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~'I thank Professor L. Spruch for the argument on the
elastic scattering threshold law which was given in a
seminar at the Boulder Summer School, 1968 (unpub-
lished). The analogy between our problem and this
argument lies in the fact that in both cases we have two
terms which we know at zero energy and from this we
determine the k dependence of one part which is of
interest. The analogy is, however, limited to this
aspect because the way the two terms arise and the
reason for our interest in one of them are quite differ-
ent in the two problems.

R. Peterkop, Latvijas PSR Zinatnu Akad. Vestis 9,
79 (1960); also R. Peterkop and A. Liepinsh, Ref. 3, Eq.
(12). See also the discussion after Eq. (11') in Sec. VI.

That the classical derivation gives the correct
threshold law even though, at first sight, one expects
WKB and classical analyses to break down near thresh-
old is because of the long-range nature of the Coulomb
potential. In the Coulomb zone, the potential leads to
characteristic expr. i (8ZR)' ] oscillations, i.e. , rela-
tively rapid oscillations. Outside this region, the wave-
length of the oscillations becomes k ~. Thus when k-0
even though the latter wavelength becomes large, the
important point is that the Coulomb zone expands,
stretching to R=~ at threshold. This statement is ex-
pressed mathematically by saying that

dX d 2 2(Z
dR dR R

is much larger than unity for all values of large R. The
argument that, paradoxically, a WKB treatment becomes
better near threshold should be expected to be valid for
any long-range force (at least for l =0 states. .For non-s
states, there will be a repulsive angular momentum po-
tential far out which may limit the argument to potentials
with r ", n& 2) and may be of interest particularly for
systems in which polarizability dominates the threshold
behavior.

J. W. McGowan, Science 167, 1083 (1970), and ref-
erences therein.

I. Vinkalns and M. Gailitis, in Proceedings of the

Eifth International Conference on the Physics of Elec-
tronic and atomic Collisions, Leningrad, 1967 (Lenin-
grad Nauka, Leningrad, 1967), p. 648.

This imaginary potential adds to the angular momen-
tum giving an effective complex angular momentum,
somewhat like the Damburg-Gailitis effect for e+&
scattering below an excitation threshold. This suggests
that this potential may be a manifestation of the doubly
excited states with large dimensions.

Neglect of the R term relates to the earlier remark
(Ref. 11) that the restriction to L =0 is not crucial for
the threshold law. In our derivation, the threshold law
follows from the behavior in the Coulomb zone where
the 1/R and R ~ potentials dominate any R potential
due to non-S states.

24It is instructive to examine Kq. (11') for the light
it throws on Coulomb functions normalized per unit
energy. This equation with a= b =0 gives in the Coulomb
zone X (R) =R 4, whereas in the asymptotic limit it
gives k . This expresses the fact that energy-nor-
malized functions R 42f+f(8&R) ), which are indepen-
dent of energy in the Coulomb zone, connect to the

asymptotic form&" k expr. ikR + (iZ/k) ln2kR], which
is more easily recognized to be an energy-normalized
form because spherical waves normalized per unit
energy, i.e. , k' j&(kr), have exactly the same form
at ~ except for the phase.

5See Ref. 6, Eq. (15.3.14).
6H. A. Bethe and E. E. Salpeter, Quantum Mech-

anics of One- and Tzvo-Electron &toms (Springer,
Berlin, 1957).

The k expansion in (A7) has been derived in many
different ways. See, for instance, F. L. Yost, J. A.
Wheeler, and G. Breit, Phys. Rev. 49, 174 (1936);
J. G. Beckerley, ibid. 67, 11 (1945); and M. Abramo-
witz, J. Math. Phys. 33, 111 (1954). The two deriv-
ations we present are both simple and of interest in
their close connection to the two-electron wave func-
tions and for seeing the passage from the Coulomb to
the far zone.
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By restricting attention to a single open scattering channel at a time, it is found that an op-
tical potential, accurate to second order in the scattering potential, can be easily derived for
the example of rotational excitation of a rigid rotator by a structureless atom. The resulting
equations are contrasted with those derived from the close-coupling method. In cases where
many open channels are present, the optical-potential method seems to offer many advantages
over close coupling. Various practical methods for improving the accuracy of the optical po-
tential beyond second order are discussed.

I. INTRODUCTION

The close-coupling method of Massey and Mohr

has received widespread attention ever since digital
computers have made feasible the solution of many
simultaneous ordinary differential eq uations. The
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electron-hydrogen scattering problem has probably
been the most thoroughly investigated using this
method; reasonable results can be obtained by
using a few terms in the expansion of the total
wave function. '

In problems of more complexity, such as atoms
colliding with molecules, one cannot hope to es-
cape with only a small number of terms. Lester
and Bernstein have described the computation
procedures for a structureless atom incident on a
rigid rotator. They solved up to 25 simultaneous
second-order equations for this single problem to
obtain results of high precision, but they make it
clear that the close-coupling method is not practical
in systems that have many degrees of freedom;
one soon runs out of storage and computer costs
are far too high.

The purpose of this paper is to investigate what
can be done using complex potentials to replace
the simultaneous equations of the close-coupling
procedure. We shall confine our attention to the
case of a structureless atom colliding with a rigid-
ly rotating diatomic molecule, although the method
is easily generalized.

II. DERIVATION OF OPTICAL POTENTIAL

J vp= pHq[q(E-H)q] 'qHp,
and q—= 1 P. Since Pq=0 and [P, Ts]= [P, H„t]=0,
Eq. (5) can be written as

(T„+PVP+PVP+ E~ —E)P4' = 0, (6)

where

PVP = PVq [q(E —Ts —H„,—V)q] q VP

is the optical potential. For simplicity, we special-
ize the argument to the elastic channel. The op-
tical potential for inelastic channels will be treated
in a separate paper. As in the close-coupling meth-
od, it is useful to use wave functions of definite to-
tal angular momentum J, composed of j, and l', the
angular momentum of the atom-rotator relative mo-
tion'.

=Z V~ (~) Z p 'u.'r ~ (-p)V(, . (f~)
m l

g

( I)9 +l +N(2g I)1/2 a (8)
m, m)s —M

H-t I jm ~&
= (" /2f)j (j + I) I jm» = E~ I jm & (2)

We wish to derive an equation from Eq. (1) which
gives the wave function for a particular open chan-
nel, one whose rotator angular momentum is
asymptotically j, . We may choose j, to be any
rotator state which is energetically available.
Asymptotically, the wave function for this channel
is g )j,m, &(j,m, ['P(R, &u)&. If we let

, [j,m, )(j,m, I, then the wave function can
be written as PC. The equation for P4' is the
Feshback equations

(PHP+PVP E)Pe= 0, -
where

a= r~+a...+ V,

We imagine a structureless atom of mass m
incident upon a structureless homonuclear diatomic
molecule whose moment of inertia is I. The Schro-
dinger equation we wish to deal with is

[T„+H„,+ V(R, ur)]4'(R, e) =E4(R, &u) .

In Eq. (1), the atomic coordinate is R—= (p, 0) in
the center-of-mass system with 0= (8, p), the ro-
tator angle is u& =-($, p), the relative kinetic energy
is Ts =——(h /2iJ, )Vz~, the molecule's rotational
Hamiltonian is H„„and the interaction potential
is V. The reduced mass of the system is p. .

We shall adopt the notation that wave functions
represented by angular brackets belong to the ro-
tator:

where g, (R) -=(j,m, i4' (R, &o)&. The large brackets
are 3-j symbols. In addition, we use the expansion
for cylindrically symmetric potentials

where

for E &E&

iz& for E(E& (12)

and

~, -=[(2p/h')
I
E —E, I ] .

Finally, we shall make use of the expansion~

exp(fu, IR -R'I)(IR -E'I)-'=4vfu,

V(R, ~) = Z „...(p) I,*.
, (fI) V...(~) . (9)'t

The projection operator q is represented in terms
of rotator eigenfunctions,

(10)
jm~

where the prime, here and henceforth, signifies
that the terms P=g ]j,m, &(j,m, ) are missing.
A highly tractable approximation to the Green's
function [q(E —Ts H„,—V)q] is obta-ined when
V is neglected; this is the first term in a systematic
expansion in powers of V. In this approximation,
the Green's function can be written as

8 jk~ I B-R')
Go(»&'R' &')=~'Ijm~&' '„&jm~I, (»)
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&Z j„(h p,)h,'~'(h p )Z„F (O)F „(O ), (14)

where p& and p& are the lesser and greater of p and
p', respectively, j)„ is the usual Bessel function,
and h)„"-=j)„+in)„, where n„ is the Neumann func-

tion. ' Equations (8) through (14) are now inserted
into Eq. (6). The resulting equation is multiplied
through by F,* (O) and (j,m, l, integrated over O

and co, and all the Racah algebra is carried out to
obtain

h d l(l+ 1)
+&, —E M„(p)+Z f...(Jj/, )v, (p)n„.(p)2p dp p a lit

where

(Jij ) ( I)1+1 j&&+ [(2l I)(21& 1)]1/2 js ja js ja
2J+1 / Zl' 0 00 000 (18)

gjz&&.&i(Jlj,) —= (4m) ~ 2(- 1)~'~ [(2j~+1)(2J'+ l)(B.+ 1)][(2l+ 1)(2l'+ 1)]

U„«.(p, p') =-- v, (p) v,.(p')[j&(~, p&)n, (~~p&)8(jp —j)-j„(ix,p&)h,"'(ix,p&)8(j —jp 1)], (18)

8( )
1 for n& 0
0 for n& 0. (20)

The angular momentum jo is the highest rotator
state that is energetically available; that is, any
rotator state higher than jo is in a closed channel.

The second term in Eq. (15) is of the type found
in close-coupling calculations. The multipoles of
the potential serve to couple various partial waves
of the relative motion so that the total angular mo-
mentum is always t while the rotator is always in
the state J, . The final term in Eq. (15) is from
the optical potential. From Eq. (18) we see that
the real portion U has two parts. The first part
is due to second-order interactions with rotator
states that are energetically available (j & jp).
After interaction, the final rotator momentum is
j, . The second term in Eq. (18) is the result of
interactions with the closed channels (j &jp); it is
due to polarization or the virtual admixture of
states during the interaction process. It is short
ranged, as can be verified by noting the behavior
of the Bessel and Hankel functions of imaginary

W„«. (p, p') -=v, (p) v, .(p')j&(»~p)j „(tc&p') 8(jp-j) .

(19)

The large curly brackets are 6-j symbols. In

Eqs. (18) and (19), the function 8(n) is used to con-
trol the range of the index j in various parts of the
optical potential:

argument.
The imaginary or absorptive part lV, given in

Eq. (19), is due to excitation of open channels oth-
er than the one belonging to j,.

The real and imaginary parts of the optical po-
tential are separated easily, as shown in Eq. (15),
when it is recognized that for real x and y, the
product j~(ix) h,"'(iy) is real for all A, , and that
ix(x) hx" (3 ) =jx(x)A(x)+ii. (x) nx(x).

The clean break between real and imaginary
parts is due to one device: use of the free-particle
Green's function. Had the Green's function been
composed of eigenfunctions of the entire Hamil-
tonian in Eq. (1) in the usual manner, the separa-
tion of the optical potential into real and imaginary
parts could have been accomplished only in a sym-
bolic way.

We now address the question of the range over
which the approximation may be expected to yield
reasonably accurate results. We assume the po-
tential to be of the usual form

V= V,(p) [1—a P2(cosk)],

where f =- 0 —co and a is the asymmetry factor. We
see from Eq. (I) that the optical potential is zero
for the symmetric part of V (because PQ = 0), so
that PVI'-aa Vo. This must be compared with the
second term in Eq. (6), which is exact. It is of the
order of Vo and dominates the elastic scattering
providing a «1. Thus we can say that elastic
scattering will be accurately represented provided
this criterion is met.
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The rate of convergence of the expansion is then
Our approximation is good if tX,„)«1.

In general, it is not practical to find these eigen-
values, so estimates must be resorted to; one ob-
tains a small )X,„) if E» )e), where c is the
strength of the interaction. The strength may be
defined so that e V'(p) = Vo(p), where f I V'(p) Idp= l.
If Vo(p) has a 1/p singularity, e can be defined such
that pV (p)-1 as p goes to zero. These crude es-
timates are usually very conservative; that is,
iX,„i is usually much less than i ei/E Better.
estixnates have been discussed by Kohn.

In general, the approximation becomes better
as the incident energy becomes greater and, in-
cidentally, as the close-coupling method becomes
more cumbersome.

III. COMPARISON VGTH CLOSE-COUPLING EQUATIONS

The close-coupling equations for the atom-ro-
tator problem ares

K~ d /(/+ 1)
2p. dp p

+Ei- E uf, (p)

+ Q fz, , (JL/)e, (p)uf. ..(p)=0, (21)

f ..., (ZL/)-=(-1)~"' [(2/+1)(2/'+1)]'"

Jt J Ltl
(22)

In the above, I is the rotator angular momentum,
while, as before, E and J are the orbital angular
momentum of the relative motion and the total
angular momentum, respectively. Equations (21)
are to be compared with Eqs. (15).

The easy comparisons terid not to be in favor of
the optical equations. The optical equations we
have derived are accurate only to second order,
while, in principle, the close-coupling equations
are exact. Even without exchange, the optical
equations are nonlocal; the close-coupling equa-

For the inelastic channel, the situation is more
complicated, since there is no dominating exact
term. Equation (/) is expanded:

S VZ=SVq[G,'+G,'VG,'+ "]qn,
where G, is defined in Eq. (11). Since our approxi-
mation involves retaining only the first term, we
must examine under what conditions such an ex-
pansion converges rapidly. Strictly speaking, since
one is expanding [1—Go V] ' in a Neumann series,
one should solve the eigenvalue problem'~

tions are not. %e do not view the latter point as
serious, since the technique for numerically solving
nonlocal equations in a noniterative manner, is
well known (see Marriott ).

In the close-coupling scheme, a differential
equation for every open channel is required as a
minimum. The number of differential equations
required to represent the closed channels accurate-
ly is a matter of technique; various methods have

been suggested and investigated by Burke and co-
workers"~ and by Rotenberg. '3 The main criticism
of the close-coupling method is that it gives far
too much information: It yields the entire 8 matrix
whether it is wanted or not. In the face of many

open channels this can be a serious computatiohal
drawback. It i.s often the case that one wishes to
know only what flux is being taken oot of the in-
cident beam, and what flux is being injected into a
few interesting channels. The optical equations
yield only the required information.

For every total angular momentum 2, the number

of differential equations x equired by the close-cou-
pllIlg method 18 the number of combinations of L

and l allowed by the triangle relations. This num-

ber is J + 2J provided each closed channel is rep-
resented by a differential equation also, The
number of equations required by the optical equa-
tions is 1ess because L is held fixed at j„and is
only the number of /'8 that satisfy |j,- 4') & 3&j,+J;
which is 2j, + 1 or 2 J+ 1, whichever is smaller.
This number of equations inust be multiplied by 2

because the optical equations are complex, This
co1Ylparatlvely small set of equations peed be solved

only for each channel of interest,
There is a final advantage to the optical equations

which offsets the fact that they are nonlocal, and

that is that they are all of the open-channel variety.
Consequently, only outward numerical integrations
need be performed. Much computer time is used
in solving the closed-channel equations in the
close-coupling method to ensure their proper be-
havior at infinity.

In particular, if the incoming channel is denoted

by the rotator angular momentum j and the orbital
angular momentum /, and the outgoing channel by
primed quantities, then asymptotically all solutions
to Eq. {15)behave as

uf. ;(p) 5~~. 5„.j,-(0, p) + {0,/0, .)"~

xr'(~/ q'/')&', "(/& p),

where the transition matrix is complex:

r'(~/;q '/ ) = f'(q/;q'/')+/~'(~/;q'/') .
The elastic cross section is given by'3
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where )7-j) &l& J+j, and similarly for l'. The
excitation cross section is

and insert this and the expansion of V(R, v), Eq.
(9)~ lllto (26) 'to obtain

where l~-jl ~ I, «+j Rnd I~-j I» E ~ ~+j . The
totRl cross sect1on is

so"(p) = 0, t=0.

and therefore the absorption cross section is
or - o(j-j). At the origin all u&~ = 0.

IV. OTHER APPROXIMATIONS TO GREEN S FUNCTION

The new Green'8 function now reads
Irl «0

fa& la-8' )

jmsmssj

In this approximation, we seek a function

8& (R, &u) which satisfies

(Tz+H„q+ V - E) F& (ar) e'"J' e &
' ' "'= 0 . (24)

The equation for 8; is

(a'/2p) [2s, v, s, + v' s, —(v„s,)']

+(h'/21) [V'„8,—{V„S,)'] = V(R, ~) . (25)

The solution to (25) can be approximated in a num-
ber of ways depending on the physical situation„
For example, if 8& is considered a first-order
quantity (in powers of V) and if p is large compared
to I/Ro (Ro is the dimension of the rotator), then
the equation emerging from (25) is

H„g 8~ '(R, ro) = V(R, (o), (25)

In the approximation presented in this paper, it
is a simple matter to write down the optical equa-
tions for almost any nonionizing and nondissociating
binary collision. The Green's function is always
of the form

R-R»

C.'(R, r; R', r')= @2 C~ (r)
) g Ri( C'g*(r') 0,

(23)

where the 4~ (x) are the product eigenfunctions of
the noninteracting systems, k&- (E —E&)", and

E& is the energy required to excite the state j. As
before, Q—=gq Ijm){jml projects away the terms
referring to the channel of interest. Higher Born
RpproxlmRtlons R1'6 of cou1 86 posslbl, but they
are not computationally useful. In this section,
we shall indicate a few ways in which it may be
possible to improve upon Eq. (23) with reasonable
labor. We deal mainly with the atom-rotator case.

A. High-Energy Approximation

or, upon expanding the exponential containing 8 and

using Eq. {11),we have

c', =c,'+ Z' Z Z, , —, [(2j+1)(2q+1)]"'
- qm Jmg

go ) R-R')
x

@ ~, [v, (p) r, „((o)F, ,(Q)

which shows the first-order correction explicitly.

8. Adiabatic Approximation

If the atom moves slowly compared to the rota-
tlonRl motion of the molecule, we cRn define RdlR-

batic states by

[a„„+V(R, ~)] C, (R, ~)= 8, (R) C, (R, ~),

where R is considered a parameter.
Equation (30) can be solved by matrix methods'

or variational techniques. In any event, we shall
assume the 4& are known and we seek solutions to

Eq. (1) in the form E&(R) C»(R, &e), with the result

[Z- S, (R)- r„]Z, (R)=0,
where the Born-Oppenheimer terms have been ne-
glected. In order to recover the desired form of
the Green's function, Ez (R) must be replaced by
a plane wave, or, equivalently, $&(R) must be re-
placed by a constant. To satisfy the proper bound-

ary conditions at infinity, we choose this constant
to be $&(~)= Ez, the asymptotic rotational energy
for the state j. We now expand

being independent of j in this approximation.
We expand C'&(R, w)= Z q &.(p)&&. , (&)&&

]em),
(32)

and write the adiabatic Green'8 function as
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G, (R, &o; R', &o ) = QZ 4& (5, ~)

e 0) II-%~ I

= Z' Z' Z y„.(p) Y,*. , (Q) Y,.„((g)

~0

+ Z 4»(r)e(k, %, 5')4&(r ), (34)
g-"41+1

where we have assumed that j1&j,. If we add and
subtract the missing terms from the second por-
tion of (34), we find

G, = 6(r —r') e(k, R, %')

~l

+Q Z 4~(r)e(k, , %, %')4,*(r')Q

(33)

%e note the incompatibility of the adiabatic as-
sumption and the replacement of E&(R) by a plane
wave, and for this reason we do not place a great
deal of confidence in Eq. (33)."

C. Closure Approximation

We refer to the Green's function in Eq. (23).
may happen that for some forms of the interaction
the exponential can be legislated insensitive to j
for j greater than some j1. That is, k& =k for
j &j1, where k is some average wave number. For
convenience we denote the spherical wave as
e(kz, R, R ) and write Eg. (23) as

~1

G.'= q Z 4, (r)e(k, , R, F)e,*(r') q
j=0

g1

—Z 4&(r) e(k, K, F)4&(r'), (35)

which is simpler to use because of the finite j sum.
The problem, of course, is to find a "best" value
of k. In Coulomb interactions, if one is willing to
ignore the continuum everywhere but in the com-
pleteness relation, then k = [(2p/K~)(E —so)] 'i~ for
j1 greater than a small integer, where eo is the
ground-state energy. If one does not have a spec-
trum which approaches a limit point, or if one
wishes to include the continuum in finding k, the
problem is much more difficult, and is being ad-
dressed by us at present.
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