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Molecular-dynamic studies of the kinetic correlation functions for shear viscosity and

heat conductivity of hard disks are consistent with the asymptotic reciprocal time behavior
1/S predicted by hydrodynamics. However, this hydrodynamic description, which predicts
divergent transport coefficients, must be made self-consistent by introducing time-dependent
transport coefficients, leading to a decay of 1/SV"(1nS), indistinguishable from the 1/S behavior.
The hydrodynamic model predicts no such lang-time behavior for the potential contributions.

A number of investigators have come by a vari-
ety of techniques to the conclusion that autocorre-
lation functions involving kinetic flow behave in a
non-Markovian manner indefinitely, leading in two
dimensions to divergent transport coefficients.
This behavior was suggested by a molecular-dynam-
ics study of the velocity autocorrelation function at
fairly long times which could be almost exactly re-
produced by a hydrodynamic model. In this hydro-
dynamic model, the velocity of a small volume ele-
ment is followed as it slows down in a large body of
Quid which is initially at rest and characterized by
a viscosity and compressibility. The hydrodynamic
Qow field developed around the initially moving vol-
ume element also agreed nearly exactly for times
greater than about 10 mean collision times with the
correlations which developed in a molecular-dy-
namic system in the motion between a molecule and
its surrounding molecules.

In this paper the asymptotic form of this hydro-
dynamic flow field is used to determine the long-
time behavior of various other correlation functions
occurring in the evaluation of transport coefficients.
Comparisons are then made with molecular-dynam-
ic calculations of the same correlation functions
for a two-dimensional system of hard disks. The
presentation here is confined to two-dimensional
systems in order to emphasize how the inconsisten-
cy, caused by a hydrodynamic model with finite
transport coefficients that predicts divergent ones,
can be removed by the use of time-dependent trans-
port coefficients. The introduction of these time-
dependent transport coefficients into the Navier-
Stokes equations makes it also possible to predict
correlation-function behavior at times shorter than
those for which the asymptotic form is applicable.
The quantitative determination over what time scale
such a model is valid awaits numerical solution of
the modified hydrodynamic equations.

The calculation of the asymptotic decay of the dif-
ferent correlation functions will first be demon-
strated for the shear viscosity, ignoring the self-con-
sistency problem. The shear viscosity is related

to the autocorrelation of the stress-tensor elements:
~ ~ ~ ~

&~~=~~ «X~+~i x~3'~ ~

where x; and j& are components of the velocity of
molecule i, and x& is proportional to the x compo-
nent of the force exerted on molecule i. Since J
consists of a sum of a kinetic and a potential term,
the autocorrelation function of J consists of three
terms which will be discussed separately. The
kinetic term requires evaluation of

pz(s)=(Z, x, (t) i)((t)Z, x, (t+s) j, (t+s)), (1)

where the bracket indicates an ensemble average
which in the molecular-dynamic calculation is ac-
complished by averaging over the initial times t.
Instead of dealing with a finite system of N particles
with periodic boundary conditions as required for
comparison with molecular dynamics, the formula-
tion, for brevity's sake, is carried out for infinite
systems with the understanding that a correction of
1/N must be added to the finite px(s) just as in the
diffusion coefficient and for the same reason.

Assuming that the correlated motion of molecule
j at time t+s is due to the correlations which have
been set up by a molecule p at time t, we have

x& (t+ s) = [v„(r», s) x~ (t) —v, ( r», s) j ~ (t)], (2)

where v„and v, are the parallel and perpendicular
components of the normalized hydrodynamic flow
field set up by a molecule p at a molecule j located
at position r» relative to the initial position of
molecule P. The minus sign arises from a conven-
tion adopted when one rectangular coordinate sys-
tem is projected onto another one. The hydrody-
namic flow field has previously been given in terms
of polar coordinates centered at p involving the dis-
tance r between particles p and j and the angle ~

between the pj direction and the original direction
of motion of p:

v„=R(r, s) cos 8 —T(r, s) sin~8,
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v, = [R(r, s)+ T(r, s)j sin8cos8 .
Equation (2) is now used to form

Zx, (t+s) ji, (t s)=~ f Zd r„

x (vI xp —vi yp) (v)) yp+v) xp)~ (4)

where the summation over j has been replaced by
integration over the position r», normalized by
the area A of the system of X molecules. When

Eq. (3) is substituted in Eq. (4), the subsequent
angular integration leads to elimination of the v„
&& v, cross terms, so that the kinetic autocorrela-
tion function given by Eq. (1) can be expressed in
terms of its initial value by

pr(s)= px(0) A
—

2
dry (R —T)

0

Finally, the hydrodynamic flow field to be substi-
tuted into Eq. (5) consists in the late time limit of
two well-separated parts. A vortex part centered
at the origin and spread over a distance of (4vs)'
where v is the kinematic shear viscosity equal to
gA/mN, takes the form

R —T= (A/4Nvvs) e " ~ "'.

The acoustic part centered at a distance cs, where
c is the sound speed, has the form

the equation of state expressed as PV/NkT 1-.

The kinetic potential or cross term in the shear-
viscosity Butocorrelation function,

P~o(S) = (Z; X; (t) y, (t) Z, X, (t+ S ) y, (t + S )) (9)

can be expressed in terms of the hydrodynamic flow
field analogous to Eqs. (2) and (4) as

Q x, (/+s) y,. (t+ s) =A Qd r»
P

X (v ) xp vg y p) [yp (t) +y» j (10)

The terms v„y» and v, ( y~+ y») vanish upon angular
integration in view of the angular dependence given
by Eq. (3). Furthermore, the v„ term does not con-
tribute either, because of conservation of momen-

tum, so that the right-hand side of Eq. (10) is zero.
The conclusion is that in the hydrodynamic limit the
cross term of the autocorrelation function has no

1/S tail. Furthermore, since the potential-poten-
tial term in the viscosity autocorrelation function
involves the same factor as Eq. (10), that term in
the long time limit has no 1/S behavior either.

The thermal conductivity in the microcanonical
ensemble considered here is related to the autocor-
relation of an element of the energy-flux vector

eT =Z)(X 8(+X( 8 )

where

A 8
R —T = — 3/g d(d4¹

+& -(T-co) /&

(
3 g2 )1))3

where 5 =re/2v', T= cas/2v', and v' is the
standard dissipative coefficient which describes
the spreading of the acoustic wave

Nm v'/A = K+ )7+ X (Nk/C„—Nk/C~ ). (7)

In Eq. (7), x is the bulk viscosity, X the thermal
conductivity, and C„and C~ the molar heat capacity
at constant volume and pressure, respectively. The
integration in Eq. (5) can now be performed, with
the result

pr(S)/p@0) = n„/S,
where S is the average number of collisions per
molecule and

and V;; is the potential energy of interaction between
molecules i and j. Thus the kinetic-kinetic term in
the autocorrelation function is

p„"(s)= (Z;x;(t) [-,'m u'; (t)]

XZ;x& (f+s) [—,
' m uz (f+s)]). (11)

The long-time behavior of i& is again determined by
the hydrodynamic flow field as given by Eq. (2), but
for the kinetic-energy term the cylindrically sym-
metric pressure wave contributes as well as the
flow field given by Eq. (3). This latter flow field
has a dipole character and represents the flow of
momentum. Thus

—,
' mQ~x~ (t+s) u~(t+s)

= fZ~dr» (v„x~ —v, y~) [A~/N(1+y)], (12)

in agreement with previous results. ' The trans-
port coefficients are given relative to their low-
density limits (zero subscript), and y represents

where A~/N(1+y) represents the energy of particle
j at x~, which is correlated with the energy of
particle P at earlier times. Similar considera-
tions have led to the following expression for the
kinetic thermal-conductivity autocorrelation func-
tion:
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pr(S)/p'„(0) = a,JS,
where

TABLE I. Comparison of the cross and potential con-
tribution to the viscosity and thermal conductivity with
the Enskog theory at various densities.

'g0Nk X0
A./Ao y /y p)c/p)e p) /p)P

Nk/C „—Nk/C p 2y

q/p)p+ K/qp+ (4y/X p)(Nk/C„—Nk/Cp) m

1.4
2
3
5

1.11
1.06
1.05
1.04

1.13
1.06
1.05
1.05

0. 75
0.96
l. 00
1.04

1.57
1.01
1.00
1.00

It remains to prove that both the kinetic-potential
and potential-potential parts of the thermal-con-
ductivity autocorrelation function do not have a
similar term.

Now that it has been shown that the kinetic term
of all the transport coefficients, that is the integral
of the corresponding autocorrelation function, di-

Xs/)Ip= p%3p'A/Ap, Xs/)b. p =(0. 872p'/P3) (Ap/A) y,

'0s/ 6p= (p''/R3) A/Ap, qg/qp (0. 87-—3p/+3) (Ap/A) y, K/qp

= (1.246p'/v3) (Ap/A) y.

verge as 1ns in the long-time limit, it is necessary
to reexamine the hydrodynamic model which orig-
inally assumed the existence (finiteness) of these
coefficients. It is clear that the usual expressions
which consider, for example, the viscosity as the
proportionality constant between the shear stress
o and the shear strain rate 4 must be generalized.
This generalization is taken to be

0.020

0, 015
(14)

0.010

The argument then is that at late times the strain
rate is slowly varying so that i can be expanded in
a Taylor series about t=s. Keeping only the first
term in the expansion permits o(s) to be written as
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FIG. 1. Comparison of the kinetic autocorrelation
function for thermal conductivity X calculated via molec-
ular dynamics (x, 504; 0, 1672 particles) at long times
with the prediction of the hydrodynamic model (solid line)
at an area relative to close-packing &/&0 of 2. Similarly
for the viscosity, except only the 1672 particle results
are given (C). The vertical bar at 8 of about 10 mean
collision times in the thermal conductivity indicates the
typical uncertainty in the run of 10 collisions. The
errors in the viscosity are larger. The autocorrelation
function plotted is the one in excess of the predicted by
the exponential decay of the Enskog theory and, further-
more, 1/~ has been added in order to correct the finite
particle result to an infinite system.

1.00—

10 15 20 25

FIG. 2. Integral of the kinetic (K), cross {C), and.

potential (P) correlation functions for the thermal con-
ductivity as a function of the upper time limit of integra-
tion at &/&0=2. Results are given relative to the infinite
time predictions of the Enskog theory (subscript E). The
curve through the points of the kinetic curve is drawn only
for contrast.
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o(s) =i(s) q(s), where

q(s)=, ' p„(t)dt,
0

(16)

which in the infinite limit reduces to the usual ex-
pression. The generalization represented by Eq.
(14) can be shown to be compatible with the fre-
quently discussed frequency-dependent trans-
port coefficients by taking the Fourier transform
of the expression. Qne of the most important
properties of this generalization is that it is pos-
sible to show that at late times the solution of the
hydrodynamic model are the same as the ones ob-
tained above except that the transport coefficients
are simply replaced by their time-dependent equiv-
alent. Thus, for the diffusion coefficient I, we have

p (S)/p (0) =on(S)/S

where

D(S) g(S)
(yn S — +

p QQ

(16)

The self-consistent solution of Eqs. (15) and (16)
is then that at late times

p(S) cc 1/S g(lnS),

so that D, or for that matter any of the transport
coefficients, behaves as D = (const+ lnS)'~ compared
to the D = const+ lnS behavior tested previously.
In order to distinguish between these two functional
dependences on time, it is necessary to have accu-
rate data available over several decades in S beyond
where the asymptotic limit becomes valid (about an
S value of 10 mean collision times). This seems at
best difficult by molecular dynamics, since for 1000
particles, boundary interference distorts the behav-
ior of correlation functions beyond about 30 mean
collision times.

Comparison of the theory with molecular dynam-
ics for the thermal conductivity and viscosity pre-
sents an additional problem inasmuch as the data is
much less precise than for diffusion for a given
length run. This is because in a given time step
every particle diffuses but that represents only a
single change in the state of fluctuation necessary
to describe the thermal conductivity or viscosity.
Hence, the statistics are reduced by a factor of N
for these properties. The molecular-dynamics re-
sults, obtained by a previously described method, "
and their accuracy after a long run, are shown in

Fig. 1 together with the hydrodynamic predictions
as given by Eqs. (8) and (13), where the Enskog val-
ues for the transport coefficients have been substi-
tuted into the equations. Table I indicates that this
is sufficiently accurate for present purposes. All
that can be said about the comparison carried out
at the four different densities, of which Fig. 1 is a
typical example, is that the computer experiments
are not inconsistent with the theoretical predictions.

For the cross and potential correlation a plot, as
given in Fig. 1, would not look substantially differ-
ent. It thus appears that if one is to believe the
theoretical prediction of no tail, it is dangerous to
assume that beyond 10 mean collisions the asymp-
totic decay has been reached. By luck such a short
time appears to be sufficient for the kinetic terms.
For the cross and potential terms, the behavior be-
tween 10 and 25 mean collision times correlates
with the deviations from the Enskog theory. These
deviations, as given in Table I, are also due to col-
lective effects persisting for long times but not nec-
essarily for the very long times leading to the 1/S
tail. Indeed, it is this observation that lends en-
couragement to the idea of using the same hydro-
dynamic model with time-dependent transport coef-
ficients to explain the behavior of all the correlation
functions in this intermediate time regime.

In Fig. 2, the approach of the cross and potential
part of the thermal conductivity to their plateau val-
ues is compared to that of the kinetic part. Pur-
posely, a case has been shown where the deviations
of all terms from the Enskog theory are compar-
able. It is evident, even though the cross and po-
tential curves are still rising, that they are nearer
to reaching constant values than the kinetic curve.
If a similar plot had been made at A/Ao= 1.4, espe-
cially for the viscosity, where the deviations from
the Enskog theory are large (as shown in Table I),
the potential part would have had a similar rise to
that of the kinetic part; on the other hand, and most
significantly, the cross term would have shown a
substantial drop. Thus, deviations from the Enskog
theory for the cross and potential terms involve
many-body correlations of quite long duration, and
from the present computer experiments it can not
be concluded that they do not lead to a 1/S tail.
That conclusion can be arrived at only from the
hydrodynamic model.

We wish to express our usual gratitude for inval-
uable help to our faithful programmer, M. A. Man-
sigh. The work was performed under the auspices
of the U. S. Atomic Energy Commission.
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The density fluctuation in a Bose gas interacting via a strong short-range repulsive potential
and a weak long-range attractive potential is studied by the methods of quantum-field theory.
The density-density correlation Rnction is generated by taking the functional derivative of the
single-particle matrix Green's function G~(1, 2) with respect to an auxiliary scalar field. For
G~(l, 2), we use the Hartree approximation for the attractive potential and the Hartree-Fock
approximation for the short-range repulsive potential. We show that the density fluctuation
spectrum is identical to the Beliaev approximation for the single-particle excitation spectrum.

I. INTRODUCTION

Beginning with Bogoliubov's classic work in
194'7, there have been many studies of an interact-
ing Bose gas using field-theoretic techniques.
We mention specifically the important work of
Beliaev, '3 Hugenholtz and Pines, 3 and Hohenberg
and Martin. With few exceptions, these calcula-
tions are mainly concerned with the spectrum of
the single-particle Green's function C~(k, v). In

the present paper, we compute the density-density
fluctuation spectrum at finite temperature using
the Green's-f unction method. To be more specif ic,
we study S(k, ar) for a system of bosons interacting
via a strong short-ranged repulsive potential and a
weak long-ranged attractive potential in the Hartree-
Fock approximation. This model of an interacting
Bose gas has been studied by Huang' and more re-
cently by Singh and Kumar. ~ However, these
authors only considered the single-particle spec-
trum.

We believe our results give further insight into
the general question of the equivalence between
elementary excitations and density fluctuations in
a condensed Bose system. As is well known, it is
this equivalence which is at the center of the phe-
nomenological theories of Landau and Feynman.
Moreover, it is this equivalence which makes it
possible to study the single-particle excitations
(which determine the thermodynamics) by neutron
scattering. At the present time, the only rigorous
nonperturbative results are those of Gavoret and
Nozieres. Summing up self-energy contributions
to all orders in perturbation theory, they obtained

((u &0)

S(k, (o ) = 2vnk 5((o —c,k ),
ImGn(k, (o) = (vno/n)me~25((oa —c)k2)

in the limit A -0 and 0 K. The phonon velocity
c, is given by the usual thermodynamic expression.
In their derivation, it was assumed that the Dyson-
Beliaev self-energies could be expanded in powers
of k and &u.

In Sec. II, we use the Hartree Fock (Gir-ardeau-
Arnowitt or GA) approximation to generate the
two-particle Green's functions by functional dif-
ferentiation with respect to an external field. This
is an example of a conserving approximation in
the sense of Baym and Kadanoff. e The two-

particle potential is assumed to have a Fourier
transform V(k) and is split into a short-range re-
pulsive part Vs (k) -=Vs and a long-range attractive
part V„(k). The Hartree self-energy involves
Vs(k)+ V„(k) but in the exchange term we only con-
sider Vs(k). The neglect of V„(k) in the exchange
term is justified in one limit discussed in Sec. III.

In Sec. III, we solve the equations of motion ob-
tained in Sec. II using perturbation theory and
show that the spectrum of the density-density cor-
relation function is phononlike at very low momen-
tum. This is obtained for zero temperature and
is identical to the single-particle spectrum in the
Singh-Kumar approximation. '

In Sec. IV, the equation determining the density
fluctuation spectrum for a purely repulsive short-
range interaction is shown to be identical to the
Beliaev expression for the single-particle spec-


