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Experiments in collisional transfer of excitation, as well as theoretical considerations, have
shown that singlet-triplet mixing occurs for nE states of helium. In this work the helium fine
structure has been calculated using polarized orbitals to determine the amount of mixing and
its dependence on the state {n)) of the excited electron, and on the polarization of the orbital
of the inner electron. Results are presented for n=3-10 and )=2{n—1). All P statesgave poor
results because of a large exchange effec', involving the polarization term in the wave function.
However, the 3 D and 4 D levels showed improved agreement with experiment for the fine
structure. The singlet-triplet mixing is essentially zero for l =2, is significant for l =3, and
is virtually complete for l ~4. It is also found that the mixing decreases slightly with increas-
ing n.

I. INTRODUCTION

For helium-like ions in the lower-energy states,
the total spin angular momentum S and the total
orbital angular momentum L are approximateiv con-
stants of the motion. ' This is because the spin-
orbit interaction which tends to couple the spin and
orbital angular momenta of the electrons is small
compared to the exchange energy K which tends to
couple the two spins. The energy levels for which
this approximation (Russell-Saunders coupling) can
be applied can be classified according to the spin
multiplicity: singlet or triplet for two-electron
atoms. As the degree of excitation of the atom in-
creases, the exchange energy decreases much more
rapidly than the spin-dependent interactions, and
the Russell-Saunders approximation becomes in-
valid. The wave functions describing these states
are not pure singlet or triplet, but must be written
as linear combinations, or admixtures, of singlet
and triplet states. ' Some fairly recent experi-
ments' ' have drawn heavily on the occurrence of
singlet-triplet mixing to explain their results. It
is the main purpose of this work to calculate the
admixture coefficients for the linear combinations
of states and in so doing, to study the dependence
of the breakdown of Russell-Saunders coupling on
the degree of excitation of the helium atom. In
another paper the dependence on the nuclear charge
Z will be studied.

It is the problem of collisional transfer of excita-
tion in helium which has drawn attention to the
breakdown of Russel-Saunders coupling. Lees and
Skinner discovered that 'P excitation seemed to
be transferred to D levels and proposed the colli-
sion reaction

He(n~P)+He(1'S)-He(1'S)+He(n D) (1)

to explain the observations. Although this transfer
of excitation was decisively shown to exist by

Maruer and Wolfe, ' ' the reaction above violates
the Wigner spin-conservation rule' which is ex-
pected to hold for states with a low principle quan-
tum number. " This is the main objection to the
above transfer mechanism, but later experiments
revealed more difficulties. Heron, McWhirter,
and Rhoderick'8 showed that collisional transfer of
excitation for n = 3 occurs slowly compared to the
mean lifetime of the excited states involved and
therefore cannot account for the observed effects.
Gabriel and Heddle'7 showed that cascade processes
were more important than had been previously sup-
posed. Then, St. John and Fowler' proposed a
multiple state transfer process which explains the
experimental observations and is free from the
above obj ections:

He(n ~P) + He(1 'S) —He(nF) +He(1 'S),

He(nF)-cascade-He(n' D), n&n' .
This mechanism received theoretical support from
Lin and Fowler, who showed that the transitions
with b,L =+ 2 are favored in such collisions. More
importantly, they showed that the total spin is not
necessarily a constant of the motion for F levels.
The combined singlet and triplet nature of the F
states allows the transfer to proceed without
violating Wigner's rule. The n'P- nF transfer
model was supported by later experiments.

The values of the singlet-triplet admixture co-
efficients depend on the matrix elements of the
spin-dependent interactions and on the exchange
energy associated with the spin-independent inter-
actions. '4 The coarse structure and the fine struc-
ture of the helium spectrum are also determined
by these quantities. In the Russell-Saunders ap-
proximation, the coarse-structure splitting is de-
terrnined by the exchange energy and the fine struc-
ture by the spin-dependent interactions. ' There-
fore, methods of studying the fine structure which
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are applicable to the problem of singlet-triplet
mixing are considered.

Heisenberg' was the first to treat the problem
of the excited states of two-electron atoms. He
used perfectly screened hydrogenic orbitals, in-
corporating spin effects in an intuitive fashion.
Sugiura' improved Heisenberg's method by con-
sidering imperfect screening. Gaunt ' ' calculated
the triplet separations for the 2 P, 3 P, 3 D, and
43D levels in helium. He incorporated the spin ef-
fects more directly into the wave equation. The
most accurate of the early calculations were made
by Breit ~ and by Araki. The most important
of several contributions by Breit was the derivation
of a, wave equation for two-electron atoms. Al-
though it is not Lorentz invariant, it has been ver-
ified by several authors ' to be correct to terms
of order n in the interaction of the two electrons,
where n is Sommerfeld's fine-structure constant.
Breit also calculated the fine structure of helium
to test the terms in his Hamiltonian, but he did not
consider the off-diagonal matrix el~ments of the
spin-dependent terms. ' Araki used Breit' s
Hamiltonian and allowed for the possible mixing of
states. The spatial part of Araki's wave function
includes a contribution, derived by Bethe, owing
to the polarization of the inner electron orbital by
the outer electron. The Coulomb repulsion of one
electron polarizes the charge distribution of the
other, and Bethe used an approximation, good for
excited states, to find the effect on the wave func-
tion of the polarization. The secondary purpose of
this paper is to study the effects of the polariza-
tion correction.

Much more accurate results for the fine struc-
ture have been obtained recently by using improved
wave functions obtained by variational tech-
niques. 30 3 Unfortunately, these calculations have
all been for the lowest excited states~ ' or for S
states. The requirement that each successive
variational wave function be orthonormal to those
for all lower states leads to an extremely large
amount of calculation as well as slow convergence.
However, such calculations for singlet-triplet
mixing have been made, but only for 2P states
in the helium sequence.

Araki's method is taken as the starting point for
the present calculations, although the method is
modified slightly to facilitate the calculation of
the admixture coefficients. Also, the energy eigen-
value calculations are extended to states with n as
large as 10. Since the polarization is being studied,
care is taken to determine the detailed effects of
these terms in the wave function.

Breit's Hamiltonian is used, but the spin-indepen-
dent relativistic corrections are neglected, since
they do not contribute to the energy splittings.
For the same reason, the direct integrals of the

II. THEORY

A. Formulation

The Breit equation~ is a differential equation for
a relativistic wave function for two electrons, in-
teracting with each other and with an external elec-
tromagnetic field. It contains an approximation to
the relativistic interaction between two electrons,
and the field-theoretic treatment of Dirac's pair
theory is inexact. In addition, the Pauli approx-
imation3 involves an expansion in which all terms
higher than (v/c) are dropped The B.rett equation
in Pauli approximation is given by Bethe and
Salpeter in position space.

The position vectors of the two electrons are de-
noted by r, and r» and r» = r, —r~. The orbital
angular momentum operators are given below,
where lower-case letters are used for the angular
momenta and associated quantum numbers of one
electron and capital letters are used for the totals
for more than one electron,

l,-=r,. xp, ,

pg

j=1 2

j&k=1, 2 (4)

ordinary Schrodinger Hamiltonian terms are not

considered. The wave functions used are products
of hydrogenic orbitals. The inner orbital is
amended by a spherically symmetric correction
term and a correction term due to polarization,
and for the outer orbital, perfect screening by the
inner electron is assumed. In the integrands,
only products to first order in these corrections
are retained. First-order degenerate perturbation
theory' is used to find the energy eigenvalues, which
determine the level splittings, and to find the ad-
mixture coefficients which determine the correct
linear combinations of degenerate wave functions
that form the correct zeroth-order wave functions
corresponding to the split levels.

When the calculations were made, it was found
that Araki's results could not be duplicated. It
is concluded after careful recalculations and a com-
plete analysis of Araki's paper that errors occur in
his work which cannot be accounted for by mistakes
in the detailed arithmetic. These errors will be
pointed out in Sec. II, as the general theory is
presented. By far the most significant effect is
that the method does not give the good results for
(1s)(np) configurations that Araki had reported.
A large exchange effect due to the inclusion of the
polarization term in the wave function leads to
extremely poor values for the energy splittings for
all P states. The remainder of the results are
generally satisfactory. The calculations and re-
sults are discussed in Sec. III. A summary of
the results and the conclusions drawn from them
are presented in Sec. IV.
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where

p= —i' .
The spin angular momentum operator, s, or s~,
has as its components the Pauli spin matrices:

"210 ' ' 210 ' '20-1

(5)

the orbital angular momentum of the atom L is
equal to the orbital angular momentum of the outer
electron l. Also, M~ = m, . The approximations
used in obtaining the wave functions further re-
strict the states to those with nonzero values of l

(or L). For the configurations to be considered,
the approximate eigenfunctions of the Schrodinger
Hamiltonian are

For convenience, the Breit Hamiltonian is writ-
ten (in atomic units) as

1)&„, , (1, 2) = (42) ' [R1p(r,& Z) + Up(r1& rz)+ U, (r„rz)

xp, (cose„)]R„,(r„Z-1)y,"', , (12)
H= Hp+I/rz+H, ', '+H' '+H +H

where

Hp= —
2 V1 —Z/r, —2Vz —Z/rz,2

(7)

(8)

where &,2 is the angle between r, and r„P„(x)is
the normalized Legendre polynomial, and Y,„ is
the normalized spherical surface harmonic, with
the phase determined by '

H,',"=-2'Zo'(r, I, . s, +rz'lz. s,), y, „=(-1) I7 (13)

12 [(112+2121) s1+ (lz1+ 2112) sz]

r12 [ 1 2 3r12 (r12 s1)(r12 s2)]

(»)
H„, includes the spin-independent relativistic in-
teractions, and is neglected since it plays no part
in the level splittings and is small compared to the
approximations made in obtaining the nonrelativis-
tic eigenvalue. A term in H„ involving the 5-func-
tion 5(r,z) has been omitted because it does not
affect the splittings.

There are three types of corrections for the
finite mass of the nucleus, but only one of the three
is used in this work. The "elementary" correc-
tion for the motion of the nucleus about the center
of mass is made by multiplying all energies by
M/(M+ m), where M is the mass of the nucleus
and m is the mass of the electron. This correc-
tion is made by using the proper Rydberg constant
when the atomic units for energy are converted to
cm '. The mass correction due to electron ex-
change is applicable only if the electronic states
occupied by the two electrons combine optically;
that is, only P states are affected, since one elec-
tron always remains in the ground state. As stated
before, the results for the P states are not good,
so this small mass correction is not considered.
The correction due to mass polarization is small
for excited states and will be neglected.

In Eq. (7), Hz+1/r, z is the ordinary Schrodinger
Hamiltonian for a two-electron atom. H,'," is the
spin-orbit interaction of one electron, H,', ' is the
spin-orbit interaction of two electrons, and H is
the spin-spin interaction.

Since all doubly excited states of helium have a
higher energy than that of a He' ion plus a free
electron, the only electron configurations con-
sidered here will have one electron in the ground
state and one in an excited state. This means that

B„,(r, Z) is the normalized radial eigenfunction of
the hydrogenlike atom, given by"

2Z (n —I —I)!"'~2
n1 & 2 [( +I) 1]z

2Z~ ~
22&'~» -L(21+1) (14)xe n+ln n

where L„'(x) is the mth derivative of the Laguerre
polynomial of degree n Up(r. „rz) is the spherically
symmetric correction to the orbital of the inner
electron. It is obtained as an expansion of spheri-
cally symmetric hydrogenic radial wave functions:

Up(r„rz) =Z b„(rz, Z)R„p(r „Z)
v =2

(15)

with

bz(rz, Z) = —(32/81~2) e '2~2 (3rz+ 2/Z), (16)

and

bz(rz) = (I/768» 3) (1/rz) e "2 (729+ 1782rz

+2160rz +2712rzz), (18)

which does not agree with Eq. (17) for Z=2. This
error is not very significant. The contributions
of Uo to the radial integrals are of the order of 10'
of the contribution of the R10 term at the very
largest, and they are usually much smaller. Fur-
thermore, the b3 term is smaller than the b2 term

bz(rz, Z) = (I/64v 3)e "2 (8Zrz —36rz —27/Z) .
(17)

These coefficients were given by Araki for the
case of Z= 2 only. ' When the generalization to
arbitrary Z was made, a discrepancy in the bz(rz, Z)
coefficient was found. Although the bz(rz, Z) coef-
ficients agree for Z= 2, the b, given by Araki is '
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within Uo.

U, (r», ro) is the coefficient derived by Betheoo to
approximate the effect of polarization of the (ls)
orbital. It is given by

U(r„,)=, " 2', ~ 2z, ——.() ~ 2z, ~ z', ) —,, — —2),Z.i 2 3 e " 1 2
r2' Z ri & r2

o e "' 2Z ro —»Z r, '+-', [1 —Z ro —e ' "o(1+2Zro+7'ro )]] o o+ ~ r, &r, . (19)Z'r2' Z ri Zri J

In the derivation of U„Bethe used the hydrogenic
orbitals with the same sign as given in Eq. (14),
but Araki used the orbital of positive sign2' without
making the appropriate correction in Ui. Conse-
quently, all the contributions to the radial integrals
from the U, term have a minus sign mistake in
Araki's paper. The effects of this error will be
discussed in Sec. III.

The Uo and U, corrections are equivalent to con-
figuration interactions with the autoionizing states
(2s)(nl), (3s)(nl), and (n'P)(nl). It has recently been
shown that the lifetimes of the 2p P and the
2p3p 'P levels are much longer than the lifetimes
characteristic of autoionizing states. Thus, the
significance of the U, term is enhanced.

Four linearly independent, totally antisymmetric
basis functions are formed from the spatial eigen-
functions (t)„», (1, 2) and the spin eigenfunctions
S,„,(1, 2):

= (I/W2)(1 —P)[(t)„, (1, 2) n(1)n(2, )],
(() = (I/v 2)(1 —P)[»t)„, (1, 2)n(1)p(2)],

(t) = (1/v 2)(1 —P)[(c)„,„»(l, 2)n(2)P(1)],

(26)

(2'7)

(28)

and

is split by the perturbation. The values k=1, 2,
and 3 correspond to the three triplet levels for
which j=l —1, j=l, and J=/+1, respectively. The
index k = 4 refers to the singlet level.

The basis functions, Eqs. (20)-(23), are not the
same as those used by Araki, who took products of
a and P as his spin functions and then antisymme-
trized the product of spin and spatial functions.
His total wave function is entirely equivalent to
Eq. (25), but there is no separation into singlet
and triplet parts. 2~ Araki's basis functions can be
written

(t)I = [2 ' (1 —P)g„»»»(1, 2)]S»,(1, 2),

Qo = [2 (1 —P)())„» (1, 2)]S»o(1, 2),

(t)'»= [2 t (1 P)())„, , »(1, -2)]S»»(1, 2),

(20)

(21)

(22)

with

4

4» -~ b»;@» k=1, 2, 3, 4

()). = (I/v 2)(1 —P)[)t)„, (1, 2)P(1)P(2)], (29)

(30)

(t)o = [2 (1+P)())„»,(l, 2)]S()()(l, 2), (23)

mg =Mr = M~ —Ms = m~ —M~ (24)

where P is a permutation operator which inter-
changes the electron coordinates. The superscript
t indicates triplet character (S = 1), and s indicates
singlet (S=O). The spin eigenfunctions are the
usual expressions. " Since the Hamiltonian H is
diagonal in M~, the total magnetic quantum num-
ber, the four basis functions are taken for a given
M~(=»n»); hence, the substitution

corresponding to Eq. (25). There is a simple
transformation from one representation to the
other, and the coefficients in Eq. (25) may be ob-
tained from those in Eq. (30) according to

~01 bA1 y

a»o = (I/~2 ) (b»o + b»o),

= b~4

(31)

(32)

(33)

(34)a» = (I/W2) (b, o
—b»o) .

The coefficients in Eq. (25) are found by using
Araki's matrix elements to find the coefficients in
Eq. (30) and then using the above transformation.

is made.
In accord with first-order degenerate perturba-

tion theory, the correct zeroth-order eigenfunctions
are expanded in terms of the degenerate basis func-
tions as

B. Energy Splittings

Taking the perturbation to be

(35)

)I(»(1, 2) = a», Q', +a)I, olo+at, @'»+a»(t)o (25)

with k = 1, 2, 3, 4. The index k refers to a particular
one of the four levels into which the degenerate level

and using Eqs. (26)-(29) as a basis, one obtains
a system of four simultaneous homogeneous linear
equations in the four unknowns bI, 1 by2& bI, 3 and
bg 4»
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4

Z b(, &
(hz. , —E),5&; ) = 0, j= 1, 2, 3, 4 . (36)

go= ——,
' ([2K+i(+2(].' —3t —6t'+2(21 —l)(21+3)()l+q }]

+ 4l(l + 1)(l(+ t ) j'~ ——z'[l(+ 2X' —3l —6& '+ 2(2l —1)

hei —& hjz hi3 h, 4

hqq hoo —e hq4

h3i

h4)

where

h3q h33 —E h34

h43 h44 —E

This leads to the secular equation"

=0, (37)

x (2l + 3)(q +)l')], (49)

eo = —K+ 1[& + 2&
' —3& —6f ' + 2(2l —1) ()i + q ')], (50)

&4 = —,'( [2K+ l(+ 2X
' —3& —6&

' + 2 (2l —1)(2l + 3)(q + q ')]

+ 4l(l + 1)(l].+ &) }"——,'[X+ 2l(' —3( —6f '+ 2(2l —1)

x(21+3)(q+q')]. (51)

and

hoo = —m (l(+ 0 ) + 2[l(l + 1) —3m ]()l + q '),

hoo = m(&+))+2[1(1+1) —3m ](q+)l'),

h44 = —K —(m + 1)(l(+ 2X —3$ —6r„')

(40)

—2[l(l+1) —3(m+1) ](q+q'), (41)

h, o
= ho& = —[l(l+1) —m(m —1)]' [l(+ A'

—t' —3t'+ 3(2m —1}()1+q')], (42)

hqo = hm = —[l(l+ 1) —m(m —1)]' [l(' —2g

—3&'+3(2m —1)(q+)i')], (43)

ho4=h4a= —[l(l+1) —m(m+1)]'~ [l(' —2r.

—3f ' —3(2m+1)(]7+q')], (44)

ho4= h4o = —[l(l + 1) —m(m+ 1)]' [l(+ l(

—r —3$' —3(2m+1)(q+7i')], (45)

h«= h~, = 6[l(l+1) —m(m —1)]'~o [l(l+ 1)

—m(m + 1)]'~ (q+)7'), (46)

h„= —K+ (m —1)(X+ 2X' —3t' —6r ')

—2[l(l+ 1) —3(m —1)o](q+)l'), (38)

The analyses of the energy splittings are made
from the quantities in Eqs. (48)-(51). The coarse-
structure splitting A is defined in terms of the
eigenvalues as

6= e4 —[1/3(2l+1)] [(2l —1)eq+ (2l+1)ao+ (2l+ 3)eo] .
(52)

When Russell-Saunders coupling is valid, a is
equal to 2K. The second term in the difference is
the statistically weighted average of the triplet
energy levels. The triplet splittings are defined to
be

(53)

and

(54)

When 6 is the same order of magnitude as 5, and

5~, one more energy difference is included in the
fine structure,

~s 64 E3

5, is just the difference in the singlet level and the
triplet level with 8 =l+1. This is included in the
tabulation when the singlet is not distinctly sepa-
rated from the triplet levels.

The parameters in the energy equations are given
in integral form

hoo = hoo = —K+ 2[l(l + 1) —3m ] (q + q') . (4V) l(= z n f [R„,(ro, Z —1)] ro ro dro )

ln Eqs. (38)-(47), the substitution m = m, has been
made for convenience. In the evaluation of the ma-
trix elements both direct and exchange integrals
occur. The parameters X, X', f, f', g, and g' are
radial integrals associated with the spin-dependent
interactions. The primes on these parameters in-
dicate exchange integrals. X and X' are the direct
and exchange integrals due to H"', f and &' are
due to H,', ', and g and g' are due to H . K is the
exchange integral of the spin-independent parts of
the Hamiltonian. Araki obtained the solution to
Eq. (37} in terms of the radial inte8rals as

&q = —K —(l+1)[X+2&'—3$ —6$' —2(2l+3) (q+)l )],
(48)

and the substitution of (ro ) from Pauling and
Wilson' yields

l( = a /n l (2l + 1 ) (l + 1), (56)

r i Rto(ro Z) U((rs, ro)R))(2 2l+1
0

x(r» Z —1)R„,(ro, Z —1)r,rodr, dro, (57)

Q(= ——
Jl (]z„( „z)]'-z~ zR„( „z)

and since only the corrections U0 and U& are re-
tained, l is restricted to unity, so that X' is found
for P states only; also,
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where

[R„,(r, Z —1)] r r dr, dro,
2V+ 1 Brp

(58)

a„=r&/r&' . (58)

Here, r& is the smaller of r, and r2, r& the greater
of the two. The exchange integral associated with

Ro, (r» Z —1)R„,(ro, Z —1) R,o(r„Z) R~p(ro, Z) + Uo(r~, ro) RM(ro, Z)A ~a

4(2l+1)
0 ) r2

' " ~r2
' r,

as 8 1 l —1 l+2
+ '

Rio(ro Z) Uo(r» ro) + U~(r» ro) —2l 1 a, ~+2l 3
ai. i R10(ro& Z)

er1

+
1 1 ~as 1 1 &as+1+ Rio(ro, Z) U, (r„r,)
r, 2l —1 Br, 2l+3

1 l —1 l+2 ~ g 2
+ a, , + a„, R„(r„Z) U, (r» r, ) r,r, dr, dr, . (60)s-1 2l+3 &+1 10 2y

The terms due to H„are

2

[R„,(ro, Z —1)] r, (1/ro)/[Rgo(rg Z)] 2+Rgp(r»Z)Uo(r» ro)
4 2l 1) 2l+ 3)-

+ 2(r,/ro) Ryp(r» Z) U, (r„ro)]dr~dro, (61)

Q
RM(r» Z) U, (r„ro) ' R„,(r» Z —1)R„,(ro, Z —l)r, 'ro'dr, dro . (62)

The first terms in (58) and (61) involve the integral

f R10 r„Z s r2 Z —1 1 r2 r, r2 dr, dr2,
0 rl

which is approximately (ro o), especially for large
l, in which case r, is almost always smaller than

r~. Thus, f and g are almost directly proportional
to X, particularly for large l.

The direct integral of 1/r, o is omitted because
it does not affect the splittings. The parameter
K is the exchange integral of the spin-independent
terms in the Hamiltonian H. This is ordinarily
just the exchange integral of 1/r, o, unless the ac-
curacy of the wave function makes it practical to
include the exchange integrals of H 1 K is due to
a coupling between the spins that is produced by the
use of antisymmetric wave functions. Araki did
not include any expression or present any results
for K. One reason for not doing so is that when
K» X, the fine-structure splittings are independent
of K. In this case,

6q =l [&+2&' —3f —6t' —6(2l+3)(q+7i )], (63)

6o = (l + 1)[&+2X' —3K —61'+ 6(2l —1)(q+ q')] .
(64)

The results of calculations for K using only the
hydrogenic term for the (ls) orbital are well
known, ' '' but the contributions from the correc-
tions to the wave function are important and need
to be considered.

Another point for the inclusion of an explicit ex-
pression for K is that the presence of the polariza-
tion term allows the coupling of the spins to HD

as well as to 1/r, o. As will be shown below, this
additional exchange effect is present for only S
and P states, so that the usual definition of K as
the exchange integral of 1/r, o will apply for
l&2.

The first operator to be considered is 1/r, o,

which can be written in terms of the spherical
surface harmonics as '

oO V

(65)
r1a „.0 2p+1

where a„ is given by Eq. (59). Then,

1K=
4 [Rgp(rg, Z) + L'p(rg, ro)+ Ug(ry, ro)Py(cossio))
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OO v

xZ a„ Z Y„' Y„*,' ' [R,o(r2, Z) + Uo(r» r2)
v p2p+1 g v

+ L, (r2, ri)Pi (cosHmi)]%i(ra, Z —1)Y,' '

x R„,(r„Z —1)Yf'" dr, dr2 . (66)

OO OO

2 rj
Kp= i+i Ri0(ri, Z}R10(r2+ p rj r2

xR„i(ri, Z —1)R„,(r~, 7 —1)ri rz dridr2,

(66)
Using the approximation that only products to first
order in the correction terms are retained in the
integrand and performing the angular integration,
Eil. (66) reduces to

K1=
2

aiR1p r2& 7) Up r» r2) r r» Z —1)
2&+1 p

r 1P 2y

K= Kp+K1+ Kp,

where

(67)
x R„,(r2, Z —1}ri r2 dr, dr2, (69}

2
K =—

2 3 RM(rs, Z)U, (r„r )zQ, ( r» z-1) R„,(r„7-1)
(2l 1}(2l 1}a, , +(2l 3}(2l 1}a, , r, r2 dridrz .

(7O)
If the exchange integral of Hp is labeled K„, then

1 (2) i 2 / i 2Ki =
I [Rip(ri, Z) + Up(ri, r2) + Ui(ri, r2)Pi (cosH is)] gi(r2, Z —1) Yi —2Vi — —2V~4 r2

x [Rio(ra, Z) + Uo(r2, r, )+ Ui(r2, r, )P, (cosH2, )]R„,(ri, Z- 1) Yi~ d&id&g ~ (71)

Angular integration requires 1=0 except for the U, terms, For these, the angular integral is

1 (2) (1) 1I=— P, (cosH„ ) Y, ' ' Y,"'did, did, = —,6„. (72)

Thus,

K„=
3 Rio(ri, Z)g, (r2, Z —1)Rf„(r» 7 —1)

p p

1 H' 2 H 2, 2Z 2Z 1 H' 2 s 2 (7:-1)' 2(7-1) 2ZX —— -y-+ — — y + Z — ——— p+ 2+ 2~r1 r1 er1 r21 r1 r1 2 ~r2 r2 ~r2 r2 & r2 rp

x U, (ri, r2) ri ri dr, dr2 . (73)

This integral has a relatively large negative value,
and when K„ is included along with K in the eigen-
value equations, extremely poor results are ob-
tained for the energy splittings for all P states.
The inclusion of the polarization term U, has pro-
vided a "path" for the coupling of the spins with Hp

through the antisymmetric wave functions. This
effect makes this formulation unsuitable for all
(1s)(np) configurations of the helium isoelectronic
sequence.

The analysis of the results is facilitated some-
what by considering the ratio B=K/FI, where

FI, = X —3(g + 2& ')+ 2(2l —1)(2l+ 3)(@+q'), (74)

is the expectation value with J=/ of the spin-de-
pendent term in the Hamiltonian. When K is large
compared to H„ the Russell-Saunders approxima-
tion is valid. The decrease of B serves as a con-

venient measure of the increase of singlet-triplet
mixing.

All of the radial integrals may be evaluated in
closed form. The formula used in the integration
are given in Ref. 42.

C. Admixture Coefficients

There are four sets of four admixture coefficients
to be found. Each set corresponds to a particular
one of the four energy levels into which the degen-
erate level is split by the perturbation. In the
Russell-Saunders approximation, these coefficients
may be obtained as the Clebsch-Gordan coefficients
defining the unitary transformation from the
LSM~M~ scheme to the LSJM scheme. The states
for which J= /+1 have pure triplet character. ~ '
Since the singlet level does not affect these states,
the Clebsch-Gordan coefficients '.abulated by Con-
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don and Shortley are the same as those obtained
by the algebraic solution of Eqs. (36), except for
the choice of phase. When the Russell-Saunders
approximation is not valid, the coefficients for
k = 2 and for k = 4 are obtained by substitution of
the numerical values for the matrix elements and
eigenvalues into Eq. (36) and solving the system of
equations. The results for these calculations are
given in Sec. III.

Although each of the three triplet basis functions
has a separate coefficient (m dependent), an "ef-
fective" triplet coefficient can be obtained from
the relation

[1 —(Qs)2]1/2 (v5)

This allows direct analysis of the amount of single-
triplet mixing. Of course, in order to use the wave
functions obtained from the authors' basis func-
tions, one must have the individual coefficients of
the triplet basis functions.

For the purpose of using a single number to de-
scribe the degree of singlet-triplet mixing, the
ratio

(v6)

is defined. This is zero in the Russell-Saunders
approximation of no mixing and increases to unity
for complete mixing.

The qualitative behavior of B=K/H, should de-
scribe the reverse behavior of A, so that one
should be able to estimate the qualitative depen-
dence of A on such quantities as n and l by consid-
ering the relative properties of K and H, . Con-
versely, a study of the properties of A should give
information about the coupling constants present
in B.

No correction terms are considered in the quali-
tative analysis. For this purpose

H, = x —3r. +2(2/ —1)(2l+ 3)q

=-,'n' (r, -'& . (77)

From Eqs. (77) and (56), H, varies with n as
n 3. For very large n, K has the same dependence
on n, but for small n, Kdeviates in a small but
complicated way from the n dependence. Any de-
pendence of the mixing on n should arise from the
detailed dependence of K on n when n is not large.

The most dramatic effect is the dependence of
the mixing on l. K decreases extremely rapidly
with increasing l because of the rapid decrease in
overlap of the (Is) and the (nl) hydrogenic orbitals.
FI, does not decrease as rapidly, so that the mixing
increases with increasing l. The polarization cor-
rections will have a significant effect on the degree
of singlet-triplet mixing only if their magnitudes
are great enough and their dependence on n and l
is significantly different from the uncorrected
values.

III. RESULTS

The results of this work depend mainly upon the
properties of the radial integrals. For this rea-
son, the radial integrals are presented first, with
the energy splittings and admixture coefficients
being presented later.

A. Radial Integrals

TABLE I. Comparison of radial integrals. Column
(a): Araki's results. Column (b): This work using neg-
ative polarization and Araki's bs coefficient. Column (c):
This work.

(a)

9. 084 x 10
5. 561x 10
1.412 x 10
l. 073 x 10-'
7. O46X iO-'

(ls) (2p)

(b)

5. 856x 10-s

4. 4406 x 10-
0. 8509x 10
0. 8351x 10 '
5. 173x 10 9

(c)

5. 856 x 10-s

4. 7201 x 10
1.0493 x 10 7

0. 9971x lp-7
—5. 173x 10-9

(I
7l

7l'

1.080xlp s

1.171X10
3.307 x 10-s
2 477xlp-s
1.758x 10 9

(is) (3p)

4. 826X 10
l. 2686 x 10 7

2 4942X 10-s

2. 3624x 10-s

1.735x 10 9

—4. 826x 10
l. 3512 x 10-'
3.4408x 1P s

2. 8773 x iO-'
—1.735 x 10-9

(i~) (3d)

gl

vl

7l'

3 219X 10-s
2. lggX 10
l.506x 10 9

2x lp-"

3.2401x 10
1.2601X 10
l. 5533x 10-9

2. 1043x 10 ~2

3.3034x 10-s

3.1531x 10-'0

l. 5830 x 10-'
—2. 1043»0-~2

2. 0691x 10-~o

(ls) (4d)

gl

7l'

g~a

1 341 x 10-s
l. 457 x 10-~0

6.411X 10-"
1x 10-&2

l. 3605 x 10-s

0. 6897x 10 '0

6. 4236 x 10-&0

1.2377 x lp-~'

1.3949x 10 s

1.8420 X 10
6.6971x 10-~

—i.2377 x 1O-"
1.2095 x 10

Results using no corrections to (lg) orbital for the 0'
integral.

In Table I, the values of the radial integrals are
compared to Araki' s calculations. Columns (a)
and (c) are the results of Araki and the authors,
respectively. The agreement is poor, especially
for the (Is)(2p) configuration. Column (b) is an at-
tempt to explain the discrepancies on the basis of
the errors in Araki's formulation which were
pointed out in Sec. II. Column (b) was obtained by
evaluating the radial integrals using Araki's formu-
lation exactly as it was presented in his 1937 paper.

For the (Is)(2p) configuration, all the integrals
are significantly smaller than Araki's results and
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TABLE II. Effect of polarization on radial integrals.

(ls) (3d)

Rip

1.2846 xlp 5

6. 57395 x 10-s

3 27Pgx 10-s

2. 0691x 10-1P

1.5576x 10 s

Up

0. 10021x 10-

—0. 00136x 10-s

0. 09512x 10 ip

—0. 00065 x 10-'

1.0333 x 10-5

0. 03394 x 10-s

0. 98891x 10 ip

0. 02606x 10 9

—0.00210 x 10

2. 5639 x 10
9.9050 x 10 ~

4. 9523x 10 9

3. 1416x 10
1.1005x 10-iP

(1~) (4f)

0. 1406 x 10-

—0. 1543 x 10-"
0. 1190x 10

—3.4300 x 10 is

1.8667x 10 "

0. 0055 x 10-
1.6967x 10 i3

0. 0018x lp-ip
—l. 1424x 10 i5

K

gI

7l

4. 4194x 10 9

6. 3392 x 10-«
3. 1691x lp-«
5. 4554 x 10-i4

7. 0425x 10 "

(ls) (10f)

2.4361 x 10-'p

—2. 7357 x 10-'5

2. 0674x lp i'
—6. 0793 x 10 i7

3.2195x 10-s

7. 0460x 10 i3

2. 9452x 10 i4

2. 3717x 10 i4

—1.9979x 10 i6

the results in column (b) are disappointing in that
these results are farther away. Araki may possibly
have corrected for his approximation of perfect
screening in some way which was not explicitly
stated in his paper. Although he allowed for the
inclusion of a general screening function in the or-
bital of the outer electron, ' the only explicit cor-
rection was the use of Sugiura's value of (r, ).'
Araki used the approximation of perfect screening
for the higher states.

The results are more satisfactory for the other
states. In fact, column (b) exhibits significant im-
provement in agreement with column (a) except
for the value of the integral &'. The footnoted val-
uses of t'' in column (c) were found using no cor-
rections to the hydrogenic (Is) orbital. These
values are much closer to Araki's results for the
D states The co.rrection terms in f' [see Eq.
(60)] are extremely tedious, and f

' is small com-
pared to f. It is possible that Araki did not in-
clude the correction terms in &' because of the
amount of tedious calculations required for an ap-
parently small correction. It turns out that while
the polarization correction for &' is small, it has
approximately two-thirds as much effect on the fine
structure as the polarization correction for &. The
integrals X and g depend only on the polarization
term U„and the change in sign of the hydrogenic
orbitals used in calculating column (b) gives agree-
ment in sign for these integrals. These properties
indicate that the fundamental differences in columns

(a) and (c) are produced by the errors in Araki's
work.

The contributions to the radial integrals corre-
sponding to different terms in the (ls) orbital are
tabulated for a few configurations in Table II. The
correction terms become increasingly negligible
with increasing l. While the direct integrals are
not affected by the polarization correction very
much, the exchange integrals are dramatically in-
creased. When exchange effects are important,
the polarization terms are very significant; if the
exchange integrals may be neglected, as in the ease
of large l, the polarization terms are also negligi-
ble. The direct integrals depend upon the interac-
tion of the two charge clouds. The change in this
interaction produced by polarization is small com-
pared to the uncorrected values. The exchange in-
tegrals depend upon the degree of overlap of the
two orbitals. Since the original overlap is usually
quite small, the small change in the degree of over-
lap produced by the polarization term produces a
very appreciable effect compared to the uncorrected
value.

The atom becomes increasingly hydrogenic with
increasing excitation, and the neglect of Up and
U, in these cases would be a consistent approxima-
tion. If this approximation is desired, care must
be taken when l is small even if n is large. For
small l, the presence of overlap may cause the
exchange effects and the correction terms to be
significant.

The occurrence of singlet-triplet mixing depends
on the relative sizes of K and H„so it is impor-
tant to look at the rates of change of K and H, with
respect to n. This was done by studying the ratios
of K and FI, for nF states to K and H, for 4F states
and it was found that H, has the expected form of
being proportional to n . For nZ'7, the K ratios
exhibit the same type of n dependence, but for the
smaller values of n, K decreases more slowly.

B. Coarse Structure

The results for the coarse structure are not sat-
isfactory, especially for (Is)(np) configurations.
In Table III, the coarse-structure splittings ~ are
presented for the (ls)(np) configurations for 2& n
& S and 7'=2. The columns refer to the terms in-
cluded in the calculation of b, . The zero subscript
indicates that no correction terms were used in the
calculation of b. The Up term is included for b,„
U, is included for 6» and h~ also includes the ex-
change integral of Hp It is readily apparent that
the inclusion of the polarization correction leads
to poor results for P states. Even without the
contribution from the Hp terms, the calculations
show serious discrepancies (nz column). The
inclusion of the Hp exchange effect, which is pres-
ent only when U, (r„r~) is included in the orbital
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TABLE III. Coarse structure for (ls)(np) in cm TABLE IV. nD and nE coarse structure in cm

n &p

2 1677. 899
3 541.906
4 234. 312
5 121.243
6 70.554
7 44. 576
8 29. 926

1827. 058
587. 247
253. 184
130.827
76. 073
48. 040
32.242

'Taken from Ref. 43.

3705. 942
1190.954
513.712
265. 521
154.418
97.526
65.457

457. 721
112.281
43. 910
21.565
12. 187
7. 563
5. 017

2047. 993
644. 777
275. 68
141.79
82. 13
51.84
34. 49

3
4
5
6
7
8
9

10

5. 639
3.273
1.892
1.163
0. 759
O. 520
0.370
0.273

6. 078
3.528
2. 039
1.254
0. 818
0. 560
0. 399
0. 294

Os) (nd)

(ls) (nf )

10.613
6. 160
3.561
2. 189
l. 428
0. 978
0. 697
0. 514

Expt.

3.411
1.971
l. 146
0.690
0, 430
0.360
0.240
0. 180

of the inner electron, completely disrupts the order
of the levels as well as the magnitudes of the split-
tings. Of course, the fine-structure splittings and
the admixture coefficients are similarly affected,
so no results for these quantities are presented
for P states.

In states for which the mixing is almost complete,
the separation of singlet and triplet levels is not
distinct, and the concept of coarse structure loses
its meaning. For this reason, coarse-structure
results are given only for the configurations for
which the mixing is not predominant. Table IV
shows the coarse structure for the (1s)(nd) and
(1s)(nf) configurations of helium with the columns
labeled according to the correction terms included
in the inner electron orbital, as done for Table III.

The splittings are all too large for l = 2 and all
too small for l = 3, when experimental results are
available for comparison. The experimental re-
sults are taken from Martin's tabulation.

C. Fine Structure

The fine-structure splittings were obtained from
all the configurations for which l &2 and 3&n &10.
For these configurations, there are very few ex-
perimental results available for comparison. The
results available are for the 3 D and the 4 D levels
of helium.

The splittings 5, and 52 for the n D levels of
helium are analyzed in Table V according to the

0. 021
0. 013
0. 009
0. 006
0, 004
0, 003

0. 021
0. 013
0. 009
0. 006
0. 004
0. 003

0. 027
0. 019
0. 013
0. 009
0. 006
0. 005

0.280
0. 060
0. 000
0. 000

—0.010
0.016

Taken from Martin's tables, Ref. 43.

terms included in the wave functions. The results
headed by Rgp are found using no corrections to the
hydrogenic orbitals. The other columns refer to
various combinations of the contributions made by
the different corrections. The term labeled (Up)p
refers to the U (rp„r )fpormed with the bp coefficient
determined by the authors. When the b3 coefficient
given by Araki is used, the term is labeled (Up)„.
As expected, there is very little difference in the
results obtained with different b3's. The inclusion
of U& in the column headings labels the inclusion of
the polarization correction. The footnoted results
are obtained by changing the sign of the U, contri-
bution and using the approximate energy splittings,
Eqs. (63) and (64). These values agree very near-
ly with Araki's calculations, once again indicating
the effect of the sign of the radial wave functions
used.

It must not be concluded from the first part of
Table V that the Uo term is more important in the
fine structure than U, . If the U, contribution is

TABLE V. Fine structure for n 3D in cm

Rgp

3 0. 038 0. 0093

~6

62

4

Rip+o~.

0. 0439 Q. 0032

5 0. 0082
6 0. 0047
7 0. 0030
8 0. 0020

0. 0021
0. 00123
0. 00078
0. 00053

3. 8
3.8
3.8
3.8

0. 0095
0. 0055
0. 0035
0.0023

0. 0008
0. 0005
0. 0003
0. 00021

4 0. 0159 0. 0041 3.9 0. 0185 0. 0015

62

13.6

12.2

11.7
11.5
ll. 4
11.3

R&o+ ~Uo&A

0. 0095
0. 0055
0. 0035
0. 0023

0. 0008
0. 00049
0. 00031
0. 00021

0. 0440 0. 0034

0. 0186 0. 0016

6g

62

13.1

11.9

11.5
ll. 3
11.2
11.1

Rxo

0.045
0. 0424L
0. 0191
0. 0179
0. 0098
0.0057
0. 0036
0.0024

0. 0043
0. 0030
Q. 002
0. 00125
0. 0011
0. 00066
0. 00042
0, 00028

+ (U )A+ Ug

2

10.4
14.1
9.3

14.3
8. 9
8. 7
8. 6
8.5

Calculated using (- U~) and approximate splitting equations.
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FIG. 1. Schematic triplet sepa-
ration for (1s) (nd).
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considered first, the results are almost the same
for 5, and 52 as when both Uo and U, are included.
The fine-structure splittings are quite sensitive
to the wave function used, and even the relatively
small correction given by Uo produces significant
differences from the uncorrected values.

Table VI compares the theoretical results and
the experimental results. The results of Brochard,
Chabbal, Chantrel, and Jacquinot were obtained
with optical spectroscopy methods, while those of
Kaul were obtained with level-crossing spectro-
scopy. The column under RM+(U0)~+ U, contains
the results of this work. The results agree well
with the experiment for three of the splittings
involved. For 4 D, both 5, and 52 agree with ex-
periment within the range of the experimental er-
ror. For 3 D, 5, agrees with the measurements
of Brochard et al. , but it is not within the uncer-
tainty of the precise measurements of Kaul. ~' Al-
though 52 for the 3 D level differs from the most
precise experimental value by less than 0.0018

cm ', it is not within the uncertainty of results of
either experiment. The calculations of this work
show improvement over Araki's results except for
the value of 5~ for 3 D. To our knowledge, these
are the best theoretical results reported for the
triplet splittings in the 3 D and 4 D levels of heli-
um.

When the separation of the singlet level from
the triplet is the same order of magnitude as the
triplet separations, the 5, splitting is included in
the fine-structure tabulations. The splittings for the
the helium configurations of larger l are given in
Table VII. These configurations have 5~ positive
because the J= l and J= /+1 states in the triplet
structure have exchanged positions relative to the
3 3D structures.

The relative positions of the levels within the
triplet structure change with n and l. The schema-
tic diagrams of Figs. 1 and 2 are used to illustrate
the relative positions of the states in the fine struc-
ture. The value of the energy difference 5 be-

TABLE VI. Comparison of theoretical and experimental results. Energy units are cm '.

o+ (Uo) p+ 0
Theo ret.

6

n

Araki (Ref. 25) Brochard
1

62

et al. (Ref. 44)

62

Expt.
Kaul (Ref. 45)

4 0.0191 0.0020 9.6 0.0179 0.000 95

3 0.0449 0.004 2 10.8 0.0426 0.002 5 17.0 0.0453
+ 0.001

18.8 0.0187
+0.001

0.0030
+0.0008

0.0018
+0.001

15.1 0.044 271 0.002 425 18.2
&.000 04 +0.000 03

10.4

5 0.0098 0.0011
6 0.0057 0.000 64
7 0.0036 0.00041
8 0.0024 0.000 28
9 0.0017 0.000 20

10 0.0012 0.000 14

9.1
8.9
8. 8
8.7
8. 6
8.6
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tween the highest and lowest energies of the triplet
structure is given in the figures for the extreme
values of n.

The relative positions of the levels in the triplet
structures are almost independent of n, as ex-
pected. This behavior is shown in Fig. 2. The
relative splittings change more with l for l & 4,
as seen from Fig. 2, in which the levels are shown
for the (Is)(n, n —1) configurations of helium. The
completely inverted triplet structure of 3 D changes
for the states of higher angular momentum to one
in which the J=l level is lower than the J=l+1
level. The change with l is due to the rapid de-
crease in K. When K becomes small compared to
the spin-dependent interactions, the splitting ratio
becomes independent of / and n. As Fig. 2 shows,
this occurs for l=4.

treatment as special cases, but they are more
complicated, since ~ixing is possible. These
special cases are not considered in this work. The
interest lies in the linear combinations of the four
basis functions, and the cases for which all four
states cannot be obtained are omitted. For large
enough l, there is very little change in the coeffi-
cients with n; consequently, for l) 5, the coeffi-
cients are tabulated for n = 7+ 1, and these values
are the same, to at least four decimal places, for
the higher values of n. The singlet-triplet mixing
parameter A varies very little with m,- over the
range tabulated, so only the value calculated for

TABLE VII. Theoretical fine-structure results for larger
Energy units are 10 cm '.

D. Admixture Coefficients

The coefficients determined by Eq. (75) for the
wave functions corresponding to the J= l+ 1 eigen-
values are not tabulated. The admixture of the
singlet does not affect the simple relations of Eq.
(75). In the notation of this paper, this corresponds
to omitting the tabulation of the a~ » coefficients
for k=1 and k=3. For k=2 and k=4, the coeffi-
cients are affected by the admixture of the singlet,
and Eq. (76) is no longer correct. The results for
k = 2 (Z= I and S = 1) and for k = 4 (8= I and S = 0) are
given in Table VIII for a few typical configurations.
Coefficients for configurations not shown may be
obtained from the authors. The coefficients are
not determined for m; =+ (I + 1), + I because the
basis set is not the same for these values of m&.
For example, if m&=l+1, the only member of the
basis set which is defined is Q„Eq. (20). This
requires that q, (l, 2) =/I when m~=i+1. The other
values of m; which are mentioned above also require

(1S) (nf)

6
7
8
9
10

—12.10
—5.43
—2. 98
—1.824
—1.202
—0.835
—0. 605

~ 3.45
&0. 99
' 0. 41
t 0. 204
t- 0. 116
+0.073

~ 0. 049

6
7
8
9
10

—l. 990
—1.253
—0. 840
—0. 590
—0.430

1.042
+0 656
i- 0.440
+ 0.309
+0. 225

(1s) (nA)

8 —0.437 i 0. 228
9 —0.307 i 0. 160
10 —0. 224 ~ 0. 117

(1s) (nf)»)

10 —0. 137 - 0.071

—3.5
—5. 5
—7. 3
—8. 9

—10.3
—11.5
—12.4

1.6v3
1.041
0. 697
0.490
0.357

0.382
0. 268
0. 196

0. 123

(1s) (ng)

—5. 276
—3.047
—1.916
—1, 282
—0. 900
—0. 655

2. 755
1.588

~ 0.997
~ 0.666
-I 0.467
~ 0.340

4. 364
2. 449
1.5455
1.037
0. 729
0. 532

(1S) (ni)

-0.881
—0. 590
—0.414
—0. 302

& 0.460
~ 0.308

~ 0. 217
0. 158

0.753
0. 505
0. 355
0. 258

—0. 237 + 0.123 0. 210
—0. 173 t- 0. 090 0. 153
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TA BLE VIII. Admixture eoeffieients.

t
k0

(is) (3d)

t
Ck )

0.709 S39
0.712401
0.569 357

0.003 535
0.003 535
0.002 886

0.709 542
0.711705
0.570 547

0.002 571
0.002 571
0.002 099

0.709 216
0.711131
0.571 487

0.404 272
0.009 339

—0.389 766

0.002 041
0.000 000

—0.002 041

(is) (4d)

0.404 745
—0.008 114
—0.392 866

0.001 484
0.000 000

—0.001 484

(is) (10d)

0.405 131
—0.007 111
—0.395 302

—0. 576 650
—0.701 693
—0.723 802

—0.002 886
—0.003 535
—0. 003 535

—0. 576 817
—0.702 422
—0.721 193

—0.002 099
—0.002 571
—0.002 571

—0. 576 951
—0.703 019
—0. 719 118

0.004 998
0.004 995
0.005 009

—0.999 988
—0. 999 988
—0.999 988

0.003 635
0.003 633
0.003 643

—0.999 993
—0. 999 993
—0 ~ 999 993

0.002 791
0.002 790
0.002 797

0.0050

0.0036

0.001 974
0.001 974
0.001 612

0.591 518
0.647 962
0.647 803
0.590 912
0.472 721

0. 256 885
0. 281405
0.281406
0.256 888
0. 198S85

0.630 622
0.690 257
0.688 848
0.619040
0.493 650

0.001 140
—0.000 000
—0.001 140

(is) (y)

0.529 875
0.265 448
0.001 256

—0.261 968
—0. 596 872

0. 229 805
0.114925
0.000 044

—0. 114838
—0. 229 721

(is) (10&)

0.568 395
0. 287 133
0.007 827

—0. 250 812
—0. 579 062

—0.001 612
—0 ~ 001 974
—0. 001 974

—0.459 354
—0.592 822
—0.649 723
—0.651 228
—0.508 376

—0. 198 669
—0. 256 653
—0. 281 205
—0. 281 220
—0.256 702

—0.491 827
—0.635 420
—0.698 647
—0.718 858
—0.619328

—0.999 996
—0.999 996
—0.999 996

0.397 822
0.397 800
0.397 755
0 ~ 397 616
0.402 284

—0.917459
—0. 197460
—0.917461
—0.917462
—0.917463

0. 193 256
0.193236
0. 193183
0.192 674
0.193467

0.4335

0. 124776
0. 136 685
0.136685
0. 124776
0.096 651

0.426 670
0.483 792
0.509 953
0.50S 939
0.483 750
0.426 592
0.322403

0. 111606
0. 055 805
0.055 805

—0.055 797
—0. 1115S9

(is) (5g)

0.483 933
0. 322 679
0. 161435
0.000 209

—0. 160 985
—0.322 102
—0.482 950

—0.096 598
—0.124 734
—0.136 647
—0. 136 647
—0. 124 734

—0.322 973
—0.427 062
—0.484 209
—0.510443
—0. 510 578
—0.484 713
—0.428 540

—0.981 144
—0. 981 144
—0.981 145
—0.981 145
—0.981 145

0.692423
0.692416
0.692408
0.6S2 394
0.692 373
0.692 331
0.692 220

0.95S6
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aki
t

TA BLE VIII. (Continued)

ta

(1s) (5g)

3
2
1
0

—1
—2

3

3
2
1
0

—1
—2
—3

3
2

1
0

—1
—2
—3

4
3
2
1
0

—1
—2
—3
-4

4
3
2
1
0
]

—2
3

—4

0.410 154
0.464 965
0.490 068
0.490 041
0.464 877
0.409 973
0.309 905

0.428 74
0.486 14
0.51243
0.51241
0.486 10
0.428 66
0.323 96

0.407 96
0.46249
0.487 46
0.487 43
0.462 40
0.407 79
0.308 26

0.39305
0.453 85
0.490 1
0. 50741
0. 50740
0.490 18
0.453 80
0.392 97
0.292 84

0.381 73
0.440 68
0.475 95
0.492 63
0.492 61
0.475 89
0.440 58
0.381 55
0.28439

0.463 27
0.308 84
0. 154 58
0.000 39

—0. 153 77
—0.307 92
—0.462 06

0. 524 18
0.393 17
0. 262 17
0. 13117
0.000 18

—0. 130 79
—0. 261 73
—0.392 59
—0. 523 19

(1s) (nh)

0. 509 65
0.382 12
0. 254 79
0. 127 53
Q. 000 31

—0. 126 90
—0. 254 10
—0.381 29
—0. 508 48

0.465 800
0.310 513
0.155 426
0.000 406

—0.154 583
—0.309 555
—0.464 517

(1s) (10g)

0.486 28
0.324 25
0. 162 22
0. 000 21

—0.16176
—0.323 66
—0.485 26

—0.306 727
—0.408 328
—0.463 733
—0.489 130
—0.489 278
—0.464 225
—0.409 384

—0.324 54
—0.429 14
—0.486 56
—0.51293
—0.51306
—0.487 08
—0.430 67

—0.305 23
—0.406 20
—0.461 29
—0.486 55
—0.486 69
—0.461 77
—0.407 22

—0.293 35
—0.393 38
—0.454 19
—0.490 57
—0. 507 83
—0.507 91
—0.490 87
—0.454 86
—0, 395 12

—0.281 16
—0.379 95
—0.439 51
—0.475 06
—0.491 91
—0.492 01
—0.475 37
—0.440 11
—0.381 10

—0.721 611
—0.721 566
—0.721 545
—0.721 534
—0.721 527
—0.721 521
—0.721 518

0.68875
0.68875
0.68874
0.688 72
0.688 70
0.688 66
0.688 54

—0.725 11
—0.72509
—0.725 05
—0.72504
—0.725 03
—0.72503
—0.725 02

0.696 20
0.696 19
0.696 19
0.696 18
0.696 17
0.696 16
0.696 14
0.696 10
0.695 99

—0.717 98
—0.717 93
—0.717 91
—0.71789
—0.717 88
—0.717 88
—0.717 87
—0.717 87
—0.717 87

0.949 93

Q. 96977

mz =0 is given. It is A which is analyzed to obtain
the n and l dependence of the singlet-triplet mix-
ing.

The l dependence is easily obtained by noting the
values of A in Table VIII. The amount of mixing
is very small for l =2, but it is significant for
l = 3. The mixing is practically complete for all
l & 4. These results are not surprising and agree
qualitatively with previous work. ' ' The quanti-
tative agreement is not very good, however. Lin
and St. John, Kay and Hughes, and Abrams and
Wolga all indicate that higher degrees of mixing

may be present in the 4F states than are indicated
by the results of this work. However, St. John
and Nee assumed complete singlet-triplet mixing
in their work, but their conclusion that the F2
and F4 states do not actively receive excitation is
definitely supported.

The n dependence of A is quite regular and is
readily attributed to the relative variations with
n of E and the spin-dependent interactions. Since
K decreases more slowly than (r2 ') as n increases
the degree of mixing decreases. This result is
in disagreement with experimental results. Kay
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and Hughes' have found there should be a partial
breakdown of Russell-Saunders coupling for n = 4
and that the breakdown should be complete for
n = 6. The discrepancy cannot be explained by or
attributed to the polarization correction, because
the contributions from it have the same n depen-
dence as the uncorrected values.

Table IX shows the effect on the admixture co-
efficients of using no corrections to the wave func-
tion. This table indicates that the coefficients
are quite sensitive to the wave functions. The
degree of mixing is increased, but this is to be
expected since the correction terms increase K by
a large percentage. The coefficients of the three
triplet basis functions should still be approximately
the same as the coefficients given by Eq. (76),
especially for the (ls)(3d) configuration. The
rather abrupt departure from the pattern of Eq.
(76) indicates the need for the correction terms in
calculating the admixture coefficients.

IV. CONCLUSION

The most disappointing aspect of this work is the
failure to obtain good results for the P states. The
polarization correction gives large contributions
to the exchange integrals, and its angular depen-
dence allows nonvanishing values for P states for
the exchange integral of Hp This relatively large,
negative exchange effect leads to very poor results
for all P states.

The adiabatic approximation is probably a poor
one for the (ls)(np) configurations with small n
when the outer electron is near the center of the

atom, ~ but it can hardly be blamed for the
similar failures with larger n. The disruptive ef-
fects must be attributed to the exchange terms
involving the U| part (dipole) of the polarized or-
bital. This is similar to the conclusion of Oberoi
and Callaway4' that exchange effects due to the
monopole part of the polarized orbital lead to poor
results for the binding energies of H . This is
consistent, since they were concerned with S states.
Presumably, introduction of each 2'-multipole
term in the polarized orbital would lead to disrup-
tive exchange effects for (ls)(nl) states.

In the states with l ) 2, the results are reason-
able and allow comparisonwith experiment. Very
good results are obtained for the triplet separa-
tions in the 3 D and 4 3D levels, which are the only
levels with experimental results available for com-
parison. Correction of some minor errors in an
early paper leads to improvement in three of the
four triplet separations, but these results seem
somewhat fortuitous in view of the poor agreement
for K. The poor results obtained for the coarse
structure indicate that these wave functions do not
give the correct values of K; however, the fine
structure does not depend heavily on K for D states,
and the good results for the fine structure indicate
that the spin-dependent interactions are evaluated
relatively accurately by the polarized orbital wave
functions.

The results for the admixture coefficients, which
determine the degree of singlet-triplet mixing,
indicate that the n dependence of K or X is not cor-
rect. While experiment shows that the mixing in-

TABLE IX. Admixture coefficients using no corrections, Z=2.

1
0

—1

1
0

—1

0.428 22
0.034 36
0.72438

0.005 98
0.005 95
0.004 76

at

0. 735 95
—0. 61932
—0. 670 73

0.002 64
—0.001 07
—0.004 74

(1s) (3~)

(1~) (4y)

—0. 524 34
0.784 36

—0. 159 24

—0. 246 80
—0. 229 92
—0. 260 68

0.008 91
—0.006 30

0.005 97

—0.969 04
—0.973 19
—0.965 40

0.0063

2
1
0

—1
—2

2
1
0

—1
—2

0.662 63
0.73487
0.736 10
0.62478
0.15140

0.242 16
0. 27706
0. 28103
0.25809
0. 200 21

0.453 12
0. 129 19

—0. 226 76
—0.623 38
—0.631 23

0.149 12
0.041 27

—0.073 90
—0. 190 58
—0.307 10

—0. 272 86
—0.400 27
—0.363 67
—0.657 31

0.755 44

—0. 606 49
—0. 564 21
—0.541 81
—0.516 18
—0.481 92

0.530 24
0.53203
0.523 91
0.465 54
0.089 12

—0.742 49
—0.776 66
—0.788 67
—0.794 12
—0.795 84

0.6151
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creases with increasing n for the F states, ' the
results of this work show the opposite trend. The
evaluation of the coarse- and fine-structure results
would tend to place the responsibility for the faulty
n dependence of the singlet-triplet mixing on K,
although this has not been explicitly shown.

The qualitative behavior of the breakdown of

Russell-Saunders coupling agrees generally with

the ideas used in the multiple-state transfer mech-
anism. " ' The Russell-Saunders approximation
is valid for the D states of helium, but there is
significant breakdown for F states. For t" states,
mixing is almost complete, and the LS coupling
scheme is no longer applicable.
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