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H. =~A(O)~~,'[,+Z A(4 )h,' &, .
y-AQ

(5. 7)

Because of the change of basis, the even $ excita-
tions of H above the new vacuum 10' ) are eigen-
states of H; i.e. , because

cry(i Ent!'q,"(=-ex zc.(,.), (S. sl')
evenness and oddness have switched. 10') is de-

can proceed to discuss the spectrum of H in this
representation, but one is misled by so doing. The
misconceptions that arise are caused by one's de-
sire to label states q' "IO ), P 40, as single-
particle states and, correspondingly, single spin-
wave states. However, they are not such states
because A(0) & 0. It is better to transform $~

=g,' ' for Q 40 and f0=go '. Then for k&1

fined by $~ 10')=0, all P . It is now easily seen
that the ground state of 0 is doubly degenerate with
eigenstates 10„)and 10'). The first excited states
of 8 consist of the two particle g" excitations of
0' and the two-particle f excitations of H . These
can be interpreted as two spin-wave states.

Therefore, for h & 1 the ground state of H is non-
degenerate with energy zero and is the ground state
10.) of H'. The first excited states n~ "10 ) (N
single-particle states) come from H as given by
(5. 4) and are single spin-wave states with energy
equal to A(Q ).

For h & 1 the ground state of H is doubly degen-
erate and consists of the ground states, 10,) and
10'), of H' and H, respectively. The first excited
states are the two-particle states, q,'; q~. 10,)
and $~- )~&10'), of H' and H as given by (5. 3) and
(5. 7), respectively. There are N' —N such states,
and they correspond to two spin-wave states.
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We show that the circle theorem on the distribution of zeros of the partition function breaks
down for the ferroelectric potassium dihydrogen phosphate (KDP) model if the field lies outside
the first quadrant. We also use a recent result by Suzuki and Fisher to establish the circle theo-
rem for the antiferroelectric F model with a staggered electric field. Numerical results on
the distribution of zeros for a 4X4 lattice are given.

1NTRODUCTION

A central problem in the theory of phase transi-
tions has been the investigation of the distribution
of zeros of the partition function. ' For the Ising
ferromagnet in a magnetic field, I ee and Yang'
showed that all zeros of the partition function lie on
the unit circle, a result known as the "circle theo-

rem. " This circle theorem has recently been ex-
tended to a number of other models. One particular
model which has been discussed is the ice-rule fer-
roelectric model of hydrogen-bonded crystals. 3

For the ferroelectric potassium dihydrogen phos-
phate (KDP) model Suzuki and Fisher~ (SF) showed
that all zeroes of the partition function with an el.ec-
tric field in the first quadrant lie on the unit circle
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FIG. 1~ Vertex configurations and energies of the
KDP model in a direct electric field (Jg, g) and the I" mod-
el in a staggered field. The staggered field varies sign
from site to site (see text).

at temperatures below the transition temperature To.
This result has been confirmed by numerical cal-
culations carried out by Katsura, Abe, andOhkouchi4

(KAO) for finite lattices. KAO have also computed
the zeros of the antiferroelectric F model in a direct
field, and found that, in general, they do not lie on
theunitcircle. Twoquestionsnowarise: (i) Does the
circle theorem hold for the ferroelectric KDP model
with field outside the first quadrant? (ii) Is there
a circle theorem for the F model in a staggered
field? The second question is of importance because
in an antiferroelectric model it is the staggered
field which plays the role of a direct field in a ferro-
electric model. We address ourselves to these two
questions in the present paper.

CIRCLE THEOREM

To answer the first question we have carried out
numerical st.idies on the partition function of a 4 &4
KDP lattice with an electric field in the second
quadrant. Our result shows that the circle theorem
does not hold in this case. In fact, it is easy to see
the breakdown of the circle theorem by considering
just a 1 &1 lattice. We remind the readers of the
definition of the model as that given in Fig. 1.
Let us consider an electric field (h, v) in the second
quadrant with h= —v. For a periodic 1 &1 lattice
only the four vertices (l)-(4) are allowed, the par-

FIG. 3. Distribution of zeros for the 4&& 4 KDP lattice
with h =- y a' &/k T = 0. 5 (T & Tp) .

tition function then takes the form

2=2+v(z+z '),
where y= e~', z= e ~". It is now easy to see that
the zeros of Z, z = —y '+ (y~ —I)'~z, do not lie on
the unit circle. Thus we conclude by this counter
example that in general the circle theorem does
not hold for the KDP model if the field lies outside
the first quadrant. Numerical results which con-
firm this conclusion for a 4 &4 KDP lattice will be
given presently.

The second question can be answered aff irmatively
as follows. The F model with a staggered field is
defined with the energy parameters as shown in
Fig. 1. Notice that the vertices (5)-(6) have en-
ergies +s or —s depending on which sublattice, A
or B, the vertex belongs. However, this model
with position-dependent energies can be transformed
into one with uniform energies. The trick is to
reverse, in the enumeration of states, the arrow
directions along every other zigzag path in the

Irn z

lrn z

Re z

Re z

FIG. 2. Distribution of zeros for the 4&4 KDP lattice
with k = —v at ~/k T = 0. 7 (T& Tp) .

FIG. 4. Distribution of zeros for the 4&& 4 KDP lattice
with h = —v at &/k T = 0. 1 (T & Tp) ~
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FIG. 5. Distribution of

R &
zeros for the 4x 4 F lattice

, t with a staggered field at
&Ik T = 0.7 (T & Tp).

addition to the vertex configurations (l)-(6) of
Fig. 1, two new vertices [numbered (7) and(8)t with
four arrows in or out are included. This model is
however precisely a special case of the situation
considered by SF with a direct field h= v=-,'s in the
first quadrant. The result of SF now establishes
the following circle theorem for the F model

The zeros of the E model in a staggered field lie
on the unit circle for T & To, where To = z/(k ln2) is
the transition temperature.

8(=S 8p= —S 8g= 84=

8s = 86 = 87 = 88 = ~

where 8& is the energy of the ith vertex, and, in

(2)

northeast-southwest direction. One then has an
equivalent model with the following energy assign-
ments:

NUMERICAL RESULTS

For a 4 &4 lattice, the zeros of the partition func-
tion in an external direct or staggered field can be
obtained by the solution of a quartic equation. With
y= 8 ~', z= 8 ", or z= 8 ', we find by explicit enu-
merations the following expressions for the parti-
tion function: for KDP with h= —v,

Zan =y' (z' + z ' )+ 8y' (z' + z ' )+ (4y' +48y' + 124y' +16y' + 12y ) (za+ z 8)

+ (248y' +496y +48y +8y ) (z +z )+ (6y' +96y' +432y' +496y' +288y +32y +2);
F with a staggered field,

(3)

Z„= (z'~+ z ' ) + 16y (z + z '
) + (140y + 32y ) (z + z )

+ (256y' + 384y + 144y )(z + z )+ (256y' + 640y' + 384y 0+ 152ye). (4)

Introducing the variable

Q=Z +Z (5)

we find

Zxz, z, ——y'Bu +8y'zu~+ (48y + 124y' + 16y'0+ 12y }u

+ (224y~z+ 496y'0+ 48y8+ 8y ) u+ (184y'z+ 496y~o+ 288ys+ 32ys+ 2), (6)

Zz = u + 16y u + (140y + 32y —4)u + (256y' + 384y' + 144y —48y ) u

+ (256y" + 640y' + 384y' —128y' —64y + 2). (7)

These are quartic polynomials in u, and the zeros
of Z can now be found by the solution of a quartic
equation. The corresponding values of z can then
be obtained by solving (5}. Notice that since (5)
involves only z', we have always at least four z's
locating on a circle. This is due to the periodic
boundary condition imposed on the model which has

the consequence of conserving the number of down
arrows from row to row. In Figs. 2-7 we present
results on numerical calculations of the zeros of

Irn z
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FIG. 6. Distribution of
zeros for the 4x 4 E lattice
with a staggered field at
&/& T = 0. 5 (T + Tp) ~

FIG. 7. Distribution of zeros for the 4X4 F lattice
with a staggered field at &/kT =0.1 (T & Tp).
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ZKDp and Z~ for a 4 &4 lattice at three different
temperatures, e/kT=0. 7, 0. 5, and 0. 1. The
transition temperature is located at e/kTo=ln2
=0.693. Figure 6 confirms that the zeros of the I
model in a staggered field lie on the unit circle for
T & To. It is also to be noted that our variable z is
related to the conventional fugacity variable z = e z",

where v =v 2v is the magnitude of the applied field,

by the relation z=z . Evidently I zl =1 implies
I z 1=1.
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The problem of response theory in statistical mechanics involves the determination of the
density matrix p from the Liouville equation and the subsequent computation of the response
r from this p. Projection techniques are applied to avoid the entire complicated problem of
the full dynamics of p and to select only that part of p which is relevant to the response r.
The procedure replaces an inhomogeneous equation by a linear homogeneous integrodifferen-
tial equation for response theory. This is a very general equation which can be analyzed in
different ways to yield a variety of results. It is shown that the Kubo theory of linear response
emerges as the lowest-order approximation. The general equation is solved without approxi-
mations for a step-function stimulus, and it is discussed in the context of the steady state.

I. INTRODUCTION

Response theory in physics has a very broad
scope, and there is very little in physics that can-
not be reformulated in its terms. Its concepts,
however, are particularly useful in the treatment
of problems of the nature of transport analysis. For
this, one uses statistical mechanics, and a response
theory essentially proceeds in the following three
steps: (i) the determination of the density matrix p
corresponding to the system in question, (ii) the in-
corporation of the stimulus s applied to the system
in this determination, and (iii) the extraction of the
required response p from the p thus determined.

The determination of p involves its time evolu-
tion, which is governed by

I.0 =[Hr, 0] (for any operator O), (2)

with H~ as the Hamiltonian of the system with the
stimulus applied to it. The stimulus thus appears
through H~.

The extraction of the response is easily accom-
plished through

r(t)= TrRp(t), (3)

where R is the operator (assumed for convenience
to be time independent) corresponding to the re-
sponse r. In Eq. (3) and from here on we do not
display the factor (Trp) ' multiplying expressions
like the right-hand side of Eq. (3).

The usual straightforward analysis therefore in-
volves the complicated solution of the full dynami-
cal problem presented by Eq. (1), followed by the

where we write h = 1, and L is the Liouville operator
defined by


