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Upon careful examination of charged-particle scattering by a finite stationary dipolar sys-
tem, it is found that the long-range nature of the dipole potential leads to divergence of the
total scattering cross section. Thus, contrary to the results of Takanagi and Itikawa, the
total cross sections for the finite dipole diverge in a manner similar to that found earlier by
Mittleman and von Holdt for the point dipolar field.

I. INTRODUCTION

In order to better understand the scattering of
electrons by polar molecules, a number of studies
have been made of scattering by a simple dipolar
system. Altshuler! determined the cross sections
for electron scattering by a point dipole in the Born
approximation. Later Mittleman and von Holdt?
obtained an exact solution to the same problem.

In both cases the total cross section diverges and
in the latter case the momentum-transfer cross
section also diverges for dipole moments greater
than the critical value D=0. 639ea,. The difficul-
ties associated with the strong singularity in the
potential function for a point dipole have been
avoided by Shimizu, 3 who obtained the scattering
amplitude and momentum-transfer cross sections
for scattering by a finite dipole composed of two
opposite charges fixed at a separation R>0. The
analysis of Shimizu® was later used in numerical
calculations by Takayanagi and Itikawa, * who ob-
tained both momentum-transfer and total scatter-
ing cross sections for low-energy electrons on a
finite fixed dipole.

Now it is well known that scattering by a spher-
ically symmetric potential with an »"2 asymptotic
form leads to an infinite total scattering cross
section.® The general behavior of the total cross
section is not due to the strong singularity at the
origin, but rather to the long-range nature of the
interaction. The inverse square potential yields
a very slow convergence of the phase shifts with
the result that the series of partial cross sections
does not converge and no total cross section ex-
ists.® Of course, the dipolar field is not spherical-
ly symmetric, but it does have a long range 7»~2
form. The dipole field is considerably more com-
plicated because of the cosf dependence, where
0 is the angle between the electron and the dipole
axis. Nevertheless, Mittleman and von Holdt’s?
exact treatment of scattering by a pure dipole field
led again to a divergent total cross section. It
seems very reasonable that this divergence is also
due to the long-range nature of the dipole field and
not a result of the strong singularity at »=0. How-
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ever, since the results of Takayanagi and Itikawa*
yielded a finite total cross section for the case of
a finite stationary dipole, where no singularity
exists, their results would indicate that the re-
moval of the singularity at =0 also removes the
divergence in the total cross section. We show
that this is not the case. Instead, the total cross
section does diverge and the finite results of Ref.
4 are due to numerical approximation in a noncon-
vergent series.

II. SCATTERING BY FINITE STATIONARY DIPOLE

It is easy to show from the analysis of Mittleman
and von Holdt? that a modified dipolar potential, in
which the singularity at the origin is removed,
still leads to the same divergent behavior of the
total cross section. This can be done most con-
veniently by imposing an infinitely repulsive core
at 7 =7, in which case the scattering problem is
described by the equations

(V2+R2+a-T/7r)¥(F)=0, 7>7, (1)
¥(F)=0, 7r<7ry. (2)
Here k%= 2mE/K,

a=2meD/i?, 3)

and O is the dipole moment. Equation (1) is sep-
arable in spherical coordinates 7, u, ¢, (L=cosb).
A substitution of the form ¥(¥)=R(»)0(u)e'™
yields the separated equations

_d_ 2 ._‘.i.__ mZ m m m
<du (l-ﬂ)du IT?“““LH (L,,+1)> on' (1)
=0, (4
> 2.4d ., L”'(L"'+1)) )
(drz+r dr+k __n—;g_ R,(r)=0. (5)

The eigenfunctions ©]'(1) and eigenvalues LJ(L™+1)
of Eq. (4) were determined in Ref. 2 and the
same definitions hold here. The radial equation
(5) has general solutions jm(k7) and yrm(r) where
these are, respectively, the regular and irregular
spherical Bessel functions. The condition (2) at
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¥ =7, fixes the relative contributions of the two
solutions and allows a general solution of (5) to be
written in the form

jL (kvg)

¥= 2 (jug) - 5078

(kr) oM (M)A, -
(6)

The coefficients A,,, are determined from the
boundary condition

¥~ T (p, @)et/r . (7

Following the analysis of Ref. 2, we get the result
Anm: enm( - 17) exp[ -1 (%an - m)‘"]
x[1=djpm(kre)/y mero) It ,  (8)

where n=cos and £ is the angle between k and a.
The resultant scattering amplitude, which is a
function of the orientation 7 of the dipole, becomes

E > or(we

n=0 m=-w

F(k @,m=5z

x [o(m) - OF (= m e Fnm (144 6,m)2 (1~ 65m)1],
©)

where

Sum=jom(kr)/y (o) —> (kyof2EA*1—=0

krg<1 n=c
For low-energy scattering and/or small 7, such
that k7y<1, we note that

jL,'r(k’Vo)/yL;,"(k'ro)" (}'?7’0)21':lﬂ

as n becomes large. Furthermore, L) —~n as n
-, thus the quantities 6,m—~ 0 as n increases with
the result that the terms in the expansion (9) of the
scattering amplitude for the present modified di-

polar field rapidly approach those for a point dipole 2

The differential scattering cross section for a fixed
dipole with orientation angle 7,

do (1, @, mMdQ= |f(u, ¢, n)|2d2, (10)

is quite complicated. In the case of a point dipole
the differential cross section diverges in the for-
ward direction with the result that the total scatter-
ing cross section also diverges.? This divergence
results from contributions of terms of large n, m
in the expansion, analogous to Eq. (9), of the scat-
tering amplitude. In order to assess the contribu-
tion of the terms involving d.m, it is more con-
venient to obtain the total cross section by substi-
tuting (9) into (10) and integrating over df2. Thus,

0(77)=;1-Ez

x 2 < e r*(n) -

nym

s )2
O mx(=n) et Ly-m @ 1—+1 EL:.’:) )
L’l
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ci@leme (L+406zm)
x (o) - on(—m)e-iwh-me L0
1+6L:'

The n, mth term in the double sum of series (11)
differs from that for the point dipole through the
added contribution

4(kro2En*t{o m(n) O7( = ) sin(LT — m)

+ [e,’:‘( _ ,n)]z (k'}’o)ﬂ‘ﬂm’l}

from the repulsive core. For the point dipole (6,m
=0) the terms in the series go as 1/x% for large n
with the result that the double summation leads to
a logarithmic divergence of 0. Since the contribu-
tion from the repulsive core diminishes as €?™!
(where € = kry<1) and since n%€?™!~ 0 as n—~, the
series (11) exhibits the same behavior for large n
as that for the point dipole. Thus the divergence
of the total scattering cross section is not changed
in scattering by the modified dipolar field. Both
problems lead to a divergent total cross section,
and neither is due to a singularity at the origin.
Furthermore, if the singularity is removed through
some other form of finite dipole potential, Eq. (5)
is still appropriate for large » and the present con-
clusions remain the same. We obtain this result
in a different manner in the analysis which follows.

Now let us consider the general case of scatter-
ing from a finite dipolar system and investigate the
fixed dipole limit of this problem. We start with a
finite nonstationary rigid rotator system with dipo-
lar charges + ¢ separated by a distance R=2s and
possessing a moment of inertia I about its center of
mass. The general close-coupling formalism for
an exact treatment of this problem has been pre-
sented by Arthurs and Dalgarno, ® who give expres-
sions for elastic and excitation cross sections in
terms of transition matrix elements. In the close-
coupling approach the rotational angular momentum
of the dipole (designated by quantum number j) and
the orbital angular momentum of the incident par-
ticle (designated by 1) are coupled to give the total
angular momentum J =j*+T which is conserved. For
scattering by a pure dipole field, rotational transi-
tions j—~j' are allowed only for j' =7, j+1.

Through utilization of the close-coupling formula-
tion of Ref. 6, Itikawa and Takayanagi’ have deter-
mined elastic and inelastic cross sections for low-
energy electrons scattered by a finite dipolar sys-
tem. They also show that for transitions j~j+1,
the higher partial-wave components of the cross
sections become identical to the results from a
similar angular momentum decomposition of the
Born approximation. ® (In the first Born approxi-
mation, the elastic cross section, j—j, vanishes.®?
Elastic scattering proceeds via virtual excitations
to rotational states j+1.)

Now we make the following observation. If one
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examines the Born higher-angular-momentum
partial cross sections for inelastic (or superelastic)
scattering from a point dipole® and compares these
with the corresponding quantities for a finite di-
pole, 7 it is easily seen that these become equivalent
for large enough total angular momentum J. If the
cross section for a transition j—j’ is written as

©

o(j=4")= Zo o,(i=7"), 12)

J =
then the Born result for o, is”

161 kg

B(s i) T ol
07(i=7)=5511 h (2J+1)Z';z?|(] I J|cosb| jIJ)

xfo 72 ju(yer) §,(Ryw) Vo(v)dr|% . (13)

For the point dipole V,(»)=D /% For a finite di-
pole V,(#)=D%/s% for r<s and V,(v)=D/7% for r>s,
where s is the charge separation of the dipole.
After noting that I, I’=J+1, it is obvious from the
expression for o7 that the discrepancy between the
results for a finite and a point dipole rapidly van-
ishes as J becomes large, with the result that the
series (13) exhibit the same convergence proper-
ties!® for the two cases. Thus, we have the further
statement that the higher-angular-momentum com-
ponents of the cross section for j—j’ transitions in
the case of the finite and point dipole rigid rotators
coincide.

Finally, we note that the cross sections for tran-
sition j—j+1 for a point dipole rotator have been
determined in the Born approximation by Takanagi®
and can be written in closed form as

B i1y 8T (Dem 2<j+1) k+ ¥
o (j=j+ V=g | 57 5a1) P eow
14)
and
Bl i_ 1.8 ‘Dem2<j > k+¥
o®(j~j 1)-3—kz(——rﬁ ) 2571) Mo w
(15)

Since
, [ 2m j(i+1)m\ Y2
k ‘[F<E' 21 ’

we note that the cross sections for transitions j
—-j+1 diverge in the limit /- «, Furthermore, by
the argument given above, the same divergence oc-
curs for a finite dipole. Finally, since the diver-
gence is due to the contribution to the total cross
section of a large number of partial-wave com-
ponents (which converge only as J-! when I - ), &°
we can conclude that an exact treatment of the prob-
lem leads to the same divergence in the j—j cross
sections as that from the Born approximation. This
follows from the earlier statement that the partial
cross sections from an exact treatment of the prob-
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lem rapidly approach those from the Born approxi-
mation as J becomes large.

From the argument just given we have a result
which was earlier obtained in the Born approxima-
tion, namely, that in an exact treatment the cross
sections for transitions j—-j+1 of a dipolar system
become infinite in the limit of rotational degener-
acy (I-=). However, our concern in the present
context is with the elastic cross sections for scat-
tering from a fixed field source. Thus, we need
to know the connection between the elastic scatter-
ing cross section from a system with fixed nuclei
and those from a freely rotating system in the limit
as I+, This connection has been provided in a
recent paper by Chang and Temkin, !! where it is
shown that the expression for elastic scattering
in the fixed nuclei approximation averaged over
classical orientations of the internuclear axis is
equivalent to the sum, in the limit /-, of the
cross sections for transitions from a given rota-
tional level j to all final rotational levels 7. Thus

o =1lim 2 o(j=j'), (16)

I-=

where G is the elastic cross section in the fixed
nuclei approximation. Now if we return to the
dipole problem, we see immediately that the the-
orem expressed in Eq. (16) leads to the result that
the elastic cross section @ for scattering from a
fixed dipole diverges as do the excitation (and the
deexcitation) cross sections for the I=« limit of
the nonstationary dipole. Thus, the result obtained
above in the modification of the Mittleman-von
Holdt treatment of a point dipole is also true in the
general case of elastic scattering by a fixed dipole
in which the singularity does not appear; namely,
the total cross section diverges. This result was
surmised in a recent paper by Bottcher!? and was
shown to hold in the E =0 limit by Garrett. 13

III. DIPOLAR SCATTERING BY TWO-CENTER CO-
ORDINATES

We noted earlier that Takayanagi and Itikawa*
have performed calculations of total and differen-
tial scattering cross sections for low-energy elec-
trons on a finite dipole which consisted of two
point charges of opposite sign fixed at a distance
R apart. Their finite results for total elastic
scattering cross sections for this system are con-
trary to the conclusions just reached. The reason
for this disparity can be revealed through a brief
sketch of the formulation of the problem in prolate

spheroidal coordinates. 3'%'1*
Define
Va7 V=7
EzARB,n:ARB,and¢’

where 7, and 7 are the distances from the posi-
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tions of the charge +Ze (at point A) and - Ze (at B),
respectively, and ¢ is the azimuthal angle. In this
coordinate system the Schrodinger equation for
electron scattering by the dipolar system (of dipole
moment D = ZeR) is separable. However, neither
the “angular” 7 equation nor the “radial” ¢ equation
has exact solutions in terms of the familiar spher-
oidal wave functions which are appropriate for this
coordinate system. Thus, in order to obtain two
separated differential equations one must pay the
price of finding solutions numerically for both equa-
tions.»* Furthermore, analytic investigation of
the problem is difficult in such a formulation. For
our purposes the earlier more general formulation
of the two-center scattering problem by Nagahara!
is more convenient.

The Schrodinger equation in prolate spheroidal
coordinates takes the form

[£F - &7+ K*(E2 - 1) - W(E, m) (62~ P)] @, (£, W)= 0,

an
where we have written the wave function
V(& n, @)=d, (5, n)e'™ /(2m)/2
and have defined
m_ 8 2\__m? .
L= ox (‘xz-”ax) A1 XEhT
_2m (RY _2D _ 7
W, m=37 (2) v Ve T (18)

2mE (R\? R\?
2_ L) (Lt
e (2) #(3)
Here D is the dipole moment of the target system
and q is the Bohr radius.
Following Nagahara we can expand the function

®,, in terms of the complete set of orthonormal
functions N,,,(7) :

BT(E, M =20, fT(E) N () . (19)

The normalized angular spheroidal function N, is
defined on the interval —1=7=1 as the eigenfunc-
tion corresponding to the Ith eigenvalue \] of the
equation!®

(&7 + KB P) N (M) = AT N y(m) , (20)
where
L} Nim(M) Nyen(m)dn=5,,. . (21)

By substituting the expansion (19) into Eq. (17),
multiplying by N,,,, integrating over the coordinate
7, and making use of Eq. (20), we obtain

d_dg <(€2- 1) ﬁ)ﬁ‘x(ﬁ) + (Kzﬁa—g'gﬂ_f—l - x’,") ()

- (36_2) ZChfT®), (22)

Qg

W. R. GARRETT

| >

where C,;. is defined by

Cn'=f_i Niw(n) nNpep(m)dn . (23)

For a given value of m, there are an infinite
number of coupled differential equations (22) for
the “radial” functions f7,. This set of coupled
equations has an infinite number of linearly inde-
pendent solutions which are distinguished by the
label ;. From these solutions one may obtain a
wave function which represents an incident wave
plus a scattered wave expressed in spheroidal wave
components. In order to define a cross section in
terms of the usual phase shifts, use is made of the
expansion'®

o2 Y (2- Omo) i’ Nym(cosa)jel(k, &) N, (n)

xcos[m(p -B)], (24)

where a, B are the polar and azimuthal angles of
k relative to the dipole. The “radial” spheroidal
functions je7(k, ¢£) are solutions of Eq. (20) on

1 ={ =« and have asymptotic form

jey(k, £)~ [sin(kE - 3Im)/RE . (25)

The set of functions f7; which satisfy Eq. (21) can
be written with asymptotic form

. —Ll AT
77(e)~ By, S gln )

s 1 i(k¢-17/2)
_BY, (e-mz'. i&%wwmw e_KE___) ,
(26)
Nagahara' has shown that a set of solutions with
the required asymptotic behavior may be obtained
from the set of functions ®7(¢, 1) of Eq. (19), where
the f7; are obtained from (22) by introducing an in-
finite matrix D7; which is the inverse of the matrix
BT e”'4; that is,

22, D}, BT, e t8li= Ouy - (27)

If the set of functions ®7(£, 7) is transformed by
the matrix D7, then one obtains a set of solutions
Y7 (&, m) with the required boundary condition

Ve, m) =22, Dy BT(E, 1)

sin(kg —31m)

Kg Nxm("l)
m ikt-21’'/2)
+2 Bipe 77 Npew) , (28)
1’ k&
where
Yiye =22, D1 BTy, sindj, . (29)

The total cross section, averaged over all orienta-
tions of the dipole, is expressed as
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G- DD L @072 (30)
m 1 1

We now examine the convergence of expansion
(30) for the total elastic scattering cross section.
The convergence property of the series (30) is de-
termined by the products of terms DJ;, B7., and
sinAf;.. If we examine Eq. (27), which defines
D7y, it is evident that for large I, where A}, ap-
proaches zero (at a rate to be determined below),
the relationship (27) becomes

EcDL"iBTx =0p -

Thus in the series expression for ¢ the sum of prod-
ucts D;; By;. is of the order of unity in the higher-
order terms of Eq. (30) where sinAJ;. varies slowly
with increasing !. The convergence is thus essen-
tially determined by the behavior of the phase shifts
AT, in the triple sum overl, I’, m. We thus ex-
amine their properties in some detail.

The Ith partial-wave phase shift to A]; represents
the asymptotic difference in phase between the solu-
tion fJ; of Eq. (22) and the Ith spheroidal radial
function jej'(k, £). The spheroidal function satisfies
(22) when the right-hand side is set equal to zero.

In order to determine the functional dependence of
the phase shifts on the quantum number I, it is
helpful to write the coupled set (22) in an uncoupled
form. This may be done through the use of an
“optical” potential. !®

In order to simplify the notation, we temporarily
drop the subscript ¢ which distinguishes a particular
set of solutions of the coupled set (22) from other

linearly independent solutions of the same equations.

We now write the equations for the components f;
(for given fixed m) in matrix notation.'® For this
purpose we define the matrices

d d mz m m
Hﬂﬁ(E(Ez"l)E o =2 >6n+_a‘o'— o s

fo (&)
1)

°

f;n-l(g) ’
F1a(g)

T(E)=

(31)
C=(2eD/ap)(Cly, CH ,...),
10
Cf: 2eD C',"l
- ag .

With this notation the coupled equations represented
by (22) become
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(L7 +K2E2 =) fF(E)=-CT (), (32)
(H+K%T ()= -C'fT(e) . (33)

In Eqs. (32) and (33) we have singled out the /th
distorted spheroidal wave f7 which we now obtain
in an uncoupled form. To achieve this we solve
(33), formally, in terms of 7, i.e.,

T(¢)=-[1/(H+E®D|C /T, (34)
where E® =k2+i€; €~0'Y. By inserting (34) into
Eq. (32) we obtain an equation for fJ'(£) in the
form?®

(er e =27 - g ©T) FE@<0.

(35)

Thus we have an uncoupled equation for f' which
contains an “optical potential” operator _C__(EI_+E("
x£?)7C'. In order to discuss the properties of the
optical potential and the resultant phase shift, it is
convenient to expand the inverse operator in terms
of the eigenfunctions of H. In general, the spectrum
of H will consist of a discrete part and a continuum.
We specify these eigenfunctions as

(H+8,£T,=0 (36)
for the discrete spectrum, and
(H+e£®)T =0 (37)

for the continuum. If we now expand the inverse
operator in terms of this basic set, we obtain

- 1 t
VO_in+E(¢)€2 (_:

de' . (38)

-5 CLXTC | (CLXTLC
. kZ- g E™ ¢’

With this notation, Eq. (35) becomes

2
a5 €=V 577 - (Fy —Eeoreve) 7=0.

(39)
Thus, for each of the members of the coupled set
(22) we may write an uncoupled equation of the form
(39) from which a phase shift may be determined
through asymptotic comparison with the /th sphe-
roidal wave je].

In the optical potential V, the bound -state basis
functions T, are exponentially decreasing for large
&; thus the asymptotic form is determined by the
second term of (38). The continuum contribution
contains the functions T, which, from Eq. (37), go
asymptotically as spheroidal waves. In addition,
we have the constant row and column matrices C
and C'. Upon examination of the asymptotic form
of the term V, " in Eq. (39), we note that the prin-
cipal value in the integral over de’ will be contrib-
uted at €' = E and the nonlocal operator [TLCY%['dt
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is a constant times a spheroidal function. The func-
tions T.. are normalized to unit amplitude; thus

the magnitudes of the terms in (38) are determined
by the constant matrices C and C'.

We can readily determine the properties of the
constants Cj; . defined by (23) and of the row matrix
C through a limiting process. For this purpose
we note that in the limit £ -0 the angular spheroidal
functions, N;,(n), become identical to the normal-
ized associated Legendre polynomials ®}'(n). In
this case the properties of the Legendre polynomials
lead to the result that

((l+m)(l -m) )”2

(21-1)(21+1) 1r-1

lim C;nl: =

k=0 ((l+m+1)(l -m+1)
(21+1)(21 +3)

1/2
) 670 701 - (40)

For low-energy scattering where the value of & is
small the matrix elements CJj. defined by Eq. (23)
will be largest for 7 ‘=1+1 and will not depart sig-
nificantly from expression (40). Thus, only two
terms in the matrix C are significantly different
from zero, and these exhibit the I dependence of
Eq. (40).

For large values of #, Eq. (39) reduces to the
form

L2 L p-(e- 25 s @

This is Bessel’s equation; thus Eq. (41) has solu-
tions of the form

FHE)~E7V2d 0 okt +8,)~ [sin(kE - 517 +6,)]/kE

(42)
where p(p+1)=2AT" and 8, is a phase shift due to V,.
However, by the argument just given, the term
Vo f7 goes asymptotically like a spheroidal wave
with a multiplicative -dependent constant which is
determined by Eq. (38). Thus the solutions of Eq.
(41) may also be written as

FRE)~ 120, (k) ~{sinlg - 317 =3 0w -D)]}/kt
(43)

where v(v +1) =2]"+v,, and the constant v, is deter-
mined by the exact asymptotic form of the second
term in Eq. (38). A solution in the form (43) is
possible because of the fact that the term V,/£2 has
the same asymptotic functional form as that of the
centrifugal term A\]'/£%. We cannot obtain the con-
stant v, analytically, but we note from the previous
analysis that the amplitude of V, in (38) is approxi-
mately proportlonal to CC'r and that the elements
of C and C are negligible but for those of Eq. (40).
Thus the 7 dependence of V, and consequently that
of the shift v, in the Bessel functions, goes as the
product of terms in Eq. (40).

We are now in a position to determine the I de-
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pendence of the phase shift A7 for large values of
1. The eigenvalues A\ of Eq. (20) have the proper-
ties that A\]'=1( +1) for large . Thus, the solutions
of asymptotic form (43) yield the result

V(v+1) ~ 10 +1) +vg . (44)
From (43) and (44) we get a result analogous to that
for scattering from a spherically symmetric »-2
potential, > namely,

Ar=3a(v =1)~3mvy /(21 +1) . (45)

Finally, from the previous argument the I depen-
dence of v, goes as products of terms in expression
(44), e.g.,

(46)

(C+m+1) -m +1)
Yo ( (21+1)(21+3) )*

Thus, we have a final I dependence of phase shift

A;,.~1r_<((l+m+1)(l—m+1) >+ a7)

2\ (27+1)(21 +3)(27 +1)

or other similar products of the same form. Thus,
for very large I the phase shift goes as

ar~1/(21+1) . (48)

This slow decrease in A" is similar to that for the
case of a spherically symmetric potential.® In
fact, if we now return to expression (30) for the
total elastic scattering cross section and use the
result (48), we see, after interchanging the sums
over [ and m, that the sum diverges logarithmical-
ly. Thus, an exact treatment of charged-particle
scattering by a finite dipole leads to a divergent
total elastic cross section. The finite values ob-
tained by Takayanagi and Itikawa for the total cross
section resulted from truncation error in numeri-
cally evaluating the first few terms of a divergent
series.

IV. CONCLUSIONS

It is very interesting that the dipolar inverse
square potential, which is over all neither attractive
nor repulsive, leads to a sufficient distortion of an
incident plane wave to yield a divergent scattering
cross section as does the spherically symmetric
inverse square potential. The divergence results
from the long range of the interaction and is a
general property of the field, independent of the
value of the dipole moment of the field source. We
have shown how this result follows from the fixed
dipole limit of scattering from a nonstationary di-
polar system with finite moment of interia, and how
the same conclusions follow from a careful inspec-
tion of the more difficult, but exact, treatment of
scattering from a fixed dipolar system in prolate
spheroidal coordinates.
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A quantum-mechanical two-state close-coupling calculation of the inelastic cross section
for the 235—2 3P excitation has been carried out for collisions between 2 3§ metastable and
ground-state helium atoms in the center-of-mass (c.m.) energy range 5-500 eV. The calcu-
lations were carried out in both the diabatic and adiabatic representations using two single-
configuration valence-bond molecular wave functions and the corresponding adiabatic linear
combinations, respectively. Both representations, as expected, gave identical results. In
the diabatic representation, the coupling matrix element was found to be extremely large,
resulting in a strong avoided crossing of the corresponding adiabatic potential curves and very
small inelastic cross sections for energies E <100 eV (c. m.), but increasing to a value of
about 4% 107!® em? at 500 eV (c.m.), The semiclassical Stueckelberg-Landau-Zener approxi-
mation was found to be very poor at all energies considered. The JWKB distorted-wave ap-
proximation was found to be fairly good at energies E 2 400 eV (c.m.).

I. INTRODUCTION
A. Theoretical Background

The theory of atom-atom collisions is among the
most complicated problems of atomic and molecu-
lar physics and has received the attention of re-
searchers for some time.!™® In high-energy colli-

sions, a natural assumption is that the atomic states

are relatively unperturbed during the collision. In
this case, one may describe elastic scattering es-
sentially as potential scattering from the first-or-
der interaction of the atomic collision partners, and
inelastic scattering as an impulsive transition be-
tween undistorted atomic states. If the coupling is
weak, the Born approximation or distorted-wave
method may be applied.

Further, at these high energies, the trajectories
of heavy particles are fairly well described clas-
sically and an impact-parameter description of the
scattering is meaningful. The inelastic process,
however, involves transfer of momentum and en-
ergy to the bound electrons and is not classical.
Hence, some uncertainty always exists in the de-
scription of the excitation mechanism itself. Con-
siderable simplification results if in addition one
assumes a straight-line path, the semiclassical
analog of the Born approximation.

These semiclassical approaches are, of course,
time-dependent in nature. However, a time-inde-
pendent semiclassical analysis is possible via the
eikonal approximation, for example, which in a
partial-wave analysis of a single-channel scatter-



