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An inversion procedure to recover the intermolecular potentials from low-energy (4—14 eV)
differential scattering data for the systems HeH', NeH', ArH', and KrH' is presented. The
first step in this procedure is to construct the phase shifts {n@)} from the experimental dif-
ferential cross section ¢(f) and, for reasons of intuition, the corresponding classical deflec-
tion function. This is accomplished by employing a new technique developed recently by
Remler which involves singularities in the S matrix. The Remler method is as accurate as,
but less cumbersome than, the frequently employed standard partial-wave sum and in addi-
tion leads to an intuitive connection between n(f) and ¢(6). Having found {n(2)}, the inter-
molecular potential may be determined by means of the transformation method of Vollmer.
To test the entire inversion procedure, the intermolecular potential obtained from the H' + He
scattering data is compared to the ab initio calculation by Wolniewicz of the ground-state
potential for HeH'. This method should be applicable to any spherically symmetric scat-

tering system.

I. INTRODUCTION

The role of differential elastic scattering in the
determination of intermolecular forces has in-
creased considerably in the past decade. This has
been due to continuous improvements in experi-
mental techniques associated with atom-atom and
ion-atom collisions and to a desire to complete a
theoretical problem which had its genesis in the
early days of quantum mechanics but which had
relatively little effort devoted to it until recently.
The fundamental problem is the formal inversion
of differential elastic scattering data to obtain the
corresponding intermolecular potential. Some of
the basic difficulties which can be encountered in
the inversion problem have been discussed pre-
viously! and will not be elaborated here.

Calculations based on phenomenological poten-
tials (and the JWKB approximation) have been used
in various iterative schemes to fit calculated dif-
ferential cross sections (or perhaps total elastic
cross sections) to those experimentally observed.?
Numerical calculations of the differential cross
section which utilize up to several thousand partial
waves are common. Approximations such as those
by Ford and Wheeler,® Berry,* and Miller® simplify
the numerical problem of calculating the differen-
tial cross sections and give physical insight into

the origin of oscillatory behavior observed in some
differential cross sections. These various approx-
imations coupled with phenomenological potentials
have proved extremely valuable in semiquantitative
interpretations of low -resolution experimental ob-
servations. However, the ambiguities which are
inherent in the “matching” of low-resolution ex-
periments to various approximation schemes (or

to the results of partial-wave calculations) have
been pointed out.®

Recently, Buck and Pauly’ have been able to
treat high-resolution molecular-beam data with
various approximation techniques and consequently
construct the classical deflection function associ-
ated with the intermolecular potential of the Na-Hg
system. Utilizing these results and employing the
method of Vollmer? (in which the JWKB approxi-
mation is assumed valid) in the inversion pro-
cedure, they have directly obtained the intermo-
lecular potential. This method represents a con-
siderable improvement over some iterative
schemes since restrictive constraints associated
with the shapes of phenomenological potentials
are no longer present.

The purpose of this paper is to report the prac-
tical applications of a new method by which one
constructs a set of phase shifts from our high-
resolution measurements of the differential elastic
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scattering of protons by rare-gas atoms. These
JWKB phase shifts are then formally inverted to
determine the corresponding intermolecular po-
tentials. The validity of this method, is demon-
strated by comparing the HeH" intermolecular po-
tential obtained by direct inversion of the experi-
mental data to that potential due to an ab initio cal-
culation for HeH' by Wolniewicz,® which is believed
to be quite accurate. It will be assumed that the
adiabatic calculation is adequate for describing the
intermolecular potential at the collision energies
investigated.

The molecular systems which are reported
(HeH', NeH', ArH', KrH') are all bound by sev-
eral eV. The collision energies for which the dif-
ferential scattering measurements are made are
sufficiently low such that either the elastic scatter-
ing channel is the only one available (HeH' and
NeH®) or is the only important channel (ArH" and
KrH'). However, the collision energies are above
the minimum for which barrier penetration and
hence (classical) orbiting can occur.

II. DESCRIPTION OF TECHNIQUES UTILIZED IN
INTERPRETING DATA

A. Phase Shifts from Data

The standard partial-wave sum which relates the
phase shifts to the scattering amplitude may be
written in the case of elastic scattering as

£6)=(1/2ik) 25, (21+ 1) P,(cosb)(e*"i =1) . (1)

Taking the appropriate S-matrix elements to be

S;=em |

the differential cross section may be written
0(6)=(1/4k) | 2.,(21+1)P,(cos6)(S, - 1) | .

If one presumes an intermolecular potential, either
an ab initio calculation or a parametrized model,
the JWKB phase shifts {n(l)} may be calculated and
thereby ¢(6) is completely determined. Unfortu-
nately this method has two major disadvantages.
First, the actual calculation of the partial-wave
sum may necessitate the inclusion of several thou-
sand terms, and second, many important fea-
tures in the differential cross section cannot be
intuitively connected with the form of the summand
in Eq. (1). One way of dealing with both of these
difficulties is to employ the semiclassical method
which is briefly outlined as follows. The sum in
Eq. (1) is replaced by an integral and the assump-
tion of stationary phase is used [i.e., the only con-
tributions to f(6) are assumed to come from regions
where the summand in Eq. (1) has a stationary
value as a function of 7]. Such considerations have
allowed the scattering amplitude to be written as

an analytic function*® involving 7() and its deriva-
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tives at various points. Further, one of the re-
sults of the stationary phase argument relates the
phase shifts to the classical deflection function
e(1),

- o)
e)=2—7— .

This deflection function, whose magnitude is equal
to the center-of-mass scattering angle, is of great
value in discussing and interpreting the features

of the differential cross section. Alternatively, one
may employ the Remler -Regge“’ method of calcu-
lating the differential cross section. This method
obviates the necessity of calculating many terms

in the partial-wave sum, and it allows one to apply
his intuition about semiclassical processes to scat-
tering experiments without making the explicit
semiclassical approximations such as stationary
phase, etc. The actual computation of the differen-
tial cross section using this method is not limited
to the semiclassical regime; and yet, if the semi-
classical theory is applicable to a particular ex-
periment, the phase shifts and deflection function
used in the calculation may be viewed in the con-
ventional fashion. For a sufficiently well-resolved
differential scattering experiment, the phase shifts
may be determined from the data without recourse
to any semiclassical approximations. It is this ob-
servation that provides the basis and starting point
for the inversion procedure discussed in this paper.
A description of the Remler-Regge method fol -
lows.

Regge'! noted that if one multiplies the summand
in Eq. (1) by a factor which contains first-order
poles (e.g., 1/sinly for integer I) and integrates
the product over a contour along the positive real
l axis, a result identical to Eq. (1) is obtained.
Further if the S-matrix element contains a finite
number of singularities N which are in the first
quadrant of the complex [ plane, the contour of
integration may be deformed to include only this
finite set of poles, and f(6) may then be written as
a sum over this finite set (in calculations reported
here 5< N< 16). Remler!® has parametrized the
(diagonal) S-matrix elements in the angular mo-
mentum representation such that they are unitary,
symmetric, and contain only first-order poles.
That is, we have

N
Sa= H Sg ’
=1
with
Sy= (= n33)/(0% = 22),

where X is the real angular momentum !+ % and
A, is the position of the pth pole in the complex
plane. Details of the explicit form of the scatter-
ing amplitude in this representation will be de-
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ferred until later in this section. The set of phases
{n(1)}, which are necessary to predict the intermo-
lecular potential, is derivable from the poles. At
this point it is enlightening and desirable to connect
the Remler-Regge method with “semiclassical
thinking, ”

Remler has shown that the phase shift 7,(I) cor-
responding to a particular pole located at A, in the
first quadrant of the complex ! plane may be written
as

Im\
- Ay, )
n,(1) arctan()\ — Rex,) arcta.n( " Re)\)

and is plotted in Fig. 1. The deflection function

arising from this pole is

0,()

( Im,

Imx, )
(A +Rex,)*+ (Imx,

T (A =Rex)*+ (Im),)*

This function (essentially a pulse centered at !
I=Re), — 3 with depth ~ 2/Im),) and width ~2Ima,
is plotted in Fig. 1. The attractive portion of a
set of phases (or corresponding deflection function)
may be simply constructed by the superposition of
a few such 7, (or ©,) obtained by adding additional
poles in the first quadrant of the complex [ plane.
In practice N poles are placed on a small circle
of radius p (p=~ 1) centered at ), in the complex
plane. This has the phenomenological effect of one
Nth-order pole positioned at », without entailing
the mathematical complication that higher-order
poles in S would necessitate. The value of p can
be mathematically demonstrated to make little
difference in the calculations of 7(l), @(I), or f(9)
provided it is chosen within reasonable limits. It
should be emphasized that ®(l) is not actually the
basis for calculating f(9); rather, the poles are.
However, retrieving ®(I) from the calculation al-
lows one to use all of his intuition about semi-
classical processes in manipulating the pole pa-
rameters (N and ),) to achieve rapid and accurate
agreement between the experimental data and the
Remler-Regge calculated cross section.

Since the experimental differential cross section
contains interference between both attractive and
repulsive components of the deflection function,
the method described thus far is not complete. To
include the effect of repulsive scattering one could
place poles in the fourth quadrant of the complex
! plane. Instead it is more convenient to account
for the repulsive scattering by going to the partial-
wave expression for f(6) and summing over the
small range of ! for which repulsive effects may
occur. For example, if the repulsion were due to
a hard core, the maximum ! (say, I.y.) in the re-
stricted sum would be that I corresponding to the
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impact parameter b= filqo,/(2mE)!?, which equals
the core radius. In practice, a parametrized func-
tion, which goes smoothly to zero at [ ., and is
large and negative at /=0, is used to represent the
(repulsive) phase shifts because it allows more
flexibility in fitting the finer points of the experi-
mental differential cross section.

If one assumes an analytic function for the core
phase shifts n,, which rapidly go to zero, and adds
to them the pole pbases n,, a total phase shift 7
results (see Fig. 1). That is, we have

77=77c+7IA ’ Szez‘("cﬂu)zscsA ’

with

N
Na= ’Z?lnﬁNn,, F(8)=£(6)+f4(6) ,

where
f8)= L (21+1)P,(cosB)[S,(S. - 1)],
fA(G)- Lx’ (21+1)P,(cosb)[S, - 1] .

The term f4(9) is the pole contribution to f(6) and
can be evaluated by simply summing over the poles

- 2_ *2
2ik 7 cosm, [P*»-z/a( cosf)] (A5 - ax?)

"l p (a)
Re A,
©p
(b)
Ma
NH|F—— — —/——\
-~
/S,
/
/
/
/e
/
1 | | 1 | |
ANGULAR MOMENTUM
FIG. 1.

(a) Phase shift 7, and deflection function N
for a single pole located at A,. (b) Core phase shift 7,,
pole phase shift 4, and the total phase shift n for a
typical attractive scattering system.
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N Az - x*a
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=1 y JAY |

For 1>1,, n.,=0 and S‘__:ez‘"c: 1.
Thus, we have

leore
fc(e)=7.1k— % (21+ 1P (coso)[sy(S, - 1)

The simplicity of the application of the Remler-
Regge method is very impressive. This is due to
the close connection that can be drawn between this
method and the semiclassical idea of a deflection
function. Explicit relationships between the deflec -
tion function and the pole parameters of the Remler-
Regge model will be given. It is instructive to di-
gress briefly and qualitatively discuss the differen-
tial cross section in terms of semiclassical ideas.
As an example, consider the deflection function for
the H' + Ar system (collision energy =5 eV) shown
in Fig. 2. Semiclassically, the oscillations seen
in the data are attributable to the interference at
the same angle 6 of partial waves corresponding to
scattering from the three branches of the deflection
function (i.e., from the two attractive branches at
l, and I, and from the repulsive branch at [,). The
maximum attractive scattering angle is 65, and for

N
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FIG. 2. Deflection function for H* + Ar at a collision

energy of 5 eV,
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FIG. 3. Differential elastic scattering cross section

for H' +Ar at 5 eV, (a) Experimentaldata, (b) decon-
voluted experimental data, (c) Remler-Regge fit utilizing
pole parameters of Table I.

6> 6 no further interference phenomena should be
seen in the differential cross section. The number
of low-frequency oscillations between 20° and 6
increases with increasing width of the attractive well
of ®(7) (or alternatively, decreasing its curvature).
The period of the high-frequency oscillations in this
same angular range is a very sensitive function of
I (increasing with decreasing I). Finally, at low
scattering angles the cross section should contain
three different frequency components. The lowest,
which is dominant, has periodicity!?:

ag9=21/(1, -1, . (2a)

The intermediate, which is more quickly damped
out at small angles, has

aAb=n/ly , (2b)

while the periodicity of the highest frequency term
is

A0 =21/(l,+ 1) . (2¢)
It is of interest to note that the first and last terms
just discussed are clearly visible in the deconvolu-
tion of our 5-eV H'+ Ar experiment for angles less
than 20° (see Fig. 3).

The deflection function parameters just discussed
may be closely connected with the pole and core
parameters of the Remler-Regge method. The rain-
bow angle 6z, its location Iz, and the full width of
the deflection function I'y;, at § =46 are given by

Imx, _ 1 . _2N
(Rex,)*+(ImA,)* ~ Tmyr, ) Tmy,

GR=2N(

b

®)
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lR=ReX,, F1/2ﬁ21m)\p.

The zero of the deflection function, l;, is an ad-
justable parameter in the analytic expression which
represents the repulsive core.

Using these semiclassical considerations, the
values for N, Rex,, Im),, and [, may be fairly
well approximated by inspection of the experimental
data. The Remler-Regge method may then be used
to predict the differential cross section. On the
basis of this calculation the set of parameters may
be adjusted and this procedure repeated until satis-
factory agreement between data and calculation is
achieved.

In conclusion, the decoupling of the parameters
Re), and Im), as well as the simple relation be-
tween Imx, and N [seen in Egs. (3)] makes the
iterative procedure to obtain 7(l) from e, (6)
quick and efficient. It has been shown® that in
the case of well-resolved experimental data the
deflection function, the phase shifts, and the inter-
molecular potential thereby obtained are reliably
determined.

B. Intermolecular Potential from Phase Shifts

If the phase shifts can be obtained by methods
such as those outlined above, then the intermolec-
ular potential (within the realm of the validity of
the JWKB approximation) can be uniquely deter-
mined. Vollmer and Kriiger® have reduced this
problem to that of solving for the “quasipotential”

Q):

n-£14 Q—z——z—mBn(B)dB
T wk t dt (B*-1t%) ’

where E = collision energy, k=wave number,

B=(1+4)/k, n=JWKB phase shift ,
and where the intermolecular potential V(7) is re-
lated to @(¢#) through the expressions

V(‘)’)=E(1—e‘°“)/E), ’V(t)=teQ(”/2E .

The expression for Q(¢) is evaluated by numerical
integration after a variable change, B=1t/cosa is
made. It should be pointed out that for small val-
ues of ¢ [the region where Q(¢) is positive], ex-
tremely accurate integration schemes are neces-
sary in order to obtain satisfactory values for #(t).
Double precision arithmetic is employed through-
out for evaluating Q().

The validity of the JWKB approximation for the
phase shifts has been discussed by numerous au-
thors. Marchi and Mueller!® have compared JWKB
approximated phase shifts to those found by direct
integration of the radial Schrédinger equation for
a Lennard-Jones-type intermolecular potential.
They conclude that, for cases where classical “or-
biting” is excluded, the JWKB phase shifts are quite
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reliable and give differential cross sections nearly
identical to those calculated by the exact method.

Although the quantitative construction of the in-
termolecular potential can be accomplished as out-
lined above, it is intuitively pleasing to have a way
of visualizing some aspects of the qualitative rela-
tion between V(») and ®(1). The general shape of
the potential is closely related to that of the deflec-
tion function. The width and depth of the potential
well are correlated with the width and depth of the
attractive portion of the deflection function. In our
analysis of the proton+ rare-gas systems we have
noted that the value of !/ for which the classical
turning point equals the equilibrium separation (7,,)
is in the vicinity of l;, while I is similarly associ-
ated with the intermolecular separation that corre-
sponds to the maximum attractive intermolecular
force. Consequently if a differential scattering ex-
periment determines ®(l) accurately over the range
1>1,, one would have similar confidence in the in-
verted V(») for »>r,,.

1Il. APPLICATION
A. H' + Ar

The 5-eV H'+ Ar experimental elastic differential
cross section shown in Fig. 3(a) has the necessary
resolution to be a good candidate for tae inversion
procedure discussed in Sec. II. Even though the
experimental differential cross section does show
the high-frequency structure mentioned in Sec. IIA
and in Ref. 6, the data has been deconvoluted using
the technique of Ioup!* in order to more clearly
present the scattering features for the inversion
procedure. It should be noted that the decenvolu-
tion is used as a mathematical tool and in this case
is acceptable insofar as it reproduces the fine os-
cillations already observed in the data. The decon-
voluted data is much easier to work with in the in-
version procedure as it is necessary to make a good
fit to the fine oscillations as well as to other fea-
tures of the data in order to best determine the
shape of the deflection function (and thereby the
intermolecular potential).

The first step in the inversion is to bring the
Remler-Regge calculation, Fig. 3(c), into good
agreement with the deconvoluted data, Fig. 3(b).
The initial choice of pole parameters is clearly
motivated by semiclassical considerations. The
rainbow angle 6 and the width I'y,,, may be quickly
approximated by fitting the low-frequency oscilla-
tory term of the Ford and Wheeler rainbow approxi-
mation

A% -0R)/q"*],

where

Ty/5=(20:/9)"2,
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TABLE I. Pole parameters used to fit the calculated
cross section to the experimental cross section. The
phase shifts obtained by using these parameters were
inverted to find the intermolecular potentials for the
various molecular ions. The resulting dissociation en-
ergies D, and the equilibrium separations r,, are also
given.

Collision D, v,
System energy (eV) ReA, ImA, N I, (eV) (ap)

ArH' 5.0 100.2 25.78 13 67 4.22 2.35
NeH" 5,71 78  23.24 6 50.1 2.27 1,90
KrH" 6.0 138.2 33.6 16 91.2 4.6 2.9
HeH' 4.0 44 15.04 5 29,5 2,18 1,41

to the low -frequency oscillations in the experimen-
tal data in the vicinity of the rainbow angle. The
large-angle high-frequency term in the expression
for the cross section determines the value of Iz +1..
That is, we have

80=21/(g+1,),

where A6 is the angle between adjacent maxima of
the high-frequency component of the cross section.
The value of /; is originally approximated as the
average of /i and /.. In the actual calculations,
however, [;is adjusted until the two frequency com-
ponents seen at low angles [27/(l,+ ;)] agree with
those resolved in the experiment. Using the initial
estimates for 6, Iz + 1, I, and T'y,,, an approximate
deflection function is determined. The deflection
function may then be related to the pole parameters

4
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FIG. 4. Interatomic potential for the ArH" molecular
ion from the inversion of 5-eV H' +Ar experiment.
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FIG. 5. Interatomic potential for the NeH' molecular
ion from the inversion of 5.71-eV H' +Ne experiment
(solid line) and results of Peyerimhoff (dots).

via Egs. (3), and the Remler-Regge method may
be used for a prediction of the cross section. This
technique gives a reasonable first approximation
of the pole parameters, and only slight variation
of these parameters is necessary to bring the Rem-
ler-Regge calculated differential cross section into
very good agreement with the experimental data.
Figure 3(c) is a plot of this calculation, and the
agreement between it and the data is seen to be ex-
cellent. Parameter values used in this calculation
are given in Table I.

The method outlined in Sec. IIB was used to con-
struct the intermolecular potential using the phase
shifts retrieved from the Remler-Regge calcula-
tion. Since the 5-eV (ArH)* data presents little
information on the dark side of the rainbow (i. e.,

6 greater than 6j3), the potential can not be accu-
rately predicted for V(7)2 0 in this case. In order
to check (and possibly improve) the calculation for
the repulsive portion of the potential, a higher-
energy (14 eV) experiment, which did not contain
as much bright side information but contained con-
siderable information for 6 greater than 6, was
analyzed. The repulsive portion of V(7) was found
to be very sensitive to the large negative slope of
the differential cross section in this region. The
resulting inverted intermolecular potential which
reproduces all the observed features in the 5- and
14-eV experiments is shown in Fig. 4. It was in-
deed gratifying to see that the interference scatter-
ing as well as the dark side features observed in
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FIG. 6. Interatomic potential for the KrH' molecular
ion from the inversion of 6-eV H' +Kr experiment.

the 14-eV data and all the details observed in the
5-eV experiment were well reproduced by a single
intermolecular potential.

B. H" +Ne

The H'+ Ne system has been discussed in some

H* + He

e,
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> 2
5 B
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o
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)
b
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o
o
=
TR N T N T [ |
10 20 30 40 50 60

c.m. SCATTERING ANGLE (degrees)

FIG. 7. Differential elastic scattering cross section
for H +He at 4 eV; (a) experimental data, (b) Remler-
Regge fit utilizing pole parameters of Table I.
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FIG. 8. Interatomic potential for the HeH' molecular
ion. The solid line is the result of the inversion of the
4-eV H' +He experiment; the circles are values of a
function (Ref. 17) which has been fit to the calculation
of Wolniewicz.

detail earlier,® and it was shown that the differential
cross section predicted by an ab initio calculation
of the intermolecular potential due to Peyerimhoff!®
was in good agreement with the experimental re-
sults. Since the low-frequency oscillations at small
angles are not clearly identifiable in the differential
cross section, Egs. (2) can not be used to determine
lo for the deflection function. However, the very
distinct fine oscillations observed in the experi-
mental data serve to fix the value of I+, while

the low -frequency rainbow structure determines

the rainbow angle as well as the curvature of ().
Thus, one can obtain initial values for the pole
parameters. The Remler-Regge method is then
iteratively employed to bring the calculation into
close agreement with the experimental differential
cross section. These final pole parameters and
resulting phase shifts have been inverted yielding
the intermolecular potential which is seen in Fig.

5 along with the calculation of Peyerimhoff.

C. H" +Kr

The H'+Kr experiment [the results can be seen
in Ref. 2(d)] does not resolve any fine oscillations
in the differential cross section. Therefore a di-
rect determination of I; in the deflection function
is not possible. However, the large number of
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low -frequency oscillations seen in the data does
allow the construction of the attractive well of the
deflection function utilizing the methods of Sec.
IIB. In order to fix the scale of I for ®(1), it is
assumed that the ratio of /, to [, for the last few
well-resolved large oscillations at low scattering
angles is approximately 2; therefore ly=2n/A6.
Although this assumption has not been theoretically
justified, it has been observed that such is the case
for the other proton-rare-gas-atom deflection
functions which were constructed from data exhib-
iting fine oscillations. Basing the initial estimate
for the pole parameters on this deflection function,
several iterations suffice to bring the calculated
differential cross section into agreement with the
(low-resolution) experimental cross section. The
final pole parameters (Table I) were then used for
determining the intermolecular potential and that
result is seen in Fig. 6. In this case the intermo-
lecular potential is obviously less reliable than
that for ArH' and NeH', where high-frequency os-
cillations are observed.

D. H" +He

Extensive ab initio calculations of the intermo-
lecular potential of HeH" have been made, and the
recent calculations of Wolniewicz® are believed to
be the most accurate to date. In a previous
paper, '® comparison was made between the mea-
sured differential elastic cross section at 4 eV for
the proton-helium system and a JWKB calculation
of the cross section which utilized the ab initio
HeH' potential of Wolniewicz. The agreement be-
tween the calculated and measured cross sections
is very satisfactory. Therefore, it would seem
appropriate to use the experimental data for HeH'
to test the operational validity of the scheme out-
lined in Sec. II which is designed to recover the
intermolecular potential directly from the scatter-

| >

ing data.

The experimental cross section for H' + He at
4 eV collision energy along with the Remler-Regge
fit (see Table I for pole parameters) is seen in Fig.
7. The agreement between the two potentials can
be seen in Fig. 8 where the inverted intermolecular
potential is compared to an analytic function!’ which
has been fit to the results of Wolniewicz. Although
the dynamic scattering situation may not be best
characterized by the well depth D, and the equilib-
rium separation 7,, it is of interest to compare
the values of Wolniewicz to those recovered by in-
version procedure,viz., 2.04eV vs 2.18 eV for D,
and 1. 46a, vs 1. 41a, for 7, , where the former val-
ues are those of Wolniewicz.

IV. CONCLUSIONS

The methods outlined in this paper can, when
used in conjunction with sufficiently high-resolution
experimental data, yield accurate intermolecular
potentials over the internuclear distance which is
effectively sampled by the particular experiment.
The analysis and inversion techniques presented
here should be applicable to any spherically sym-
metric scattering system for which the JWKB ap-
proximated phase shifts are thought to be adequate.

Recently, Mittmann and co-workers'® have
performed a series of high-resolution experiments
on the systems reported in this paper. They have
used various potential models with adjustable pa-
rameters to calculate ¢(6) in order to match their
experimental data. Their results for the intermo-
lecular potentials of ArH', NeH’, and KrH' are in
good agreement with those reported herein.
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