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The theory of measurements in which photons are detected in delayed coincidence with a
scattered particle is developed in a form specifically applicable to atomic collisions. Equa-
tions are obtained which relate the measured coincidence rate to excitation amplitudes. These
equations incorporate the polarization of the radiation, the fine and hyperfine structure of the
atomic levels, the coherence of the radiation, and the time dependence of the radiation inten-
sity. A semiclassical model for certain transitions is introduced to illustrate new features of
coincidence measurements. The Ly-o,' transitions in hydrogen and P- S transitions in He

1

are treated in detail to illustrate the general theory.

I. INTRODUCTION H'+ A H*+A'

Recently, coincidence techniques have been used
to measure the amplitudes that describe atomic
scattering processes. Three different types of
measurements, distinguished by the types of par-
ticles detected, have been employed. Erhardt' has
detected scattered electrons in coincidence with
secondary electrons ejected in an ionizing collision
of electrons with atomic helium. This represents
a particle-particle coincidence measurement, and
the data from such experiments can be directly
interpreted in terms of differential ionization cross
sections. Sheridan has proposed measurements
of photons emitted in the D- P transition of He in
coincidence with a photon emitted in the subsequent
P- S decay. This constitu'es a photon-photon co-
incidence measurement, and the data can be inter-
preted in terms of the probabilities for these radia-
tive transitions. Jaecks et al. have measured
Ly- o'. photons emitted in the decay of the 2p states
of hydrogen atoms formed by the charge exchange
reaction

where A represents any target atom. This repre-
sents a photon-particle coincidence measurement,
and, although similar experiments have been em-
ployed in nuclear physics, a theory relating experi-
mental data to scattering amplitudes has not been
given in a form directly applicable to atomic col-
lisions. The theory' developed for nuclear studies
is not directly applicable to atomic studies since
nuclear studies have concentrated on determina-
tions of the multipolarity of the electromagnetic
transitions. In experiments of interest in atomic
collision studies, the multipolarity of the radiative
transitions is known, and experiments are conduct-
ed to determine the parameters of the population
of states produced by the collision.

Recently, the theory of photon-particle coinci-
dences has been developed in a form directly ap-
plicable to elementary particle reactions. This
theory emphasizes the determination of scattering
amplitudes (or density matrix elements) from ex-
perimental data, and is more directly applicable
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to atomic studies than is the theory developed for
nuclear studies. Even this theory is not directly
applicable, however, since the "beating" of radia-
tion from different fine- and hyperfine-structure
levels introduces oscillatory terms in the radiative
decay of excited atoms, whereas the theory of
Ref. 5 assumes a purely exponential decay. In
this paper we develop the theory of photon-particle
coincidence in a form directly applicable to atomic
collisions, taking into account the fine and hyper-
fine structure of atomic levels.

The first consistent treatment relating the num-
ber of photons emitted after an atomic collision to
excitation cross sections was given by Percival
and Seaton. They did not consider the detection of
scattered particles and photons in coincidence and
therefore used a time independent theory with the
further condition of incoherent excitation of mag-
netic substates. Since we are interested in coin-
cidence experiments, and since modern electronics
with resolution times of the order of nanoseconds
are used in such experiments, it is necessary to
consider the time dependence of the radiation.
Furthermore the incoming particle beam and the
axis of the particle detector define a plane, which
we shall call the scattering plane, so that the
geometry possesses only reflection symmetry in
this plane rather than rotational symmetry about
the beam axis. As a consequence of this lower
symmetry the magnetic substates are coherently
excited and interference between amplitudes re-
ferring to different magnetic sublevels occurs.
The consequences of this interference is the sub-
ject of the study reported in Ref. 6. Although we
develop the present theory from first principles
without drawing on the theory previously developed
to treat elementary particle decays, our final re-
sults essentially combine the existing theories of
angular correlations and time resolved spectros-
copy to obtain expressions for the number of coin-
cidences in a form directly applicable to atomic
collisions. This theory is presented in Sec. II.
The theory relates the number of coincidences mea-
sured for a given orientation of photon and particle
detectors to the amplitudes describing the forma-
tion of the decaying states. The amplitudes are
treated as parameters to be fitted to the experi-
mental data. The atomic level structure and the
radiative decay widths are assumed known, al-
though they may also be treated as fitting param-
eters.

Section IV treats the time dependence in more
detail than is given in Sec. II. Earlier treatments
of the time dependence of the radiation in cross
section measurements considered the time develop-
ment of the number of atoms in excited states by
means of rate equations, and then supposed that
the number of photons observed was proportional

to the number of excited atoms at each instant of
time. This supposition is rigorously correct only
when the number of photons integrated over all
angles of emission and summed over all polariza-
tions is measured. Most experiments detect light
emitted in a definite direction and polarization cor-
rections are needed to relate the measured intensi-
ty to the number of excited atoms. It has been
shown that the polarization is time dependent, ' and
this time dependence has not been considered in
earlier theories. Section IV treats the time de-
pendence in detail and defines conditions under
which a rate equation approach applies.

The discussion in Sec. II is quite general and
the theory presented there applies to a wide variety
of collisional processes. The development is nec-
essarily mathematical and somewhat abstract;
consequently it is difficult to relate the final equa-
tions to a simple physical picture of the production
of line radiation excited by atomic collisions. Un-
der certain conditions the angular distribution of
light can be described in terms of a simple classi-
cal source and this source related directly to the
collisional process. This construction provides
a ready picture of the otherwise obtuse results of
Sec. II and is discussed in Sec. III.

Although our theory has as its main objective the
development of expressions for photon-particle co-
incidences, it also applies to noncoincidence ex-
periments which measure cross sections by optical
techniques. In particular, the theory extends the
treatment of Percival and Seaton to include ex-
pressions for the polarization of radiation emitted
in charge-exchange collisions. We find that as long
as LS coupling holds and as long as the emitting
atom remains in view of the photon detector for a
time long compared to the mean life, Percival and
Seaton's expressions apply. The appropriate modi-
fications when one or the other of these assump-
tions fails are discussed in Secs. II and IV.

II. GENERAL THEORY OF PHOTON-PARTICLE
COINCIDENCES

A. LS Coupling

The general theory of photon-particle coinci-
dences proceeds most rigorously from the quantum
theory of radiation. 3 The alternative approach of
Franken, ' however, provides a more simple but
entirely adequate point of departure, which we will
follow here. This theory assumes that cascade
contributions are negligible, and that the light de-
tection system detects all radiation with a frequency
near the central frequency of a fine-structure or
hyperfine-structure multiplet. The sensitive fre-
quency range is assumed to be sufficiently broad
that little intensity is contained in the undetected
wings of the emission lines. These same assump-
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where I JFMz) is the state vector describing a par-
ticular atomic state with total angular momentum
F and electron angular momentum J, and a(JFMe)
is the amplitude for producing the excited state.
Because a(JFMJ, ) is a scattering amplitude, it de-
pends upon 8 and P, the coordinates of the particle
detector. The state vector (1) is not an eigenstate
of the Hamiltonian. Consequently at a later time
the atom is in the state

I
tt)= Q a(JFMe)

I
JFMe)e " "' » "", (2)

FIG. 1. Schematic collision geometry. Primed and
unprimed coordinates indicate the photon detector and
particle detector positions.

tions are involved in Ref. 3; indeed the deviation
in this section follows the earlier discussion very
closely except that cylindrical symmetry is not as-
sumed. However, the formulas of Ref. 3 can be
recovered from those derived here by integrating
Eq. (21) of this paper over the azimuthal directions
of the detected particle. This integration implies
cylindrical symmetry, and therefore some of the
results we obtain here, for example, expressions
for the sum of Clebsch-Gordan coefficients, can
be applied to the analysis of atomic lifetime mea-
surements using beam-foil techniques.

We consider a collision in which a molecule, ion,
or electron strikes an atom or molecule. In the
collision some excited atoms are produced which
subsequently decay by photon emission. The ex-
periment measures the number of these photons
in coincidence with some scattered particle, which
may be an electron, atom, or molecule. We seek
an expression relating the coincidence rate dN, to
the amplitudes describing the excitation process.
We stress here that the collision may involve mol-
ecules of any complexity, but the photons must
come from an atom. We suppose that the atomic
levels are adequately described by LS coupling.

The coincidence rate depends upon the position
of the photon and particle detectors. A schematic
experimental arrangement with an associated co-
ordinate system is shown in Fig. 1. The incoming
beam axis is taken to be the z axis, and the x-z
plane is located arbitrarily. The angular coordi-
nates of the particle detector relative to this coordi-
nate system are denoted by 8 and p, and the co-
ordinates of the photon detector by 8' and P' . We
seek an expression for dN, in terms of these four
angles. In all practical cases the collision takes
glace in a time that is short compared to the radia-
tive lifetime. Thus the wave function for the excit-
ed atom at t = 0 is

JFMF

where the factor e "' is included to account for
the decay of the upper level population. Here 1/y
is the mean life of the excited atom. Note that the
time is measured from the instant of collision.

The coincidence rate is proportional to the
square of the dipole matrix element describing the
decay integrated over the resolution time of the
circuits

dNc= vnon„(e (u /2whc )Q f "dk
I
(0

I

& ' X
I

0)
I

(3)
where no is the density of particles in the incoming
beam, v is the velocity of the beam, nj, is the num-
ber of target atoms in the scattering volume, u is
the frequency of the emitted light, b, t is the resolu-
tion time of the circuits, e is the polarization vec-
tor of the detected light, and (0 I is the state vector
for the lower levels reached in the decay. The
quantum numbers of the lower levels are summed
over after squaring the matrix element. In Eq.
(3) we have supposed that all photons emitted in a
definite direction in the time interval 0 —~t are
detected. In Read' s application of coincidence
techniques to lifetime measurements, photons
emitted at a much later time are detected. Then
the limits of the time integration are t, and t, + 4t&,
where t; is the delay time beyond that required for
the transit of the scattered particle to the detector.
In Sec. IV we will consider specific experimental
geometries with t, unequal to zero. The polariza-
tion vector & is determined by the geometry of the
photon detection system, and depends upon the co-
ordinates 8' and P' of the photon detector. Since
the amplitudes a(JFM~) have dimensions of length
the quantity dN, /dQ dQ' is seen to be a rate equal
to the number of counts per unit of time.

Writing R in terms of its spherical components,
substituting Eq. (2) into Eq. (3) and denoting the
angular momentum quantum numbers of the lower
levels explicitly, we find for dN, /dQdQ'

dN,
, = vn, n„(e ~ /2vhc )

2 3 3

JFMF '1'~ FMF F MFMI M$'0™I
d" (J'F'Mz ) a(JFMz)
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x( —)"' ql' ~ q

x(LsMJ. SsMs IsMyo
~
X', (

LS(J') IF'Mp)*

x(LsM~ SOMs IOM~
~
X, LS(d)IFMs)

x J
' dt e '"""zsz'F' " (4)JO

However, it is not yet in a form suitable for ap-
plication. In line with our supposition that LS
coupling holds, we may reduce the number of in-
dependent parameters by expressing the amplitude
and the state vectors in the LM~ representation.
The state vectors I LS(J)IFMs) are written in
terms of the state vectors l LM~ SMsIMz) accord-
ing to the usual vector coupling rules

where

FJF. = (EJF —EJ.F.)/jg.

Equation (4) is just Eq. (1.2) of Ref. 10 inte-
grated over the resolution time.

Let us consider Eq. (4) in some detail. Basical-
ly it contains three different types of terms: (a)
the scattering amplitudes describing the excitation
process, (b) the dipole matrix elements describing
the decay, and (c) the time-dependent factor. The
scattering amplitudes are here considered as un-
known parameters to be fitted to the experimental
data. Because the amplitudes describe the scatter-
ing, they are functions of 0 and (t), the coordinates
of the particle detector. Later we will use the
transformation properties of the amplitudes under
rotations about the incoming beam axis to consider
unknown parameters which are functions of 8 only.

The dipole matrix elements and the polarization
vectors constitute the second type of term. They
describe the radiative decay of the upper levels.
The polarization vectors are determined by the
geometrical arrangement of the photon detection
system, and are therefore known completely. The
value of the dipole transition matrix element is
assumed known from theory or from other experi-
mental data. It can also be treated as a fitting
parameter, however.

The third term describes the time dependence
of the emitted light. Note that sn addition to the
usual exponential factor e ", it contains an oscil-
latory factor e'"', where we have used 0 to denote
any one of the frequencies coJFJ, F, . This oscil-
latory factor describes the modulation of the light
intensity due to interference of radiation from the
coherently excited levels of the fine-structure or
hyperfine-structure multiplet. Effects of this term
have been observed in radiation from atoms excited
by beam-foil collisions. "' Percival and Seaton's
theory also contains this particular term, but with
~t taken equal to infinity. This is appropriate for
experiments in which all light emitted in the par-
ticular transition under study is collected regard-
less of the time of emission. It is not appropriate
for a coincidence experiment, or for a charge-
exchange experiment where the emitting atom may
be viewed for a time short compared to the decay
time.

Equation (4) is the basic equation of our theory.

LS(d)IFMs) = Z
~

LMiSMsI M()
ML MgM IM J

x(LM~SMs
~

LSD,)(JM~IM~
~

JIFMs) . (5)

Similarly, we have

a(JFMs) = 2 a(LM~ SMsIM, )
ML jPSM rMJ

x(LMz, SMs
~

LS JM~)(JMqIMq
~

&IFMs) ~ (&)

The amplitudes a(LM~SMsIMz) occur in Eq. (4)
as products

a*(LM~SMsIM l) a(LMzSMsIMz) . (7)

To obtain the number of photons counted in a unit
time interval, Eq. (4) and hence also Eq. (7) is
averaged over initial states and summed over final
states. We denote this sum and average by S. To
evaluate this sum we now express the amplitudes
explicitly as the matrix elements of transition
operators,

where i is the set of quantum numbers describing
the internal state of both particles before colli-
sion, k, is the momentum vector of the incoming
particle, k& is the momentum vector of the out-
going particle detected by the particle detector,
the K s are the momentum vectors of all particles
not detected by the particle detector, f represents
the set of all quantum numbers describing the in-
ternal state of all particles except the radiating
atom, and LM~SM~IM, refer to the excited states
of the atom emitting the detected radiation. The
sum denoted by S then corresponds to an average
over i, a sum over f, and an integration over all
momentum vectors K, of the undetected particles

S a~ (LMz SM'sI Mz) a(LMz SMsIM&)

x (ik;
~

T
~

k KiKs' ' ' f LMi~SMslMr )

x(i, k,
~

T
~

k~KgKs
' ' f, LM~SMsIM~), (8)

where W; is the statistical weight of the initial
state.

Several details in this expression should be

a(LM~SMsIM, ) = (i k;
l

T
I

k~K,Ks ' ' ' f, LilI~SiVIsIM, },
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noted. First, notice that both T-matrix elements
refer to the same final state of all particles ex-
cept the emitting atom. The initial states are the
same since the wave function, Eq. (1}, refers to
the state formed in a particular collision, i. e. ,
a collision in which the initial state is specified
by a definite set of quantum numbers i . The final
states of the nonemitting particles, whose quan-
tum numbers are denoted by f, could in general
be different in the two matrix elements; however,
the condition that the collision time is much short-
er than the lifetime of the decaying states implies
that any change of state of the nonemitting par-
ticles cannot affect the radiative decay of the atom
whose radiation is detected. Thus the f quantum
numbers are also the same. Further, since the
z projection of the total electronic spin is con-
served in the collision, and since both matrix ele-
ments contain the same i and f quantum numbers,
we must have

Ms =Ms'

Similarly we have

Mr ——Mr. ~ (10)

TABLE I. Spherical-tensor components of the bvo
polarization vectors & and &

To factor out the P dependence of the product
of amplitudes, we consider the transformation
of this product under two different rotations: (a)
any rotation of the arbitrary coordinate variables
r, integrated over in forming the T-matrix ele-
ments, and (b) a rotation of the directions of all
outgoing particles about the beam axis. The first
transformation cannot affect the value of the ma-
trix element, but the second rotation does since
it describes a new physical arrangement. The
effect of the second rotation is the same as the
effect of the combined rotations (a) and (b). Under
these simultaneous rotations the plane-wave fac-
tors I kz) and 1 K,) do not change since they are
functions of the dot product K, r, only. The states
labeled by the internal quantum numbers I, , f, ML, ,
Ms and Mr transform as

cN«O

(11)
~ f, MgMgMg) -e ~' ~' &' s'+

~ f, M~MqM~) .
These transformation equations and Eqs. (9) and
(10) imply that

S s+(M,',M', M,') a(M, M, M, )

X PHOTON
DETECTOR

Y

FIG. 2. Standard polarization vectors & ~' and &

e = e'" cosP+ &' ' sinP . (14)

= 5„.~ 5„.„(a„,a„)e""z, "0'/(2S + 1) (2I+ 1),
S S I I

(12)
where we have used brackets to denote the average
previously denoted by $, and where we have intro-
duced amplitudes a„. These amplitudes differ

L
from the amplitudes a(I M~SM~IMI} in that a„ is

2 L
normalized so that I a„ I is equal to the partial

L
cross section for exciting the M~th magnetic sub-
state of the decaying states, and a„ is a function
of 6) only.

A similar consideration of the transformation
properties of the amplitudes under reflections in
the scattering plane shows that

(a„,a„)= ( —1)"& I'. (a „'a ~ )I I,

Here and throughout this paper we are assuming
the Condon- Shortley phase convention. Equations
(12) and (13) enable the coincidence rate to be ex-
pressed in terms of a minimum number of param-
eters ( a„t a„)which depend only upon the angular
coordinate 8. The parameters are often denoted
as density matrix elements p„. „.However theNI kfg '
present notation emphasizes their connection with
the scattering amplitudes more commonly used in
excitation studies.

Now consider the polarization vector q. For
every direction of the outgoing photon, only two
polarization directions are linearly independent.
It is convenient to express an arbitrary polariza-
tion vector e in terms of two independent unit vec-
tors perpendicular to the detector axis. We choose
(Fig. 2) one vector e'" lying in plane formed in-
coming beam and the photon detector axis and
pointing in the direction of increasing 19 . The
other vector ~' ' is perpendicular to both ~'" and
the photon detector axis, and points in direction of
increasing Q . The spherical components of these
two vectors are given in Table I. An arbitrary
polarization vector i oriented at an angle P with
respect to ~'" is then given by

—cos8' g«+ /v2
g ~«O /~

—sin8' cos8' e «~/v2
-~ e «~'/W2

Substituting Eqs. (5), (6), (12), (14}, and the ex-
pressions for e ' from Table 1 into Eq. (4}, and
using the Wigner-Eckart theorem to evaluate the
dipole matrix element, we obtain
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dN, = vnon„(3y'/Sv) (Aoocos'p+A«sin p+ (A„—Aoo) cos'pcos'8

+ M2ReA„[sin28 cos pcos(y —p ) +sin2psin8' sin(g- p/)] —ReA, ,[(cos'pcos'8' —sin'p)

&& cos2(p-p) +sin2p cos8 sin2(p-Q )]]dQdA

where

A„.= E U(qq MzMIJFJ F LLo)(a„.a„) f dtexp[ —(y+i &uzFzF, )t],
JFJ'E N N~L

(ls)

with

U(qq'M~MIJFJF LLo) =
N&Af&Ns JII~~ +N NINL Af +$o QL~L~J y'gg gg I I go Q L I

(LM~SMo
o ~

LSJM~)(JM~IMq
~
JIFM~)

x(LoM~ lq
~

LolLI(P~)(LM~SMo
~

LSJ Mz )(J M&IMI
~

J IF Mz)(LoMz, lq
~

LolLM~)

&& (LMISMo
~

LSJ1V~)(JLP~IMg
~
JIFF)(LM ISMo

~

LSJ'g ~) (J R~ IMI
~

J IF My)[1/(2$ + 1)(2I+1)],

and where

y =(87'/3)
~

(L II &, II L,)
~

/(2I. +1) (18)

is the partial decay width for producing the detected
photon. In general y is not equal to the decay
width y, whose reciprocal is related to the mean
life of the excited atom. The quantity y is given
by the branching ratio 8 for the observed transi-
tion times y,

I
y =By ~

j6 =k6 =jq = kq =I
l2=ls =S,
ls=l4=I,

ks=ks =J

I
k4 ——F

i 4=I"

m~=q,

rn ~
——Ml

bere in Eqs. (Al) and (A12} of the Appendix. Com-
paring Eq. (17) and Eq. (Al) we find that U is given
by Eq. (A12) if we identify j, , k;, and l, according
to

The sum which represents U in Eq. (17) can be
simplified by standard techniques. The reduction
of U to a simple form has been carried out in gen-
eral in the Appendix. To evaluate the sum repre-
senting U we need only identify the quantum num-

kq ——j,=1,
ks ——1.0,
&3-as-J-

Then we find for U

r2 ——Ml . ,

U(qq M~M~ JFJ F LLo) = [(2J+1)(2J'+1)(2F + l)(2F +1)(2L+1)/(2S+ 1)(21+1)]( )~o" "&

Equation (20} is convenient for both the numeri-
cal evaluation of U and for the study of the sym-
metry properties of U under interchanges of the
indices. The sum on the right-hand side can be
easily evaluated numerically since y takes on only
the values 0, 1, and 2. Tables of the 3- and 6-j
symbols when one of the arguments is 0, 1, or 2
are given by Edmunds. '

The symmetry properties of the U coefficients
can be used to reduce the number of different
terms. From the symmetry of the 6-j sym-
bols it follows that U is invariant to the simulta-
neous interchange of q and q and Ml. and ML, .

Further, U is invariant to a simultaneous change
of sign of q, q, M» and Ml, . We have already
used these symmetry relations and Eq. (13) to ob-
tain the expression in Eq. (15).

When no polarization measurement is performed
the number of coincidences is proportional to dN,
of Eq. (15) summed over two independent polariza-
tions. Summing Eq. (15) over two polarization
directions, say P and P+ 2z, gives

dN, = vnonxy (3/S~)[Aoo+A&z+ (Ail Aoo} cos 8

+v 2 ReA»sin28 cos(p —P )
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+A, , sino6 cos2(P —@ )]dAdA (21)

Equation (21) has been used previously by one of
the authors to interpret data on the charge exchange
of protons on helium. When Eq. (21) is integrated
over dQ or dQ the last two terms average to zero,
and Eq. (21) reduces to the results of Percival and
Seaton provided &t is taken to be infinite in Eq.
(16).

Equations (15) and (21) apply to a wide variety
of atomic processes. For all such processes, the
information obtainable in a coincidence experiment
may be expressed in terms of the four quantities
App Ayy & ReAp1 s and A, , The theory given above
then relates these quantities to the density matrix
elements (a„.a„& which describe the excitation

L L
process. Alternatively, the density matrix ele-
ments may be calculated theoretically and the quan-
tities A, , then calculated from Eq. (16). Theoret-
ical calculations have usually been directed toward
obtaining cross sections, or equivalently, the quan-
tities App and A». In order to more thoroughly
relate theory and experiment it is desirable to
present the quantities Apy and Ay y as well.

To give some indication of the significance of
the quantities Ap, and A, , we consider in this sec-
tion, and in Sec. IV, two special cases which il-
lustrate the general features of the angular distri-
bution. We consider radiation from P-S transi-
tions excited by an atomic collision where the ini-
tial states of both incoming particles are S states,
and where there are only two particles in the final
state with the nonradiating particle also in an S
state. Then reflection symmetry in the plane of
scattering implies that a, = —a, . Thus we have

(22)

and the quantity A, , can be written in terms of the
partial cross section for exciting the ML =+ 1
states.

1. 'P- S Transitions in He

We now consider the 'P- 'S transitions in He,
excited by electron or proton impact, for example.
This case is interesting because the 'P states of
He' have no fine or hyperfine structure, therefore
the time-dependent exponential is just e "' and is
common to all terms in Eq. (16}. Also the life-
time of these excited states is short compared to
experimentally realizable resolution times so we
may take d.t to be infinite. Then using Eq. (22) in
Eq. (16) we find

views photons emitted perpendicular to the scatter-
ing plane, then both 8 and P —P equal 90 and Eq.
(21) becomes

dN, = vnon„(y /y)(3/Bv)[co+ 2v, ] dAdA (24)

0,

1/y ) O'=d
(26)

With these approximations we find

Aoo = (5oo + 4oa)/9y

A» ——(2oo + 7v|)/9y

Ao| = Re (ao ni &/3y,

A, , =-o,/3y.

(26)

When the photon detector axis is perpendicular to
the scattering plane, Eq. (21) becomes

dN, = vnon„(3/8v)(7/9}[ go+ 2v, ]dAdA (27)

We see that the number of coincidences for this
particular geometry is proportional to the cross
section summed over magnetic substates. This
result will be further discussed in Sec. IV.

2. Ly-n Transition in H

Because of the simplicity of the hydrogen atom,
the study of atomic excitation processes involving
it have always occupied an important position in
the theoretical and experimental literature. Co-
incidence measurements of Apy and A, , will further
our understanding of these excitation processes
since the relative phase of ap and a, can be extract-
ed if App, A», and Ap, are known.

The Ly-& radiation is emitted from excited atoms
in the 2P states. These states have both fine and

hyperfine structure, consequently the time-depen-
dent factor in Eq. (16) does not factor out as is the
case for 'P- 'S transitions in He. Since the hyper-
fine structure of both the 'Py/2 and the P~&2 levels
is small compared to their decay widths, we may
set (d~I;~~. equal to zero to a good approximation.
Further since the precession period 1/cu». and
the mean life 1/y are much shorter than commonly
employed resolution times, the time integral in
Eq. (16}becomes approximately

dt exp[- (y+ tv&~z. )t] =J 1

p P + 't(d g go

Aoo = oo/y,

A»= Ai i=&i/y, -
Aoi ——Re (ao ~i &/'y ~

When the photon detector is placed so that it

(23)

This result is identical to Eq. (24} except for the
factor of ~9. This factor represents a reduction in
the number of photons emitted perpendicular to the
scattering plane because the fine structure causes
the angular distribution to smear out. This obser-
vation will be further developed in Sec. IV.
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B. LS Coupling Violated in Collision

With a redefinition of A„, Eqs. (15) and (21)
also apply when LS coupling does not hold. Two
somewhat different situations may occur here: (a)
The radiating atom may violate LS coupling, or (b)
some nonradiating atom taking part in the collision
may violate LS coupling. We consider case (a)
first.

1. Radiating Atom Violating LS Coupling

In this case the scattering amplitudes referring
to states with different J values are no longer re-
lated by the transformation of Eq. (6), but are
treated as independent fitting parameters. Simi-
larly the level width is also a function of J. Now

a particular experiment may resolve the light
from levels of the same multiplet with different J
quantum numbers. Therefore, we are interested
in expressions analogous to Eq. (16), but with J
no longer summed over. Even when the light from
different J levels is not resolved, the breakdown

of LS coupling implies that the splittings are large
compared to the level widths. Then co~~. in Eq.
(16) is large compared to y and the time-dependent
factors for JW J are small compared to those with
J=J and terms with J&J can be neglected, i.e. ,
the radiation from different J levels adds incoher-
ently. Then the contribution from all levels with

different J values is just the sum of the individual
contributions. Only interference of radiation from
different hyperfine levels need be considered. The
required expression for A„. is then obtained by
replacing L by J, J by I', J by I', S by I, I by 0,
L, by Jo, M~ by M~, and M~. by M~, in Eqs. (16)
and (20), with a corresponding identification for the
primed quantum numbers. We then have for A,.~

A,&
— Q U(qq MzM~FF JJO)(as oji )

zz~~~~~

x j dt exp[ —(y+i&a». )t], (28)

where

U(qq MqMqFF JJ0) =[(2F+1)(2F +1)(2J+1)/(2I+1)](-)~o'' "z

2. Nonradiating Atom Violating LS Coupling

Our assumptions leading to Eqs. (15)and (21) do
not hold when the target atom or any atom formed
in the collision violates the LS coupling rules, even
though the radiating atom obeys them. For ex-
ample, the Ly-n radiation formed by charge trans-
fer of protons on Xe originates from the 2p state of
the hydrogen atom, which obeys LS coupling, but
the states of Xe and Xe' do not. In this case total
electronic spin is not a good quantum number of
the system and Eq. (12) no longer holds.

Three different situations may occur which are
not described by Eq. (12): (a) The 7 operator in
Eq. (8) may depend explicitly upon spin; (b) the
states i and f may not obey LS coupling rules; or
(c) the state vectors for the states i and f may ap-
proximately obey LS coupling, but some of the sub-
states of their multiplets may not be energetically
accessible. In all three cases the amplitudes

a(JM~), where JM~ refer to the state of the radi-
ating atom, can still be related to amplitudes
a(LMzSMz) by a Clebsch-Gordan transformation.
Now, however, Eq. (9) no longer holds and ampli-
tudes referring to different M& states can inter-
fere. Because of this interference, no reduction
in the number of unknown parameters ensues from
the transformation to the LMI, SM& representation.
Thus we use the JM~ representation for amplitudes
describing the formation of the radiating atom as
well. Because the radiative decay does not change
the spin of the excited atom, however, we will use
the LS representation to evaluate the dipole matrix
element. Our expression for A„. in this case dif-
fers from Eq. (29) only in that account is taken of
interference between amplitudes referring to dif-
ferent J levels, since the different J levels may
only be separated by a spacing of the same order
as their widths. All manipulations made in deduc-
ing Eq. (17)can be repeated for this case and one finds

A I= U(qq'MzMzJ J'FF'LLO) (az „az„)J dt exp[ —(y+i~zz~. F )t],
gZ'EE'N g M g

(30)

where

U(qq'M AM+ JJ'FF'L L0) = ( [ (2 J+ 1)(2 J'+ 1)] ~ (2F + 1)(2F' + 1)(2L + 1)[1/(2I + 1)(2S+ 1)]}(- 1) ' 0" "&
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0 = ~o tt'o+ &i tt)i+ &-i 0-~ ~

)p is invariant to reflections in the plane of scatter-
ing, and therefore

a~= -a q, (33)

To apply this equation to a noncoincidence measure-
ment of Ly-z radiation produced in charge ex-
change, dQ in Eq. (15) is integrated over, and only
the quantities Aoo and A» enter into the expressions
for the number of photons. These expressions,
even though they apply to Ly-a radiation, now differ
from Percival and Seaton's. They differ because
electronic spin is no longer a good quantum number
of the target-projectile system, even though it is
a good quantum number for the states of hydrogen
atom alone.

III. SEMICLASSICAL MODEL OF ANGULAR DISTRIBUTION

The theory of the preceding section relates the
angular distribution of the coincidences to the pa-
rameters of the initial-state wave function. The
connection between the experimentally observed
quantity, the angular distribution, and the initial-
state wave function is somewhat remote, involving
many mathematical manipulations which are dif-
ficult to interpret physically. To aid our under-
standing of the theory, we consider an alternative
approach, which proceeds by constructing a clas-
sical source with the angular distribution given by
Eq. (15). This approach was also used by Percival
and Seaton. ' 4 Their source consisted of one oscil-
lator oriented along the beam axis and two equal
strength oscillators oriented perpendicular to each
other and to the beam axis. The three oscillators
emitted incoherently thus maintaining cylindrical
symmetry about the beam axis. In our case the
source is more complicated and will in general be
made up of oscillators radiating coherently [to rep-
resent the sums in Eqs. (3) and (12) performed be-
fore squaring], and oscillators radiating incoher-
ently (to represent the sums performed after squar-
ing). It is clear that the equivalent source for the
most general case is, rather complicated, and little
can be gained by constructing it. However, the
presence of oscillators radiating coherently rep-
resents the new feature of the source with the an-
gular distribution of Eq. (15). This feature can be
illustrated, and its significance for future investi-
gations discussed, for the special cases of Sec. II.

Consider first the 'P- '8 transitions in He ex-
cited by electron or proton impact, for example.
The collision prepares the atom in the state

with the Condon-Shortley phase convention.
Thus

aQSQ + al(41 0-1) a0 4 a1~ 0 (34)

3W Re(a af)tan2o. =
a'o —2vj

(36)

With this choice of n the angular distribution of
the radiation is proportional to

I
« I

» x
I t) I'=(& di)'+«d )'

where

d, = (o
I

z
I y,)

I a,.
I

This distribution is identical to the average over
one yeriod of the radiation from two classical os-
cillators d, and d&, oscillating 90' out of yhase,
oriented perpendicular to each and lying in the
scattering plane as shown in Fig. 3(a).

The length of the two oscillators is proportional
to the magnitudes of a,. and a„.. As the diyoles
oscillate they trace out an ellipse. The radiation
emitted by the oscillators may be viewed perpen-
dicular to the scattering plane with a polarizer
oriented at an angle P' with respect to the major
axis of the ellipse (or at an angle P= P'+ a to the
beam axis). The intensity observed is proportional
to

I~
I
a,. I' cos'P'+

I
a, I'sin'P' . (37)

A schematic polar plot illustrating the variation
of I with P' appears in Fig. 3(b). From this figure
we easily read off

~ a,. ~
and

~ a„. l . Since we
know that a„. and a,. differ in yhase by 90', we
have determined g up to an over-all phase factor
(actually one does not know whether the dipole vec-
tor rotates clockwise or counterclockwise; this re-
quires a measurement of the circular polarization).

where the z and x subscripts denote the angular
part of the wave functions. Now we can write g in
terms of wave functions referred to a new z axis,
called here the z' axis, oriented at an angle a to
the old z axis and lying in the plane of scattering.
Then g becomes

g= [aocosn+ aq M sino. ]g;
+ [ao sinn —a& Mcosn]g„.

=a~/, . +a„p„
Now e can always be chosen so that a, , and a„, dif-
fer in phase by SO'.
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(b)

I IG. 3. Polarization of light emitted perpendicular to
the scattering plane for P-'S transitions in He. (a)
gives the measured distribution and (b) shows the equiva-
lent classical source.

This construction also shows why the radiation
from P- 'S transitions viewed perpendicular to the
scattering plane is proportional to the total (for a
given scattering angle) cross section. Effectively
one sees the full length of both oscillators. At any
other angle we see a projection of the oscillators
which distorts the length of one compared to the
other.

When the levels are split by fine or hyperfine
structure, Eq. (35) still represents the wave func-
tion of the excited atom at t= 0. However, since
tI),. and g„. are not eigenstates of the target, at
later times they evolve into spin dependent linear
combinations of g„., g„,, and $, This evolution tends
to smear out the angular distribution, however the
dipole vectors at t= 0 still serve to characterize
the collisional excitation process.

Our classical construction suggests that the ex-
perimental data for P- S transitions may be graph-
ically presented in terms of the two dipole vectors
just discussed. The vectors are directly mea-
sured only for P- S transitions withno fine- or hy-
perfine-structure depolarization, as for the P- 'S
transitions in He'.

When fine structure or hyperfine structure is
present the amplitude ao and a& can be extracted
from Eq. (15) provided Eq. (22) holds. Then the
dipole vectors may be constructed using Eqs. (35)
and (36). A determination of these vectors over
a wide range of energies will provide substantially
new information on atomic collision processes, in
particular, it will provide information on how ex-
citation processes depart from predictions of the
Born theory. In the Born approximation, the
ellipse traced out by the dipole vectors degenerates
into a straight line parallel to the momentum-
transfer vector. Departures are manifested by
(a) a rotation of the line from an orientation along
the momentum transfer axis, (b) a broadening of
the ellipse, (c) a contraction or expansion of the
degenerate ellipse away from the magnitude pre-
dicted by the Born theory. Experimental deter-
mination of the relative importance of these three

types of departures will provide substantially new

information on the excitation process.
As a second example of the usefulness of the data

provided by coincidence experiments, consider
excitation or charge transfer in heavy-ion colli-
sions in the adiabatic region. Here the change of
the projection of the electronic angular momentum

along the internuclear axis serves to classify the
excitation mechanism. Direct excitations, which

occur because of the translational kinetic energy
perturbation to the temporarily formed molecular
system, obey the ~A=0 rule, while those which
occur because of the rotational coupling obey the
DA. =+1 rule. Here A is the projection of the elec-
tronic angular momentum on the internuclear axis.
As long as the relation (33) holds, the nX = 0 ex-
citations will correspond to a dipole vector oriented
along the direction of the outgoing particle while
AP = + 1 excitations correspond to the dipole vector
oriented perpendicular to direction of the outgoing
particle. Coincidence techniques thus make pos-
sible the experimental differentiation of these two
mechanisms.

IV. TIME INTEGRATION

As we have suggested in the Introduction, the
theory of See. II may be applied to noncoincidence
experiments as well as coincidence experiments.
One only need integrate Eq. (16) over the solid
angle of the particle detector. The resulting equa-
tions, however, do not reduce to the Percival and
Seaton theory unless one further assumes that the
emitting atom remains in view of the photon detec-
tor for a time long compared to the mean life of
the excited atom. This condition is not always
met in charge exchange measurements and cor-
rections for the finite lifetime of the atom must
be made. Corrections are usually made by solving
the classical rate equations for the number of ex-
cited atoms. This approach is appropriate as long
as the experiment actually measures a quantity
proportional to the number of excited atoms. Such
measurements may be accomplished by measuring
the light intensity integrated over all angles and
summed over both polarizations; however, one
often wishes to measure the polarization of the
radiation as well as its integrated intensity. This
requires a measurement of a light intensity which
is not proportional to the number of atoms in the
excited state. The instantaneous intensity could
be obtained here using rate equations for the den-
sity matrix describing the initial-state population. "
Alternatively, one may simply integrate Eq. (16)
over time in a manner appropriate to the particular
experimental geometry. Since this latter approach
is more direct, and since the classical rate equa-
tion approach has often been used without any dis-
cussion of the applicability of the procedure, we
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decay in a time dt is proportional to

""*'"'dt t& x/v (38)

dxn„(x) f "' dte (39)

A typical time-dependent factor in EII. (16) also
contains e'"', where 0 is short for &~~~.~, . To
obtain the number of photons detected we must in-
tegrate the time-dependent factor over x and t,
weighted by nA(x). The factor

"f, ' "'

in EII. (16) is then replaced by

M.XÃr GEAQ

ZNWi. ~TARGET
Xp X Xp

(c)

FIG. 4. Schematic collision geometries requiring dif-
ferent time integrations. (a) Crossed beam, (b) decay
curve measurement, and (c) flooded collision chamber.

where I'=y+iQ.
(b) Decay-curve measurements. In this case

all excited atoms are formed outside of the viewing
window. The integrals are identical to Eq. (39)
except that the lower limit x/v is replaced by x3/v.

(c) Flooded collision chamber. Here some
atoms are formed prior to entering the viewing
region, as in case (b), and some are formed in the
viewing region, as in case (a). The number of
photons counted is obtained by adding the two con-
tributions. The combined integral is

will discuss the time integrations for the three
commonly encountered geometries shown in Fig.
4.

The schematic diagrams in Fig. 4 contain three
parts: (a) the target gas configuration, (b) the
proton beam, and (c) the schematic viewing win-
dow. The length of the viewing window is the pa-
rameter of most importance here. This length
is represented geometrically, but its effective
length is not always the geometrical length. 0 v
is the velocity of the incoming proton and if t, is
the delay time between the detection of a photon
and the detection of a particle, then only photons
emitted when the atom is at a distance greater than

(t~ —/At/2)v but less than (t„+At/2) from the parti-
cle detector are counted as real coincidences.
Here 4t is the resolution time. Thus 4d= vent es-
sentially measures the length of the viewing window
as long as ~d is less than the geometrical length
viewed by the photon detector. With this interpre-
tation of the schematic diagrams, we consider the
three experimental configurations.

(a) Crossed beam. Here the proton crosses a
beam of neutral particles and picks up an electron
in an excited state at some point x in the gas beam.
The number of atoms so formed is proportional to
n„(x) the number of atoms in a thin volume element
of thickness dx whose sides are perpendicular to
the proton beam. Taking the zero of time when the
atom is at the leftmost edge of the gas target, the
probability that the excited atom formed at x will

+ f ' dxn„(x) f*""dte """'"' (4O)
0 X2/ It

To connect these expressions with those obtained
by a rate equation approach, we will evaluate the
integrals for the cases considered by Hughes, et al.
[case (b)] and by Jaecks' [case (c)]. In case
(b) considered by Hughes et al. ,

' the condition
(x3 —x3)/v « I/y holds, so the integral over t was
not performed. Then setting n„(x) = const and re-
placing t by x3/v we get for the integral over x

-rx 3/ tl (I rsvp/ ll
)

-r «3-&yI/ U(1 e- &3/0r) (41)

When 1"=y, this is precisely the result obtained by
Hughes et al. However, since EII. (16) contains
terms with 0 40, the result obtained from a rate
equation ayproach can only be applied when the
light intensity being measured is proportional to
the intensity integrated over all directions and
summed over polarizations, or when corrections
introduced by the nonvanishing of 0 are negligible.
Such corrections are small when the ratio y/0 is
small compared to unity, since then the coeffi-
cients of the oscillatory terms are small compared
to those of the nonoscillatory terms. The correc-
tions are also small if y/Q is much larger than
unity, since then the atom decays before the oscil-
lations produce a noticeable effect. Between these
two limits the corrections must be evaluated for
each geometrical arrangement. Use of a rate
equation approach by Hughes et al. is quite cor-
rect, however, since they measured the radiation
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where B stands for the set m3m4m, m6n2n3n4n&n6

K3v4f 51 Q, using the diagrammatic technique of Yut-

sis. ' We first write the Clebsch-Gordan coeffi-
cients in terms of the Wigner 3-j symbols'

JI k5
+

jq iI I~ II k~+

j~ ' I I'k~
+

]' k2

(b)

I2

(jlml jzmz
I
jljzjzmz)=( —)'1'2' 3(jz)' '( —) 3 3

jl jz jz (A2)
m$ m2 m3

where (jz) equals (2jz+1). This converts the sum
over Clebsch-Gordan coefficients into a sum over
3-j symbols:

from an S state, which is unpolarized and isotropic.
For such radiation, terms containing 0 40 do not
enter into the expression for the angular distribu-
tion.

In the expression considered by Jaecks the con-
dition (x, -xz)/v « I/y also applies and the integra-
tion over t in Eq. (40) simply replaces t by xz/v
and multiplies the integrand by the factor (x, —xz)/v.
The first term of Eq. (40) is second order in
(x, —xz)/v and is negligible colnpared to the second
term, which becomes, upon taking n„(x)= const,

(1 er kzt 5)/F- (42)

A'hen I'= y this equals the result obtained from the
rate equation theory. When x- ~, we get just 1/1
which is the result obtained by Percival and Sea-
ton. 3 Note that x-~, or more precisely, xz/v»r,
is realized by allowing the proton beam to pass
through a long gas-filled collision chamber. Thus
Percival and Seaton's theory applies here even
though a particular atom remains in view of the
photon detector for only a short time. Since Gaily
et al. actually ensured that xz/v» r, their use of
Percival and Seaton's theory is fully justified.

APPENDIX: EVALUATION OF SUM OVER
CLEBSCH-GORDAN COEFFICIENTS

We evaluate the sum

& = Z ( jsmstsns
I jsls j,m, )(jsmsl4n4

I j,l,j 4m4)
B

)2j~ 4 'I( k2+
j

(c)
FIG. 5. Evaluation of a sum of Clebsch-Gordan co-

efficients by diagrams. The ten diagrams in Fig. 5(a)
represent the products of ten Clebsch-Gordan coefficients.
The diagrams are joined to form Fig. 5(b), which is con-
tracted with Fig. 5(c) to obtain Fig. 5{d).

where

A= I(jz)(j4) (js)(js)(kz)(k4) (ks)(ks) ] (A4)

M2+ j4+kg+k4+2k6+ l2+ l3+l4+l5+l6 (A6)

The diagram in Fig. 5(b) is contracted with the
diagram in Fig. 5(c) to form the diagram in Fig.
5(d), which is recognized as an 18-j symbol of the
second kind multiplied by the factor

( )$1+14+zuz+15+JS)+kl-24+2(k2+kz+ks) . (AS)

According to Yutsis's rules, the sum represented
by Fig. 5(a) is then given, to within a sign factor,
by the 18 —j coefficient multiplied by the two
Clebsch-Gordon coefficients represented in Fig.

R& = —j,+j2+ 2j, —j 4+ 2j, + 2j 6 - k&. + k2+ 2k3 —k 4

+2k, +2ks+lz+ is+I, +I,+l, —r, —m, . (A5)

The prime on the summation sign indicates that for
each magnetic quantum number m summed over,
there corresponds the factor ( —)1

The diagrams corresponding to the sum over
3 —j symbols in Eq. (A3) are shown in Fig. 5(a).
These diagrams are joined according to Yutsis's'
rules to form Fig. 5(b). Interchanges performed
to relate Figs. 5(a) and 5(b) show that the coeffi-
cient represented by Fig. 5(a) equals the coeffi-
cient represented by Fig. 5(b) multiplied by the
factor
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5(c) and summed over a. Combining this result
withthefactors Eqs. (A4), (A3), (A6), and (AV),
we have

j&)p jS j4 j5 ~6
C=A( —) a Q(a)(-)' " a la la la la la

kq kp ks k4k5 k

~ j6k6X
kg ja la

' (A10)

where Ra = g, (j,+k, + 1,), with I, set equal to a.
Substituting Eq. (A10) in Eq. (A8), we see that

the sum over g and p, can be carried out since'

where [ ] represents an 18 —j symbol of the sec-
ond kind and Rp is given by ( )a+aa-ax- + .a ( a jaX A i Xk

' '
k

'Vp mp P P72y2) V

Rp= 2gp+g4 —k&+k& —k4 —rz —m& ~

In Eq. (A9) we have used relations such as

2(ja+ja+la) =even

(A9)
(All)

Substituting Eqs. (A10) and (All) into Eq. (A8)
then gives our final result

to equate some sign factors to unity.
The 18 -j coefficient can be written directly in

terms of Racah coefficients 6

)-x fa aX fa aX ja aX
k3 j3l2 k4j4l3 k5 j5 l4

j1 j2 j3 j4 j5 j8
a l, I, l, I, I, =(-)"aZ(X)(-)'" ".'
kg kp k3k4k5 kg

& laka X 23kSX 24k4X 25ksX
k3 j, l2 k4j4l3 k5 j, l4 k6j6l5

where

R RS a+ 2 jp +j4+ 2kB —k4+ mg- mp

(A12)
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