.2) becomes

H= H'P'+H P

where (we assume N is even for convenience)

(2. 6)

N-1
ff = — ~ [c,c,„+c,„c,+y(c, c,„+c;„c,)]t t

(=1

—ee (c;, —-', ) c„,~, c(c c,~,c ))
t & t t

f=i

(2. 7a)
J(I -}

[c;c...+ c,„c,+ y(c, c, , + c,„c,)]+ t
2 j

and

—2& ~ (c&c; ——.) —[c~c,+ c,c(((+ y(c~c, +c,cN)J
t 1 t t

f =1

(2. 7b)

1 N

I+exp ivy c,c,~ t
f=1

(2. 8)

The operator P, (P ) is a projection operator for
states with an even (odd) number of c& excitations.
The decomposition (2. 6) is expected because the
Hamiltonian (1.2) with or without the boundary con-
dition (2. 1) commutes with the "parity" operator

b, =S,"+ 'S, ,

bf = Sf —iSf

(2. 2a)

(2. 2b)

N

exp im c,'c,
f=1

with

S~ = ~ (b)+b& ), S, = (b, —bq)/2i.
and

(2. 3)

[b,', b, ]=[b,", b,']=[b„b,]=0 for i&j

and anticommutation relations

(b(, b( )= 1, b, = (b, ) = 0 .

(2. 4a)

(2. 4b)

LSM then perform a Jordan-Wigner transformation
to the Fermi operator cf defined from

The operators b; satisfy the mixed set of commuta-
tion relations

because (1.2) can only change the number of c& ex-
citations by an even number. Therefore, when
acting on a state with an even (odd) number of cj
excitations, H may be replaced by FI' (8 ). To
diagonalize H, we may diagonalize H' and H sep-
arately and then throw out the eigenvectors of H'
with odd parity and the eigenvectors of H with even
parity. The difficulty in computing p„„ lies in the
fact that H' and H do not commute. Therefore
the transformation that diagonalizes H' will in gen-
eral leave H a mess.

Both H' and H may be diagonalized by the pro-
cedure of Fourier transformation followed by
Bogoliubov transformation. ~ For H

' define oper-
ators af' from

f-1

bf =exp +xi c,c„cf
A -"1

-ta /4
Z exp('jy(') ",,',

~ (+)
n

(2. 9a)
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&~/4

cy =
y

~ exp( —tf &t&„)a
(+) (+)

(+)~n

(2. 9b)

where (for convenience N is assumed even) @„"
takes the values

E
(+)t (+) i

(+)~ 1 (+)$ —& (+) (+)
~2 41

(2. 17a)

Then all g~" and g~
' satisfy the Fermion anticom-

mutation relations

y!' =+ 2v(n+-', )/N

with

n=o, 1, 2, . . ., N/2 —1 .

Similarly for H we introduce az
' by

(2. lo) (-)W (-)
(-) & ~ (-)i = & (-) (-)

~1 2 1 ' 2

and with the definition that if Q ) 0,

A(&t&) =[(cosP —h) +y sin!t&]'i ) 0

and

(2. 17b)

(2. 18)

and

-ir /4
exp( y &-&) &-»'

(-) &f&n

'f&n

(2. 11a) h —1 =lim A(&t&) for h) 1
A(o) =

o -o
h —1 = —lim A(@) for h ( 1, (2. 10)

fs /4
exp( tf &(&

& &

)

~n

where Q„' ' takes on the values

&t&„'
' = 0, + 2t&n/N, t&,

with

n=1, 2, . . . , N/2 —1.

Then we have

H = (1 —h)ao ' ao ' -(1+h)a,' ' a,' '

(2. 11b)

(2. 12)

we obtain

H = ——' Z A(@&'&)+ Z A(&t&&'&)ti«'&t ti&;&, , (2. 20a)
y (+) ~ (+)

H = ——,
' Z A(&t&& ')+ Z A(y& &)t)&,&t, q&,&, . (2 20b)

(-) (-)

It is now easy to see why the computation of
p„(R, t) and p»(R, t) involves difficulties not en-
countered in previous calculations. Consider, for
example,

p,„(R, 0) = Z ' Z„e '@ (E„ i
S*,Sn „i E„), (2. 21)

+ — D (2(cos&t&„' ' —h) [a' &"&a'!' &+a '& &a '& &]2. , +n ~n +n ~n

—2ysin&t&„' ' [a' &' &a' '& &+a' &' &a' '& &]}+—, Nh
-~n 4'n

(2. 13a)

y NQ2-1
H + —+ —+ (2 (cos!t& &+& h)[a&+&t a&~& + a&+& t a&+& ]

n=0

where Z is the partition function and I E„) is the

complete set of eigenstates of H. The operator
S 1Sg „connects only states which differ by the
creation or destruction of 2b, excitations. More-
over, we may consider evaluating p„„by writing
S1S~,1 as

S&Sn,&
—4 ( —1) (c, —c&)(ca+c~)

x(cz —c2) . (c!& —c&&)(c!'&,!+ c!&.!) . (2. 22)

a~) =cose, q~)+sino, g",",
0 = cos(3 g —sino

(2. 14a)

(2. 14b)

where p is either + or —,

tan20~ = y isn&t&(/cos&t—& h), (2. 15)

and 0& O~ & 2 m. This transformation is to be used
for each and every @„"and for each and every (t)„' '

except 0 and g. To account for the exceptional
cases (t)„' '=0, m define

Q = and (2. 16)

—2y sin&t&„" [a'&', ,a"&,
&

—a'&', &a "&,&] }+—,
'

Nh

(2. 13b)
To complete the diagonalization we make the
Bogoliubov transformation

This expression contains sums of products of an
even number of operators. In the subsequent re-
ductions carried out by LSM, only matrix elements
of products of an even number of operators occur.
But such even operators have vanishing matrix
elements between an eigenstate of H' and an eigen-
state of H . The remaining matrix elements are
between eigenstates of H' or H alone, and are
easily evaluated. Furthermore as N-~ if E„'
—E„-O, then (E„'I OIE„')- (E„lOIE„) for any op-
erator O. Hence the more elaborate diagonaliza-
tion procedure carried out above leads to the same
result in the N- ~ limit as the cruder approxima-
tion of replacing H by H, which was made in pre-
vious work. 2 5

The difficulty in directly evaluating p (R, t)
(v=x, y) is that e'"'S", e '"'SR„cannot be evaluated
in terms of matrix elements of even operators.
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Consider first an expansion in terms of the eigen-
vectors of H

p (R, t) = (I/Z) Z e-"m (Z
~

S",
~
Z„)

fn, n

)( e"( -+) (Z„~ S"„,
I
Z ) . (a. aa)

The operator S", connects eigenstates of H' with
eigenstates of H . But while the operator substitu-
tions which express S", in terms of the operators
g~" or the operators g~

' are easily obtainable,
there is no simple way to compute matrix elements
of q~"or q~

' between an eigenstate of H and an
eigenstate of H'. Therefore, (2. 23) is an exceed-
ingly awkward formula to use to evaluate p (R, t).

Rather than attack theproblem of computing
matrix elements of odd operators, we reformulate
the computation of p„„(R, t) so that we only need
make use of matrix elements of even operators.
To do this, consider instead of the two-spin corre-
lation function p (R, t) the four-spin correlation

C„„(R,t, N) = (S1,»/2(t)S1 R,»(t)S1(0)S1Rm/2(0))» I

(2. 24)
where ( ~ ~ ~ )„makes explicit that the thermal aver-

age is in a finite lattice of N spins. This four-
spin correlation can be evaluated in terms of ma-
trix elements of even operators only. Then
p (R, t) may be recovered by use of the cluster
property

lim (S;,»/2(t)S", R,„(t)S",(0)S1 R,„/2(0))„
g«ce

= lim (S", R,„(t)S",(0)S(,»/2( ) ( R, -»/2(0))»
N

=p„'„(R, t) . (a. as)

C„,(R, t) N) =4
SxT

—S'

(2. 26)
where each of the submatrices is of dimension
N/2 —R and, with 0 —m N/2 —R ——1 and
0 -n N/2 —R —-1,

The four-spin correlation function is easily re-
duced to the evaluation of a Pfaffian by the methods
of LSM. We find that

Sn = Q i(m«)nS($) = Z -((m«-1)5@(4 )t~h( PA(4, ) (2. 27a)

=1 1 i h((f) ) t -f h((f) ) t
e 1( +R-)n

T(4 ) Q R-((mIn+R)()4,
(4 ) e-ih(n)t e + e

tnt n N e +1ah(y) (2. 27b)

-k h(y ) t t h((f) ) t
Un Q i (mm+R+()n -i h(n ) t

Bh((t ) + 1(f) 8 (2. 27c)

1 1 i h((ft ) t + -f h (O ) t
I/n Q &t (n«I+2+2)n T(@) Q &i (nIm+R+2)n

@(4 )
ih(n )t-

n N gh((f) ) (2. 27d)

where

(I y-1 &in )(I ~-1 in
)

1/2

(I )(-1 -(n )(I )(-1 -t n )
(a. as)

I

tvhere

s)I Q e i(III«2)(Is( 4 )
1

(2. saa)

h+ [h' —(1 —y')]'/'
1 —y

h —[h —(1 —y')]'/2
X2=

1 —y

(a. ae)

(a. 30)

1 e-i (mnt+R)t) T( 4 )

Unt, n
= Unt, n y

I/)I t Q ei (mIn+R+2)n 7,( ~)

(2. 32b)

(2. 32c)

(2. 32d)
and the square root is defined to be positive at

Similarly, III. p„(R,t)

C,'„(R, t, N) = 4-'

0

Sn)IT

—T'

SPT

(a. 31)

We now specialize our consideration to the case
T=O. Then, as formulated in Sec. II, the evalua-
tion of p,„(R, t) is similar to the evaluation of the
correlation function /p() ()(t»») of the two-dimen-
sional Ising model carried out by Cheng and Wu. 1

The separation of spins in the vertical direction
M of the Ising-model problem is analogous to the
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time separation t of the XY-model problem.
As in the case t =0 there are three distinct cases:

(A) h& 1, (B) h&1 and (C) h= l. In this paper we
treat case (A) and (B) by modifying the procedure
of CW. Furthermore, we consider only the an-
isotropic case 0& y —1.

A. h&1

In this case, I&, I &1 and IX2I &1 and we may
follow the T & T, procedure of CW.

Consider the ratio

SxT

—T

yx SxT

VX

Sx

0

0

X11X2 X31 X41

1 2X2 X2

Xs Xs1 2

X2 X23 4

X' X4
3 3

0 0 0

5D 0 0

0 e, o

X4 X4 X4 X41 2 3 4

(3.2)

C,„(R+1,t, N)f (R, t, N) =
Ca (R, t, N)

(s. 1) 0 0 0

where C„,(R+1, t, N) is to be obtained from (2. 26)

by omitting the first of the N/2 —R rows (columns)
in the third and fourth rows (columns) shown ex-
plicitly in (2. 30) and by omitting the last of the
N/2 —R rows (columns) from the first and second
rows (columns) shown explicitly in (2. 30). Define
the 4&& 4 matrix of N/2 —R component vectors X;
by the linear equations

where the N/2 —R component vectors S& are

0

0

Application of Jacobi's theorem then gives

(3. 3)

f (R, t, N) =det

1
X1,N /2-R -1

1X2
1Xsp
1X4p

2
X1,N /2-R-1

~2~2, N/2-R-1

2Xso

X402

3X1 N /2-R-1

~3~ 2, N/2-R-1

Xs, o
3

X43

X1,N /2-R

4
X2, N /2-R-1

4Xs, o

4X40

(s. 4)

(1) 0 n —N/4— (s. sa)

We must evaluate f(R, t, N) in the N- ~ limit.
To do this we partition the indices of the N/2 —R
dimensional determinants into the sets

T" Ux X X 0 0

X X 0 0

X X 6 0

Sx'T 0 Ux yx

T» Ux 0

(2) N/4 n —N/2 —R —1, (s. sb)

Ux yx ST 0

where

X X4 0

(3. 7)

f (R, t)=lim f (R, t, N)= det
N

-X3 X4 2
3, 0 3, 0

3 4X4o X4, 0

(s. 6)
where X~ is an ~ vector obtained as the solution of

where the precise value when the separation is
made (here taken as N/4) is unimportant. In (3. 2)
the matrix elements connecting the subspace 1
with the subspace 2 are exponentially small in N
except for elements of S. However, those elements
of S whose matrix elements between 1 and 2 are of
order 1 are a distance N/4 away from the place
when the right-hand side of (3. 2) is different from
zero. Therefore, as N-~ eight elements of the
determinant in (3.4) in the lower left and upper
right quadrants vanish and we obtain

Therefore

p„,(R+1, t)XX

p (R, t)
(s. 6)

p,„(R, t) = p,„(,t)g f(~, t)
' (s. 0)

where p (™,t) is independent of t and from Paper

and S*, T", U", and V* are obtained from (2. 27)
by replacing (1/N)P~ by (I/2m) f dP.

Once f(R, t) is known we may obtain p (R, t) by
using the cluster property (2. 25) and determine the
+ sign from the known t = 0 results by continuity to
obtain
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x[U"S* ' U*+ T"(S* ) y*]s' ] (3.11)

when =.

'
means that as R- the asymptotic expan-

sion of both sides of the relation are the same.
The required inverse matrix elements may be

obtained by solving the Wiener-Hopf equation

+ S")(S' ')1„=5,„, 0& m, 0&n . (3.12)

We find

(S' 1) = (2(()-2 f d( t-x-1(1 )(-1()1/2(1 )(-1()1/2

Xgd]i]im (( g)-1(1 ) -(pi-1)-1/2 (1 ) -1tt -1)-1/2

II has the value

p (~, t) = [2(1+y)] '[y2(1 —h2)]'/ . (3. 10)

We proceed to evaluate f(R, t) for arbitrary t when
R is large by using the iterative scheme of CW.
We find from (3.14) of CW that

f'(R, t) = (5 S" '5) (1 —2(5 S' '5) '5 X'-'

procedure closely related to the T) T, procedure
of CW.

The problem which arises when h & 1 is that

1 S(2v)-h S(0)=2vt . (3. 17)

T
D (R, t, N)= I

o —U"
I

i
yx Sxti

i
Ux

i
yx

!

—is"
(3.18)

where a horizontal (vertical) bar indicates the ad-
dition of a row (column). For example,

We want to solve a Wiener-Hopf equation with some-
thing like S((t)) as the Fourier transform of the
kernal and hence it is desirable to work with a
S((t)) where the right-hand side of (3. 17) would be
zero. This will be the case if instead of S((t)) we
can deal with e (xs((t)). Therefore it is convenient
to consider besides the deter1ninant (2.31) the
determinant

(3.13)
where the contours of integration are the unit cir-
cles except that the one for $' is indented outward
near $'= $. In particular,

SO1

S 1-1 Sx

$X
0, N/2- R- 1

s"
1, N /2-R- 1

5Tsx-15 (Sx-1)

(Sx-1) (2xt)-1$ d] g|x-1 (1 )(-1 (-1)-1/2

(3. 14a)

S' S'
N /2- R, -1 N / 2- R, 0

SxN/2- R, N/2-R- 1

X (1 —p. 1$ 1) 1/2

(S" ') =(2vt) 'f d~ (-"-'(1—) 't)'"
(3. 14b)

x(1 —)(-1$)1/2 (3 14c)

Substituting (3. 14) and (2. 27) into (3.11) and then
into (3. 9), we obtain the desired expansion for large
R:

All the submatrices displayed in (3. 18) are
(N/2 —R+1)x(N/2 —R+ 1).

Consider the ratio

r (R, t, N) = [D (R, t, N)]

Tx

(3. 19)

p (R, t):=p,(")(1+(2(()'/Ay(b) t, 1/ (5 r/) '—
e-(([2(()+A(x)1 [~(t. ) 1]]

= p„( ) (1+(22) y d$ y de $"r/" ($ —)))

SxT

x det —T

—U"

0 —S" (3. 2o)

—V" SxT 0

Define the 4X4 matrix of N/2-R+1 componentvec-
tors X, by

where
(3.15)

(1 —)( t-')(1 —)(-'t ')(1 —) -'~)(1 —X '~) '"
(1 —) ))) ')(i —)(,')i ')(i —V, ')))(1 —) )7)

(3. ie)
where in the first equation of (3. 15) the )i contour
is indented outward at g = (.

Further discussion of (3.15) will be postponed
until Sec. V.

9. h&1

In this case &, ) 1 but &2 & 1 and we may follow a

-s"
i

,

—U*i
i

Ux

Uxi

Sxr
i

IU"

io

X 11 X21 X31 X1

X2 X2 x,'x,'

0 0 0

0 &vo 0

o o 5 oD

0 0 5v

Xs Xs Xs Xs1 2 3 4

X4 X4 X4 X4,
1 2 3 4
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where the N/2 —R+ 1 component vectors &// and 8D

are given by (3.3). From X, we obtain r(R, t, N)

by use of Jacobi's theorem

r (R)t, N)

Therefore

p„„(R, f) =+ D"'[."-'T(S') '], , (3. 28)

The inverse matrix elements of S may be found by
solving the Wiener-Hopf equation

~1~ 1, N/2-R

1X2
det

X3 N/2-R

1=«, o

2X1 N /2-R

2X2 o

2
X3,N /2-R

2
X4,o

3
X1,N /2-R

3X2
~3~ 3, N/2-R

3X4o

~4~ 1, N/2-R

4
X2, o

4
X3,N /2-R

4
X4, o

S, 0 „=5, , 0 —l, 0 —n
m=0

and we obtain (in particular)

[ S -1] 1 a d] ]-I-1
2vi

(3. 30)

N~ oo

2 4 2X2o X2o

2 4X4o X4o
l

(3.23)

where the 2 ~ 2 matrix of infinite dimensional vec-
tors X~ is obtained from

(3. 22)

where we have relabeled all the submatrices so
that their indices all run from 0 to N/2 —R. As
we did for h&1 we now consider dividing the indices
into two groups: (1) 0 n —N/4 an—d (2) N/2(n
—N/2 —R. Then applying the same argument as for
h & 1 we take the N- ~ limit and obtain

x(I y ]-1)1/2(I y-1]-1)-1/a (3 31)

Therefore, using (3. 25) and (2. 27b) for T" we
obtain

(R f) '~ 1 Dl/2 d( (R-1 -itA(4)1
pox ~ 4

(1 —X-,'()(I —X ]-') '"
( 32)

(1 —X2))(1 —X2f )

Finally we obtain D'/ by comparing (3. 32) with

f = 0 with p„„(R,0) as obtained from (4. 17) and (4. 21)
of II and hence find the desired result

p„,(R, f) =-,' [(1—X', )(I —X )(I —Xi'X,)-']"'

0 S

$ T 0

—T U

—U

A

U

—S

X2 X4
2 2

X2 X4
3 3

0

0 0

X1 X1 0 0
d~ ~R "1 -t f &(f)1

27ri

ST 0

S=lim! S"
N-&

U= lim U"!,

where we have used

X4 X4 0

(3. 24)

T=itm Z*! = T",

V=lim! V" .

where the square root is defined as positive at
$= —1.

IV. p„(R,&)

As for p„„we again treat two cases: h&1 and
A& 1.

A. h)1

lim limD(R, t, N)=D
R & N

(3.28)

Furthermore, by following a procedure analogous
to that of the h& 1 case, we may show that

In this case we may treat C„(R, t, N) by a pro-
cedure analogous to that used for C„„for h&1. The
principle modification is that, instead of (3. 18)
we consider

exists and is independent of t. Therefore we obtain

p„„(R, f) = —,
' [Dr(R, t)]'" . (3.27)

To obtain I'(R, f) for R large we expand the matrix
on the left-hand side of (3. 24) in a perturbation
series since the off-diagonal blocks are exponen-
tially small in R. We obtain to lowest order

D,'(R, f, N) =

Syf

s

U'!
—v'!

X2 —X4 —04

x', = x,'= s 'T(s') '8—-
(3. 28a)

(3.28b)

(4. 1)

where the bars indicate the position of added rows
and columns. The rest of the evaluation is iden-
tical and we obtain for large R
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p„(R, t) = —,
' [(1—~', )(I —~ )(I —V, '~,)-']'"

x dg tB-1 -it A(i&[(1 y-it)1

2ri

x (1 —&j'( )(1 —Xe()(1 —Xe] i)]ice

(4 2)

where the square root is positive for $ = —1.

B. h(1

We proceed as in the previous case except that
we add two rows and columns whereas previously
we added only one. Therefore consider (4. 1) with
the bars reinterpreted as signifying the addition
of two rows (columns) and consider the ratio

r, (R, t, N)=[D~(R, t, N)]

The ratio is expressible as an 8&& 8 determinant of
the X',. In the N- ~ limit we apply the argument
used before and obtain

r, (R, t)=limr, (R, t, v)
N» oo

1X1 p

X1 1
1

=~det
X3 p

X31

X1p2

2X11
2X3 p

X312

X1p5

5X1 1

5X3p
5X31

X, ,B

X118

X3pB

8X31,
(4 7)

where the X~ in the expression are ~ component
vectors obtained from the ~ set of equations corre-
sponding to (4. 4). In this set of equations the right-
hand side is

S1tT

—T'

Syr

(4. 3)

0 0

0 0 0 0

0 0

0 0 0 0

where

(4. 8)

This ratio may be obtained from the 4& 8 matrix
of N/2 —R+ 2 component vectors X', which are the
solutions of the linear equations

p 0

0
'

1
and g' = 0 (4. 8)

!
Syr X2

X3

X'

This equation may now be solved iteratively for X;.
The leading term of the iteration is'

X1) X1f~ X3$ X3$ 0B

where 5' are the eight columns of

0 0 0 0 0

0 0 SPY, 0 0 0

(4. 4) x,', = -x' —[(s")-'v's'-']
Xe Xe [(S~r) iV"S~ i]

where for fixed rows and columns

S'=IimS'! =S

(4. 10)

for i=o, 1,

0 0 0

0 0 0

0 &pv &v o

0 0 0 5g)

(4. 5)
Therefore, substituting (4. 10), (4. 11), (2. 36d),
and (3.14) into (4. 7), arguing as in Sec. III that

where the N/2 —R+2 component vectors 5v v are

&v=p

lim lim D, (R, t, N) = D
R ~ N-

is independent of t, and determining D by compari-
son of the t= 0 result with (5. 6) and (5. 12) of
Paper II we obtain the final result

0 0

(4. 6)

p„(R, t) ='p (~) (4. 12)

5p=p

0

0

0

0
1

Here p„,( ) is given by (3.8) and

d& t' 'e '"'"[(1-~-'()(I —X-'~-')1
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V. SUMMARY AND DISCUSSION [e i(21k2)+e«21 22) 2]A 1(g )A 1(&t) )~ 2(1+y)2

Time-dependent spin correlation functions are
more commonly studied as functions of the fre-
quency co and the wave number k rather than as
functions of t and R. Our expansions have all been
for R large and therefore without further discus-
sion we cannot compute the Fourier transform with
respect to R. However, if R is large our expan-
sions are valid for all times t. Therefore, defining
the Fourier transform of p„„(R, t) —p„„(~,t) with

respect to t to be

Both (5.2c) and (5. 2d) vanish unless,

2(o „&(v&2(h+1)

where

&d „=1—h if 1 —y —h

=y[1 —h(1 —y)']'/ if 0 —h&1 —y

(5. 2d)

(s. s)

(s. va)

(5. Vb)

p„„(R,")=f" dte'"'[p„„(R, t) —p„„(-,t)], (5. 1)

we find from (3. 15), (3. 33), (4. 2), and (4. 12) that
for h&1, 0 —y —1,

X
-1

(e +ei ik&u&)R -ik&~)R)
dk kM (co)

(1 '-1eik(~))(1 '-1 -ik&ra)) 1/2

(I '-1 ik(&a))(1 '-1 -(k(au))

(5. 2a)

p„(R, (u) = —,'[(I —Z22)(1 —X,2)(1 —~, 'X2) 2]'/

where k(&u) satisfies

&u= A(k) = [(cosk —h)'+y sin'k]' ',
with

0 —A —n .
From (5. 3) we see that (5. 2) vanishes unless

(s. 3)

(s. 4)

x — (e' '"' +e ' '"' )2X2&u/(I+y), (5. 2b)
&fA(k)

k=k(~)

The fact that for h & 1 and R» 1, the quantities

p„, and p,„ depend on &u only through k(&o) may be
interpreted to mean that in (5. 2a, ) and (5. 2b) we are
observing the one-elementary-excitation contribu-
tion of p (R, &u) from elementary excitations with
the dispersion relation ur = A(k) (see Fig. 1). The
fact that for h &1 the quantity p (R, ~) depends on
&u not as k(~), but as an integral over k, and k2

satisfying &u = A(k, )+A(k, ), implies that there are
no single-elementary-excitation contributions to
p (R, ~) and that the first nonvanishing contribution
is that from the two-elementary-excitation mode.

Of course, (5. 2) is not the complete expression
for p (R, ~). It is merely the first term in an ex-
pansion. This expansion was originally conceived
of as an expansion whose orders of magnitude are
(e P. However, each factor of e comes from
an integral like Jd) ( e " '". Therefore, an
equivalent interpretation of the expansion is that
we are expanding p„„(R, t) in terms of 1, 2,
n, . . ., elementary excitations. If we continue the
expansion of higher orders we observe that for
h&1, the quantity p (R, t) has contributions from
1, 2, 3, . . . , elementary excitations. However,
if h& 1 the only contributions are from states with
an even number of excitations.

%hen h & 1, the vanishing of p„„when ~ & h- 1 is
expected from (2. 23). If we set T= 0, this expan-
sion reduces to

h —1& co& 5+1 .
Similarly we have for h & 1, 0 & y —1,

(s. s)
2.25

p,„(R, &u) = —[2(1+y)] '[y (1 —h )]'
2 dg)

dp2 5 A (I5&)+A pz) —u e'"'

~

21 A(y, ) A(y2)
2 A($2) A(Q))

(5. 2c)

l.75

I.50

I.25
A(k)

0.75

0.50

0.25

p„(R, cu) =[2(1+y)] [y (1 —h )]'

1 r

dy25(A(@, )+ A(y2) ~) e'R" 1'2—'

0.' 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O
k/~

FIG. l. A@} as a function of A for various values of
h withe =2. Note that h=A(~} —l.
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p„„(R, t) —p„„(,t) = 5 (E2I S(]I E }e"'
yt ~ E WE()

"(E
I
s",

I E&]} (5 8)

Since J& —Eo is made up of a sum of a finite number
of A(k) and since for h& 1 we have A(k) & h —1, the
Fourier transform of (5. 8) will have to vanish if
co & h - 1. However, the vanishing of p„„for
re& 2(d „shown in (5. 6) for h&1 does not follow
from these energetic considerations alone.

The vanishing of p„„(R, (d) when &d & h —1 or
m & 2' „is a property of the correlation function
of T=0 only. If T&0 the expansion (2. 23) is still
possible, but in this case the dominant contributions
to p„„come from E = (ff} and, owing to the ex-
istence at T & 0 of hole as well as particle excita-
tions, there will exist states E„(for example, the
one -hole-one -particle state) for which P —E„ is

p (k, (2]) = Z e(hs p„„(R,(d),
R =-~

(5. 8)

we obtain for h & 1

arbitrarily small (and even negative) ~ Therefore,
if T&0 we is general expect p„„(R, (d) to be non-
vanishing over the entire real co axis. However,
if T is sufficiently small and h & 1 the contribution
from the one elementary excitation is still expected
to make the largest contribution.

If we interpret (5 ~ 2) as the contribution to
p, (R, &d) from the one-excitation (h & 1) or two-
excitation (h& 1) states, we may Fourier transform
the results with respect to R and interpret the re-
sults not as an expansion in terms of a small param-
eter but rather as an expansion in the number of
excitations. Defining the Fourier transform

dA(k) -1
(1 y-(e(k(u))(1 ](-1 (k(o}))-1/2

p,„(k, ~) ='-.' [(I —]&2')(I —](,')(I —](,']&2)]"'[6(k—k(~))+ 5(k+ k(~))]
dk ]&=2(„} 1 —X2e' '"' 1 —]e(2' '"')

and

—4 —
p

—
g

—
y g Q CO-= -,' [(1—X2)(I —X-2) (I —X-'X }]"45 (~ —A(k))

(1 —Z2e"}(1—/( e-"}

dA k)
p»(k& (u) =4 [(1—Xz)(1 —X1 )(1 —V( )] [5(k —k(&u))+5(k+k((u))]

& 2Ã2~/(I+y)
k=k (f41)

=-,' [(1—](22)(1 —]&12}(1—X1(X2)](/46(&d —A(k)) 2X2&u/(I+ y)

(5 ~ 10a)

(5. 10b)

and for k& 1

p„(k, )=[2(1+y)] [y(1 —h')]' '-', [1—oosk]'(Ah'} ' 2[A(k) -A(k-2)]}
A k2) A k1) dk1

(5. 10c)

p„(k, }=[2(1~ y)] [y(1 —h}]y [osk —1] A (k)A (k)1 (1 1') ( [A(k) A(k —k)]) (2100}
1

where

kg+k2=k,

A(k, )+ A(k2) = &d.

(5 ~ 1la)

(5. 11b)

Finally we consider the explicit asymptotic expansion of p„„(R, t) when either R» t or t»R. If R- ~ and
t is fixed we obtain9 for h & 1

p (R t) p (R 0) 2 (l ~[2)2/4(1 ~[-2)1/4(I /[-1~ )(1 ][-2g-1)$/2 ((-1/2(I 4 )2][ -2R-1/2(t /R) (5. 12a)

p (R&t)-p (R 0)- —
IN]I (1 —/[2) / (1 —][( ](2)(1 —]( ) / (1 —]& X )2/ / (1+ ) A.

" R2/ (t /R) (5. 12b)

for 1 —y &h &1,

p„„(R, t) —p„,(R, 0)--~2' (( [y (1 —h )] / (1+y)(I-]& ]( ')(1 —]&1 /&2)(][ —1) ]& R (t /R)

P (» t)-P (R, 0)-222' (( '(I+y) [y'(I h')]"4i&'""R '(t-'/R) .

for 0 «g~& 1 y

(5. 12c)

(5. 12d)

p„(R& t) p„(R, 0)-*(( '-(1+y) [y'(I —h')]' 'c('"R '(t'/R) Re(2e '""(1—&2 ) (1 —e '") (n '" —1) 1
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+ I""-e '"I ll - n' ""1(n 1) [3(n e '" n-e'")(n 'e'" n—e 3) '+1]),
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(5. 12e)

p»(R, t) —p„„(R,O)-ftt» (1+y)[y (1 —h )] / (n —n ) n "R (t /R)ReI(n e'" —ne '3) / (ne'" —n e '") / 3,
(5. 12f)

where

(5. 13a)

and

&C&
= cosh/(1 —y2)'/2 &0. (5. 13b)

If R is fixed and t-~ we obtain for h&1

,„(R, t) - —'(2») '/ [(1—)& )(1 —X )(1 —)&. 'A ) ]+4 t '/ (e'/ (1 —)&. ,')()& —1} '(h —1)'/2 (h+y 1)—~ e '"""
(- 1)" " ' (1+ )i ') (1+ L) ' (h+ 1)' (h+ y + 1) '/2e '"""), (5. 14a)

p»(R, t) - —, (2/w)'/2[(1 —)O (1 —)& &2)(1 —)&. ,')&2) ']'/'&2(1+ y) 't '/2

&((e
ri /4(h 1)3/2 (h+ y2 1) &/2e ii(&& 1& + ( 1)Reri (h+ l}3/2 (h+ l. y2)-&/2e ii(h+&&). (5 14b)

for 1 —y~&h&1,

p„„(R,t) -[2(1+y)] '[y (1 —h2)]&/ (1 —(4») '(- 1)"h [(1—h )(h —(1 —y ) )] '/ e 2"t '),

,„(R,t) - —,')iz (1+y) [y (1 —h )]' » '( —1)"[(1—h2)(h —(1 —y ) )] '/ e "t ';
and for 0 &h&1 —y

p„„(R,t) -[2(1+y)] '[ (1 —h2)]'/'Il+ (42t) '
( —1)"'e"/2h [(1—h )(h2 —(1 —y2)2)] '/2e 2"

+cos (R+1) 82 ir& (1 —y ) 2[i»2 —1+h] [(1-h)(l-y —h)(1 —y +h)(1 —y —h)3] '/ e "'"2' "&

(5. 14c)

(5. 14d)

+ (-1)Rr'cos(R+1) 82 &r&-' (], —y ) [ir& —1 —h]2[2(1+h)(l —y +h2)(1 —y2 —h)(1 —y + h)3]'/ e "'"o""',
(5. 14e)

p (R t) &Z 2 (1+ y)[y2 (1 h2)]1/4 && 1t 1((—1) [(1—h2)((1 y2)2 h2)] &/2eri/2e-2i i + 2
e-ri/2 ir&-& (1 —y2)-& e-2i&Rp

+ W2 cos R8&& [(1—h) (1 —y 2+ h) id, (1 —y 2)] ~2 e """'"»'

+»2 ( —1) cosR 83[(1+h)(1—y2 —h) id&&(1 —y )] '/2e '"'"'"i&', (5. 14f)
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