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in terms of a moment of the phase-space density.
For example, if the total turbulent energy input
e = (H) /II —PJ(y —I) is known, then 6 =P(e) is
implicitly given by the integral relation

(63)

In the formal derive, tion of Eq. (62), it has been
assumed that the plasma is in contact with an
appropriate "large" system, which sustains the

fully developed stationary turbulence. Equation (62)
may, therefore, be designated as the canonical
distribution of the wave modes.

The phase-space density permits evaluation of
the statistical behavior of the plasma as the aver-
age behavior of the ensemble of similar plasmas.
The above considerations thus extend statistical
mechanics to continuous, macroscopic electron
plasmas.

V. CONCLUSION

The Hamiltonian dynamics and statistical mechan-
ics of wave modes represent a theoretical basis
for the analysis of nonlinear phenomena in elec-
tron plasmas, in particular violent fluctuations
and stationary turbulence. Dissipation by col-
lisional and collisionless interactions could not be
included in the considerations because of the dif-
ficulties associated with the establishment of a
variational principle for a continuous medium with

dissipation. This idealized description is reflected
in the constancy of the entropy of the wave modes
with time, which expresses the reversibility of
the basic field equations on which the canonical
formalism rests:

d6' 8

dt
1+in -- +vg} Vil", }

&& II(d'p- d'q. ) =0.
fw}
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We consider the anisotropic one-dimensional X-Y model of Lieb, Schultz, and Mattis and
study the three zero-temperature correlation functions p»(P, t) = (S~& (0) SR",~(t)), where pv
= x, y, s but p». We obtain the first-order term of p» for R- ~ or t- ~ and exact expres-
sions for p„, and p„».

I. INTRODUCTION

We are interested in the one-dimensional X-Y
model with an even number N of spin- ~ particles
and with an external magnetic field h in the z direc-
tion. ' The Hamiltonian is

N

Zl (ag a,,~ + a,.~ a, + ya, a,,&
+ y a, ,~ a, )&~1

Q (a, a, —g , (l. I)

where a& and a& are the spin--,' raising and lowering
operators, respectively, at site i. We choose pe-
riodic boundary conditions so that a)e., = a,' and a„„
= aq and take h ~ 0 and 0 & y ~ 1. Correlation func-
tions are in general defined as
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(l. 2)p~„(R, t) =(S,"(0)S„"„(t)),
where p, v=x, y, z. S", (t)=-,'o", (t), where the
o", (t) are the Pauli matrices in the Heisenberg
picture. R is the separation of the two spins, t is
time, and ( ~ ~ ~ ) indicates that the operators are
averaged over the canonical ensemble.

The diagonal (p = v) correlation functions are
well defined by (l. 2) and have been previously
studied. ~~ However, the off-diagonal ones (p&v)
are not uniquely defined by (1.2). If one has a
magnetic field h„on the system in the x direction,
one finds that the two limits in

(l. 3)

II. SYMMETRY

As will be discussed later, it is difficult to cal-
culate p„„(R,t) directly from (l. 2). Therefore, we
define

lim lim p„„(R, t)
h~«0 N «

cannot be arbitrarily interchanged. If one takes
the limits as given in (1.3), one can show that
p„,(R, t) at zero temperature and h & 1 is nonzero.
If one reverses the limits, p„(R, t) = p„,(R, t) = 0 for
all temperature and 0 —h. The method we use de-
fines the off-diagonal p„„(R, t) by (l. 2) and a limit-
ing process of the form (1.3) with h, —0'.

Because of the limitations of our formalism we
can only compute the zero-temperature correlation
functions and, unless otherwise stated, we deal
only with these for the remainder of the paper.
Furthermore, we are restricted to the anisotropic
case 0&y~1.

The off-diagonal correlation functions and the
diagonal correlation functions, calculated in earlier
papers by Niemeijer' and by McCoy, Barouch, and
Abraham (MBA), are the objects one needs to cal-
culate in the linear response theory of Kubo.
Therefore, it is of interest to obtain exact results
on such functions, even at zero temperature.

We study the off-diagonal correlation functions
through the formalism of MBA. This formalism
is a generalization of the method used by Cheng
and Wu in their study of the correlation functions
of the two-dimensional Ising model. We extract
the first-order term of p~(R, t) for large R or t.
Furthermore, we are able to obtain exact closed
expressions for p„,(R, t) and p„,(R, t) in terms of
contour integrals. We analyze these integrals for
large B or t.

We find that as R- «, p~(R, t) goes to zero ex-
ponentially in R when h+ l. As t- «, p~(R, t) goes
to zero as t for h& 1 and t for k& 1. For h& 1,
p„(R, t) has a nonzero limit for R- ~ or t- «. The
approach to this limit as a function of R or t large
has the same character as the approach of p~(R, t)
to zero. p„,(R, t) for h& 1 and p„,(R, t) for all h are
identically zero.

(2 1)C„„(R,t) =(S„"i2,„(0)Sv(0) Ss(t) S„"ta(t))

and use the cluster property of C„„(R,t) as N- ~
to relate

lim p~~„(R, t) = lim C~„(R, t) . (2. 2)
N «& N

lim lim M~(h, )= lim lim (oo o co,x) . (2. 4)
04 N E" & N

Keeping the preceding discussion in mind, we
present a symmetry operation and make an argu-
ment which is valid for all t and all temperature.
The operation rotates the system 180 around the
& axis and changes h„- —h„and h„- —h„. The
Hamiltonian transforms into itself and, therefore,
for N finite any thermal average of spin operators
should transform into itself. One obtains (deleting
R and t dependences)

p„„(h„h„)= p~( —h„, —h„),

p„(h„, h ) =-p„( —h, , -h„),

p„,(h„, h„) = —p„,( —h„, —h, ) .

(2. 5a)

(2. 5b)

(2. 5c)

For & finite these functions are continuous in k„
and h„, and, therefore, for h„= h„=0, p„(R, t)
= p„,(R, t)= 0 for all t and all temperatures. If N- , the resulting functions are not necessarily
continuous at h„= h„= 0 and no rigorous conclusions
can be reached. However, since there is never
any long range order in the y direction, we believe
all of the p„„(R, t) are continuous in h„. There is
long range order in the x direction only when h & 1
and the temperature equals zero. Therefore, it is
reasonable to expect limN p„, to be discontinuous
and nonzero at h„=h„=0' for h&1 and zero tem-
perature. We anticipate that limN p„„all 0 —h,
and limN „p„„1&h,are zero for all tempera-
tures. Later analytical work will verify the con-
jectures at zero temperature.

No conclusions can be reached about p~ since it
is even in both h„and h„.

One can also rotate about the x or y directions
and find the evenness or oddness of the p„„as a

The use of (2. 2) to compute p„„for N-« is not
completely equivalent to using (1.2). If we place
magnetic fields on the system in the x and y direc-
tions, then (explicitly showing the dependence of

p» on h„and h„)

lim lim lim p„„(R,t; h„, h„)= lim C„„(R,t) .
h 0 h «0 N ~ Nx

(2. 3)

(if h = 0, there will also be a h, limit on the left-
hand side. ) One cannot arbitrarily change the order
of limits on the left-hand side of (2. 3). This is
analogous to the small h, needed in the two-dimen-
sional Ising model to calculate the spontaneous
magnetization M(h, ) at h, = 0 by means of
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0-f
c = exp wi ~ a&a& a„.

1

One obtains

(3. 1)

function of h. From this we see that p~ is an odd

function of h, but there is no reason to assume that

p„„ is continuous at h= 0.
For the remainder of the paper we, in most in-

stances, will not explicitly write the h„and h„ lim-
its even though when we take &-~ on p„„, they
are implied.

III. FORMULATION AND px (R, t)

The first step in an analysis of the &-Y model
is to transform to Fermi creation and annihilation
operators by the Jordan-Wigner transformation,

function and time-independent correlation func-
tions, "' and, as one might suspect, it contributed
errors of order N to the results for these quanti-
ties. However, as indicated by MBA, one cannot
proceed in this manner and obtain a correct result
if one calculates p„„(R, t) from (l. 2). Further-
more, because certain information about the exact
eigenstates of H is not known to us, we are unable
to use (1.2) with the correct boundary condition.
However, one can make arguments which indicate
that changing the boundary condition will not in-
fluence the results from C„„(R,t) to first order in

Therefore, we choose I'= 1 for all states and

proceed to use C„„(R,t) to obtain p„„(R, t)
To effect the diagonalization of I, we first per-

form the transformation
-Ã-f

H = — ~ (c( c(4(+ c(4$ cf + y c( c(4( +y c(4( c(}
1

(sir l(/l)t ) /2)g e-((t)B g
n

(3. 5)

N

—2h ~ (C( C( —B) —(cN C( + c( C)(+ y Cn c& + y C( cg )
t 1 t t

1

where P„=s(((/ttt) (2n+1) with n=o, 1, . . . , &/2 —l.
Then we make a Bogoliubov transformation to
Fermi creation and annihilation operators, g~ and

such that

and if

A((t) = c(((t)+ c,(t),
B,(t) = c((t) —c(((t),

then, one has

x exp mi c& c&
1

(3. 3a)

(3. 3b)

a, = cos~, g, +sin6, q', ,

a ~ =cose~ g —sin~~ /&,t

where

tan2&B ——y sintt)/(cos(t) —h),

with 0«~ & —'m. We obtain

(3. 6a)

(3. 6b)

(3. 6c)

N -1 N

C (R, t)=a
6 II B,(0) II A (0)

8/2+R N/2+ R+1

H = gq li((t) ) tPq ))q
——' QB A(Q),

where

(3. Va)

R R+1
x ' A (ti ' B,(t)), (3. 43)

N 2-f N 2

N-1 N

c.*(R, t) =
6 II B (o) II A (0)

1 N /2+ R N /2+ R+ 1

n(p) = [(cos(3)) —h) +y sin (t)]' (3. 7b)

The A's and B's of C„„(R,t) are expressible lin-
early in terms of p~ and Q~. Therefore, using a
generalization of the Wick theorem of quantum field
theory, ' one is able for arbitrary p and v to ex-
press C„„(R,t) as

A„t (t)A„(t)B„.tt(t)B„(t)), (3, 4)t) C„„(R,t) = ~t)}(Pf:-, (3. 8)

1 N N»f
II B,(o) rr A, (o)

N /2+ R+ 1 N /2+ R

x A„t,(t)A„(t)B„t,(t)B (t)), (3. 43)

where Q' indicates that the product runs from the
larger limit to the smaller limit. The operator
exp( i(P(,'c, c,) commutes with the Hamiltonian and
has eigenvalues I'= +1. The + 1 appearing in each
expression for the CB„(R, t) can be determined but
is irrelevant for our later discussion.

One is tempted to redefine the boundary condition
on H so that it is cyclic in the c space. This was
the procedure used in calculating the partition

where Pf:" is the Pfaffian of the antisymmetric
matrix ". The elements of:" consist of all pos-
sible contractions of the A, (t) and B,(t) factors
(both t= 0 and t&0 factors) which appear in (3. 4).
The basic nonzero contractions which result are

& A, (O) A, (t) &
= (B,(O) B,(t))

= (1/N)Q~ 8(()t-f)(3 8(A(())3 (3 9a)

&A (0)B (t))= —(1/i)t)r e"""c' ""4'(0)
(3. 9b)

&B((0)A,(t)&=(1/t)j)Z e"""e"""~'(0)
(3. 9c)
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where

(1 -)(,' e'~) (1 —)(R' e'~)

(3. 12a)

h+[h'-1+ 'P"
Xg= 1-y

PP 1+ R]t &R

Xp= 1-y

(3. 10a)

(3. 10b)

(S. 1Oc)
where

(s. i2b)

with

S I"

(3. 11b)

K

where

(1/N)Q @(~)e(n(n-m+1&

S = (1/N) g C, (P) et t &n

(3. 11c)

(3. 11(i)

1 (1/N)g e()((dl @(y)e (4I ( +m+ +R (3 1 ie)

„=(1/N)g e tf&((t&) etn n+m 1+ ) (3 iif)

(1/N) Q i )(&0 ) t el t& &n+m+R )
fft, gl

( (t)(t etc(n+m+R+R&

(3. 11g)

(s. i lb)

for m, n = 0. 1, . . ., N/2 —R —1. The analysis of "
must now separate into three cases, h & 1, h & 1,
and h= 1, since the character of 4 ((t&) is different
in each region. We cannot treat the last case but
continue the procedure of MBA for the first two
cases.

A h & 1 IXgI&1, and IK2 I& &

Define a new matrix ~ such that

The square root defining C (Q) is a positive number
at Q = t( and x, (zm) has a positive (negative) imagi-
nary part when h & [1-y ])

We now calculate the p„„(R, t) and extract their
behavior for large R and large I;. First, we ap-
proach p„(R, t):

= (1/N)Q (+ 4' C(y) ('t n' '
(3 12 )

K„„=(1/N) Qn e' ' "
C (g) e'n '"' ' ', (3. 12d)

(1/N)g lt((n&t i0(ntm+R&
fft, n (3. 12e)

Since S is Toeplitz, one can use Szego's theorem
to find that

d tg (XR —Xj ) ()(( —X()
t) - m ()(R —)(t) (X.( —)(R )

We now need the ratio (valid for finite N)

with m, n= 0, ... , N/2-R. The horizontal (verti-
cal) lines indicate rows (columns) added to " to ob-
tain ~.

For the next step and some later parts of the
calculation, we need to know some of the general
characteristics of the submatrices that comprise
Q. (The characteristics of the corresponding sub-
matrices of:" are the same. ) One notes that S is
Toeplitz and, therefore, has constant matrix ele-
ments along its diagonal and any lines parallel to
its diagonal. For N large as one goes away from
the diagonal, the matrix elements decrease ex-
ponentially in the distance from the diagonal. I',
g, and ~ are not Toeylitz but, instead, have con-
stant matrix elements along lines perpendicular to
the diagonal. For R and t fixed but & large, the
larger elements of these three submatrices are in
the upper left-hand corner (m, n = 0 region) and in
the lower right-hand corner (m, n =N/2 —R region).
As one goes away from either region, the matrix
elements fall off exponentially until one reaches
the centers of the matrices. If one allows R to be-
come large, but not of order &, each matrix ele-
ment of I', &, and & becomes exponentially small
in R. If t becomes large, each element goes to
zero as t ~~ .

We use the last bvo statements of the preceding
paragraph to find that as R- ~ or t-

4

lim det~- lim S
N N

s =det:"/detti . (3. 15)

Using Jacobi's theorem for the expansion of a
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determinant, one can show that if one has two
matrices e and p, where p is obtained from a by
the deletion of rows and columns in positions l, ,

lz, . .. , l)„ then

(o( ') 1„1,

detP
d t (o( )1 1

deta

( '), , "(n'),
( )1,, 1

(3.16)

Since 0 and, correspondingly, 0 ' are antisymmet-

ric, the small matrix giving s is antisymmetric.
Therefore, using the relation between Pfaffians and
determinants and (3. 16), one obtains

s' = [(& ').. . (& ')1,1, —(fl )1,, 1, (fl )1z, r,

+(fl ')1, 1 (&')1,1]',

where l1, l2, ls, and l4 are the rows and columns one
must delete from ~ to obtain ".

To obtain ~ ', we make use of the smallness of
I', 4, and K for R or t large and perform a series
expansion of 1 in terms of them. Exhibiting the
first two terms,

l
(S ) KS

$-1 g $-1

(ST )-1 (ST)-'K S-'

$~1 Q $~1

—$-1

(ST )-1
+ ~ ~ 0

z' ([S 'nS'], o[(S') '&(S ) '] /z, /
}'+

(3.19)
But by inverting all sums in the matrix products in
the second factor, we can prove equality between
the two factors for N, R, and t finite. Finally,

zz [(S-1 gS-1) ]4

One obtains $ ' for N- ~ from the Wiener -Hopf
equation

(3. 20)

(3. 21)

This yields

~-1 ] 1/2
lim (S )

1 —A,1

(3. 22)

where the horizontal (vertical) lines indicate the
positions of rows (columns) l1, lz, 14, and l4.

By examining the equation SB = 1, one is able to
see that the matrix elements of S ' decrease ex-
ponentially away from its diagonal. This implies
that (0 ')„, and (0 ')„, are exponentially small
in N and go to zero in the thermodynamic limit. By
combining the characteristics of l", K, and 4 with
those of S to get the characteristics of their prod-
ucts, we see that (0 ').. (1 and (& '), , «are also
exponentially small in N. Therefore, for large N

!
where I

t'
I

= 1 and I g
'I = 1+4 & 1. Using (3.22) and

(3.12e) with N- ~

2 d R-1 jtA (c)1

pf m It) 2 7Tg

where

(3. 23)

A (z) = [(z —~,) (z —~,) (z —/(.; ) (z —V, )]
(1-y')'" -1 -1 1/2

2z

[Note that A(z) = A((t)) for z = e'4. ] The contour is
I z I

= 1. The first term in (3. 23) gives the first-
order contribution to s for R or t large.

Therefore, we obtain for R or t large

(~z-X )(Zj -~,) "'
11m p„,(R, t) 4 ( ~)( 1 1)

R1 ft &)1
2m

'"
where q = + 1, +i is a phase factor arising from the
fourth root taken in obtaining p„, and depends on
whether h„-0' or 0 .

For t large and R fixed the integral remains on
the unit circle contour and stationary phase used
to obtain the large t behavior. For large R and
fixed t the contour is contracted to one around the
cut inside the unit circle and the method of Laplace
is applied to extract the large R dependence. One
obtains

(a) t-~, h&1:
'l7 (Xz —A.z ) (Xj —X1)

4(2)/t)'" (~ -x ) (V'-X')
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exp i 4+it h —1

. 7r h+1
~ (-))"ehh(-

' —~ ii(h ~ ))
4 k+1-y 2 7

(s. as)

(b) 8- m' h &1'

t}tx'2-1/2 (/2-/-, ') (X,' -&,) "4
4(2 ) /2ft / {/, ~ ) (P- /)

manner as for h&1.
We have that

s2 = det:-/det tl, (3. 28}

is equal to the determinant of an 8& 8 matrix con-
sisting of certain matrix elements of 0, . Again
one can show that some matrix elements are equal
and, using the character of the submatrices of 0„
that others are exponentially small in ¹ After
evaluating the remaining elements of the 8 X8 ma-
trix for N- ~, one finds that to first order in R
or t

&([h —1+y ] (3. 26)1+y

B. h & 1 l~1I & 1, and I~pl & 1

We cannot proceed in the same fashion as for h
& 1 since the properties of 4'((t)) have changed, ren-
dering invalid the use of Szego's theorem to obtain
dets and the procedure to find S '. In particular,
for h &1

dz — dz e' '"'z

() j e'""""') '
(s. so)

lim s, - (1+y)' dze' '"zR '
16 2mi

in@(0) —In@(22) = 0, (3. 2V) Furthermore, to first order in R or t

but not for h & 1. Therefore, we must select a dif-
ferent matrix. Take

16y (1 —h }lim detQ, -
N- ~ (1+y)

and, therefore,

(3. 31)

where

l30I I I

E-
It'll

I
Is' ol I

o s r
-$~ 0 —4 -K

0

K S

(I/N) Q @(y) elhi
(n-m+1)

(3. 28a)

(S. 28b)

t}yt/2(1 h2)1/4
lim p~(t(, t)-, lim s,'/2,
N 2(1+ y) N

(3. 32)

where limn„„s', /2 is given by (3. 30).
Further analysis of s, is more difficult than that

for s2 with h & 1. In the stationary phase computa-
tion h& 1 splits into two regions, h& 1 —y, with two
stationary phase points (same as for h &1) for
h & 1 —y and four points for h & 1 —y . If h & [1
—y ]' in the large R computation, X,' and &2'

are real and the cut inside the unit circle is on the
real axis. However, for h& [1 —y']'/', V,

' and a, '
are complex conjugates of each other and a modi-
fication of the contour and the analysis is needed.
In performing the calculations one finds

(a) t—,1 —y' & h & 1:

I' =(1/N)Z, e' ""4((t))e ' '"' ' 2' (3. 28c}

(I/N) Q i(h(4 ) t in (n + me t(-1) (3 28d)

K =(I/N)Zn e' ' "4((t))e'4'"' ' ' (3.28e}

with m, n= 0, . . . , N/2 —8+1. The horizontal
(vertical) lines indicate added rows (columns).

The extra factor of e'~ in the definition of S
combined with C ((t) } forms a function which satisfies
(3.2V) for h& 1, making it possible to find detS by
Szego's theorem and S ' from the Wiener-Hopf
equation. Therefore, we proceed in the same

2( t 1/2(1 h )1 2/4
2t/t [(1 —h }(1+h—y )(y —1+h)]

{3.33)
{b) t-m), 0&h&1 —y:

1/2 1 h2 1/4
lim p„(A, t)
N- ~ 8mt

{ 1)R 4h
~ 2at

[(1 —h )(1 —h —y )(1+h —y )]'

(h')'" () —h —e') (he ) —h)
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)( [zp '(z() —1) + zpu '(z() —1)] (d) R-, O&h& [1-y']"':

( l)B-1 it(1+4 +AP) 1 h 1/2

(Ap)' 1+h —y A() 1+ h

))y' '[1 —h']' 'tp, 'cos(np/y)lim p„,(R, t)-

x[zp '(zp+1) +z(*," '(zp+1)], (3. 34a)
where

x[1.—yz —h ] (3. 3Qa)

where

g2 p2
[(1—yz)(1 —y' —h')] '" (3. 34b)

y

pp = [(1—y)/(1+ y)]'",

np=tm '[(1-y'-h')"'/h] .

(3. 33b)

(3. 36c)

[(1 yz)2 hp]1/2
0 l 2'y 'y

(3. 34c)

(3. 34d)

Again q= +1, +i and depends on whether h„-0'or0 .

IV. p„, (R, t) AND p, (R, t)

For p„(R, t) we have

(c) R —~, (1 —y')'" & h & 1:

)iy(/2(1 h2)'/4ty
lim p„,(R, t)- (3. 35)

for

c„(R, t) = (s"„„.„(o)s"„(o)s;(t)s'„„(t))= * ~1 I'f=-

(4. 1a)

—ST

p1T

T22 T

E1T

—E1

s, ,
S(,N/2-R

E 0

S~/2-R. 1 o

S1,0

—K1

S1,0

N /2- R+1t 0

S1,N /2- R

—S1,o
(4. lb)

where

(1/N)g 4 (y) (u(tl - +1)m

F/ (1/N)Q zf (u) @(y)e-iu(m+ /)

n/ (1/N)Q e(A(u)t
Z

(1 (m+ u/)
m

(1/N)Q (A(4t)t -(4 (m+ u/+ 1)
m

(1/N)Q t ( )tA@,u(y) tu(m u/+1)+

(4. 1c)

(4. ld)

(4. le)

(4. 1f) One forms the ratio

s =detfl/det:-, (4. 2a)

l

nents decrease exponentially as m decreases from
N/2 —R —1. Also, in the 4 x4 submatrix we can
drop the four elements which depend on (N/2) since
they go to zero as N- ~.

A. h ( 1, ))1))1,aild )X2) &1

with m, n=o, . . . , N/2-R —1. Also, (2)=R and
(22= N/2. Note that, F ' n ' R)' and A '

column vectors such that if the superscript is 1,
the components decrease exponentially as m in-
creases and if the superscript is 2, the compo-

where

To facilitate the study of:- ', we introduce

(4. 2b)

(sr)-)

(4. 3a)

-(s(,p)
'
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T'1T E1T

E
~1T

n2T tf2 T

fsi fs2 n 1 n2

—E —E —K —K

(4. 3b)

where we have made use of the characteristics of
to drop ej.ements in

the 4&&4 block that are exponentially small in N.
From the above information one sees that in the
4&4 block all odd powers of UV are zero and even
powers are equal to A' times the identity matrix.
Therefore, we have

1
lim =4'„4= lim
N ao N

Then, we have

-1 UQ ( 1)k (VU)k (4. 4) (Si,o)

We are interested in the determinant of the 4&&4

submatrix in the lower right-hand corner of:-
By explicit calculation one finds that VU is zero
in the 4X4 block. (VU) is of the form

-(Si,o)
'

0 —(Si, (1) 0

(4. 8)

(VU)' =
( ~

(4. 5)
NN» ao

lims =lim(S, o) (1 —A) (4. V)

A is obtained from the calculation of (VU) . Then,
we have

limA=lim (S, o) '[K' S 'F' —8' S 'n']
N N

~ ~ ~

i A(s' ) t tR- 1d*e'""' *[(1—1'*)(1—1' l] ~ d
'

[(1 —V', ')() —1 ', ')j'") (4 44)
2m' 2pz 1 + & —zz

where

(1 —& 2)(1 —~, '2)
(1 —~-' -')(1 —~-' -')

(4. 8b)
All contours are taken on the mit circle.

Using Szego's theorem

[1 h2]1/2
detD=

(1 )2 (4. 8)

for N-~.
All the above calculations for p, are exact for

all values of R and t with N- ~. From them

21/2 1/4
limp„, (R, t)=—, „~2 (1 —h )

~ limS, o(1 —A),
N-~

(4. 10)
where A and S, o are given by (4. 8).

One sees from (4. 10) that there is long range-
order in p„„and, therefore, one can use the

R- ~ limit to partially determine g. In this limit
we expect

lim limp„(R, t) =lim lim(S'1) (S*,) . (4. 11)
R m ao N m ao ~Q+ N~aox

It is a straightforward calculation to get

(Si ) —2S1 0 .

We extract lim„o, lim„„(S*,) from

lim lim (Si)2 = lim lim (S",Ss )

(4. 12)

hz- Q+ N R~ao N~ao

=-'(1+ y)
' '"[1-h']"' (4. »)

Therefore, we have g = $ =+ 1. The ambiguity in $
arises because h, can be 0' or 0 . (Note that we
cannot apply this same method to determine g for
p„, because p„, has no long-range order. )

One obtains the large R and t behavior of
p„,(R, t) for h & 1 in the same manner as for p„(R, t),
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h&1. We have

(a) t-~, 1 —y &h&1:

( 1 )R+1h 2t t
lim A - [(h+ 1 —y')(y' 1-+ h) ]-"';
N S nt

(4. 14)
(b) t—,0 & h & 1 —y':

1 f (-1) 2i(X '+X ')e "[1—h ]' ' (-1) (z, +zo )expit(Q+1+h) 1+h
2ttS, ttt l([(l —y —h)(l+ h —y )(1 —1,2)(1 —X22)]1/2 (A" )1/2 1+h- y

(1 —1 'z*)(1 —~, 'z+) '" (1+~-')(1+ /, ")
z(~)+1 (1+%1 )(1+&2 ) (1 —Xt zo) (1 —X2 zo)

-(1-/,-'z, )(1-/ z, )
'" (1+~-,')(1+~,-')

(zo+zf )expit(A +1 —h) 1 —h 1 (1 —/t, zo)(1 —/12 zo) (1 —/t. , )(1 —X2')
(/1" )

/ 1 —y —h zo —1 (1 —Xt )(1 —X2 ) (1 —&1 zo)(1 —&2 zo)

1 (1 —Ai zo)(1 —x2 zo) (1 xl )(1-x2 )
ll (4 15a)

zo —1 (1 —X,')(1 —X,') (1 —/t, 'zot')(1 —1,'zf)

where

[(1—y')(1 —y' —h')]-'",0

21/2 1/4
lim p„(R, 0) = —

1/2 (1 —h )' lim St, o(l —A'),
4 1+y N

(4. 18a)

A, = y[(1 —y'- h')/(1 —y')]'",

(4. 15b)

(4. 15c)

where

lim A'
N

[(1 y2)2 hz]1/2
0 1 2 (4. 15d)

The square roots are defined such that [(1 —X,'z)
&& (1 —X2'z)]' is positive at z = —l.
(c) R-~, [1 —y ]' & h&1:

=lim(S, o)
' . dzz R[(l —X,'z)(1 —/t, 'z)] ' '-1 1

N~oo 27Tl

zt R 1
x d ', [O —x *')O —x *'1]'"),

2iri z'z —1+&

(4. 18b)
and S, o is given by (4. 8b). To first order for
large R, A'-A.

limA- —[21/St, o"2 R (1 &2 )] ';
N-&

(d) R-, 0 & h & [1 —y ]

(4. 16) B. h & &, l&1 I & 1, and lK& l & 1

We define two ratios

p, =[(l-y)/(1 y)]"',

uo= tan '[(1 —yz —hz) /h]

h —i[1 —y —h]/
A2=

1 —y

(4. 17b)

(4. 17c)

(4. 17d)

As we mentioned earlier, the equilibrium cor-
relation function p„,(R, 0) has not been previously
computed. Therefore, we include it here,

t 0,0&2R -1) - i atp(2R -1)
pp e e

// 21/S1 tt R A —1

(4. 17a)
where

s, = det:-/detQ1

s2 = det A2/detQ1,

where
ls r'
lo -z'

l

Rtr

I
z" o

lK' S1 1,

le" o

(4. 19a)

(4. 19b)

g1 Q2

S1,0 0
(4. 19c)

0 —S10 0

0 —S1,0

0 0 0
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(4. 19d)

with the horizontal (vertical) lines indicating added
rows (columns). By examining 0, in a way similar
to the treatment of ™~1for h& 1, we can show that
s', =0. Furthermore, from detfI2 and sz~ we find
that detQ, WO. Therefore, we have the exact result

citations of H . Therefore, one can diagonalize
H+ and H separately and select those states of each
which are eigenstates of H. The diagonalization
of H' is performed as indicated earlier; i.e. , a
Fourier transformation is made with a subsequent
Bogoliubov transformation. (For more details,
see Ref. 6. }

One finds that

limp„(A, t) =0
N-~

(4. 20) (5. 2a)

for h& l. (This is in agreement with our symmetry
considerations. )

Using the same analytic technique as for p„,(R, t),
one can show for all h & 0, h t 1,

H= EPP'+H P (5. la)

where

N-1
Y r t t t

(cgcy „y + cJ pcs + 1'cycJ 1 + Qci+lc ' )
1

N
—2h (, , ——,'(v(„,~, „~y„, y, „()t t

1

(5. lb)

N

P'=2 I +exp tvZ C&c;
1

(5. lc)

The eigenstates of H consist of any even number
(including 0) of c excitations of H' and the odd ex-

Again this is exact. (It also follows from the sym-
metry condition (2. 5c) with a statement of continu-

ity in h„. )

&. DISCUSSION

The large R and t behaviors of the correlation
functions are consistent with the dependence MBA
found for p„„and p; namely, for R-~ the cor-
relation functions fall off exponentially in R for
h~1 and for t- as t for h&1 and t for h&1.
The difference in the t dependence is caused by a
variation in the nature of the states coupling into
the dynamics. For h & 1 and zero temperature
single spin waves are sufficient to describe the
system and imply a t ' behavior. For h&1 the
complete set of states for the first excited states
do not consist of single spin waves but consist
rather of two spin waves, rendering a t ' depen-
dence invalid.

We can explicitly show the difference in charac-
ter of the first excited states by not changing the
boundary condition on H to a cyclic boundary con-
dition in the c space, but, instead, diagonalizing
H exactly. This is accomplished by writing (3. 2)
as

(5. 2b)

where we sum over Q'=+w(2n+I)/N, with n=0,
1, . . . , N/2 —1 and (t( =0, +2vn/N, v, with n= 1,
. . . , N/2 —1. A(&f&)=I(eos(t( —h) +/sin Q]'~~ for
all (f& & 0 and A(0) = h —1.

If we shift the energy by adding —,'7~ A((t(') to H',

to order e N we obtain

H'=Z~+ A(P')q" q"
and for h&1

(5. 3)

(5. 4)

and for h&1

H =1 —h+Z -A(Q )rt' ' q' ' . (5. 5)

Since the Fourier and Bogoliubov transforma-
tions which we have performede are such that

exp sm ctfc, =exp lm n( )tn()
1

(5. 5)

the eigenstates of H consist of the even g excita-
tions of H' from ) 0.) and the odd q excitations of
H from 10 ). 10, ) and 10 ) are defined by
q". 10, ) = 0, all(t(', and q( '10 ) = 0, all Q .

Because A((t() for h & 1 is continuous at (t( = 0,
the H' and H have easily understood spectra (for
h&1}. For both H' and H the ground states are
the same as the vacuum states 10,) and the exci-
tation spectra lend themselves to an interpretation
of particle excitations. We can extract the spec-
trum of H and find that it contains a nondegenerate
ground state with energy zero and eigenstate
10, ). The first excited states of H are the single-
particle states q' ' 10 ) with energies A(Q ) and
possess an interpretation as single spin waves.

For h& 1 the spectrum of H' still retains its
simplicity. However, H has significant modifica-
tions in its spectrum. A((t() is not continuous at
/ =0 and is, in fact, negative causing the ground
state and vacuum state 10 ) of H tobe twodiffer-
ent states. In particular, the ground state of H

is qo( '~10 ) and is nondegenerate with energy equal
to zero. Since this state is an odd g excitation, it
is in the spectrum of H, thereby leading to a doubly
degenerate (to order e ") ground state for H. One
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H. =~A(O)~~,'[,+Z A(4 )h,' &, .
y-AQ

(5. 7)

Because of the change of basis, the even $ excita-
tions of H above the new vacuum 10' ) are eigen-
states of H; i.e. , because

cry(i Ent!'q,"(=-ex zc.(,.), (S. sl')
evenness and oddness have switched. 10') is de-

can proceed to discuss the spectrum of H in this
representation, but one is misled by so doing. The
misconceptions that arise are caused by one's de-
sire to label states q' "IO ), P 40, as single-
particle states and, correspondingly, single spin-
wave states. However, they are not such states
because A(0) & 0. It is better to transform $~

=g,' ' for Q 40 and f0=go '. Then for k&1

fined by $~ 10')=0, all P . It is now easily seen
that the ground state of 0 is doubly degenerate with
eigenstates 10„)and 10'). The first excited states
of 8 consist of the two particle g" excitations of
0' and the two-particle f excitations of H . These
can be interpreted as two spin-wave states.

Therefore, for h & 1 the ground state of H is non-
degenerate with energy zero and is the ground state
10.) of H'. The first excited states n~ "10 ) (N
single-particle states) come from H as given by
(5. 4) and are single spin-wave states with energy
equal to A(Q ).

For h & 1 the ground state of H is doubly degen-
erate and consists of the ground states, 10,) and
10'), of H' and H, respectively. The first excited
states are the two-particle states, q,'; q~. 10,)
and $~- )~&10'), of H' and H as given by (5. 3) and
(5. 7), respectively. There are N' —N such states,
and they correspond to two spin-wave states.
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We show that the circle theorem on the distribution of zeros of the partition function breaks
down for the ferroelectric potassium dihydrogen phosphate (KDP) model if the field lies outside
the first quadrant. We also use a recent result by Suzuki and Fisher to establish the circle theo-
rem for the antiferroelectric F model with a staggered electric field. Numerical results on
the distribution of zeros for a 4X4 lattice are given.

1NTRODUCTION

A central problem in the theory of phase transi-
tions has been the investigation of the distribution
of zeros of the partition function. ' For the Ising
ferromagnet in a magnetic field, I ee and Yang'
showed that all zeros of the partition function lie on
the unit circle, a result known as the "circle theo-

rem. " This circle theorem has recently been ex-
tended to a number of other models. One particular
model which has been discussed is the ice-rule fer-
roelectric model of hydrogen-bonded crystals. 3

For the ferroelectric potassium dihydrogen phos-
phate (KDP) model Suzuki and Fisher~ (SF) showed
that all zeroes of the partition function with an el.ec-
tric field in the first quadrant lie on the unit circle


