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It is shown that the prediction of Garrett and McCumber that a light pulse's velocity may
exceed the speed oflightina resonantly absorbing medium is due to asymmetric absorption of
energy from the light pulse. More energy is absorbed from the trailing half of the pulse than

from the front half, causing the center of gravity of the pulse to move at a velocity greater than

the phase velocity of light. It is also shown that in certain cases a pulse's maximum will prop-
agate at the group velocity even when the pulse as a whole is distorted by dispersion.

Textbooks introduce the concept of the group
velocity of an electromagnetic pulse as a parameter
useful in describing the propagation of a wave
packet that is constructed from a narrow band of
frequencies. ' If dispersion is not too large, such
a pulse will propagate at the group velocity without
significant distortion. However, if a medium is
too dispersive, the pulse will become highly dis-
torted and the concept of group velocity is no longer
meaningful.

When a pulse's frequency falls in a region of
anomalous dispersion, it is possible for the group
velocity to be greater than the velocity of light in
a vacuum. During the first few years following
Einstein's publication of the special theory of rel-
ativity, this behavior was difficult to reconcile
with the postulate that required that no signal prop-
agate at a velocity faster than the speed of light in
a vacuum, c. The apparent contradiction was re-
moved when Sommerfeld showed that no signal
could propagate faster than c and, in fact, the wave
front progressed with a velocity equal to c in all
media. Sommerfeld considered the problem of a
light beam that has zero amplitude until it is turned
on and thereafter has a constant amplitude. A fur-
ther study of the transient details of the propaga-
tion of such a, step-function light pulse was carried
out by Brillouin.

Garrett and McCumber4 have pointed out that the

pulses one obtains from some mode-locked lasers
have envelopes that are approximately Gaussian
in shape. They then proceeded to study analytically
and numerically the propagation of a Gaussian-
shaped pulse in a resonantly absorbing medium.
It was found that under certain conditions the pulses
do propagate with velocities greater than c without
changing shape. They explained their results by
recailing that a light guise that has an envelope
of the form 8= Joe~' ' extends infinitely in either
direction along the time axis and hence has no true
beginning or end. It was then argued that the ob-
servation of the Gaussian pulse at a depth z in the
medium and at a time t & z/c after the pulse entered
the absorber is a result of "the action of the dis-
persive medium on the weak early components of
the envelope. "' Recently, Faxvog et al. 6 have
measured the velocity of He-Ne mode-locked laser
pulses that pass through a resonant Ne absorption
cell. The measured velocities were greater than
c by a few parts in 104, confirming the calculations
of Garrett and McCumber. Experimental verifica-
tion of such a prediction calls for a careful analysis
of the dynamics of pulse propagation in order to
understand how the results of Garrett and McCum-
ber can be reconciled with the Sommerfeld-Bril-
louin analysis.

Reference 7 contains an independent prediction
of the speeding up of a light pulse in a resonant
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The resonant atoms are assumed to be imbedded
in a host medium which is characterized by a con-
stant index of refraction g. The pulse's electric
field excites each of the resonant atoms into a
superposition of its states producing a time varying
expectation of its dipole moment operator. Be-
cause all the dipole moments are induced by the
same coherent light pulse, they have a definite
phase relationship and can add up to produce a mac-
roscopic polarization that can be written as

p(z, t) = Re [6' (z, t) e '" ' "*"] (2)

attenuator and slowing down in a resonant amplifier.
The current paper will take that result as a starting
point and examine the dynamics of propagation of
the superluminal and subluminal light pulses in a
way that makes it perfectly obvious that they do not

imply energy or signal propagation faster than the
phase velocity in the medium. First of all it will
be shown that the fact that the pulse has infinitely
long leading and trailing edges is not important.
This result is reassuring because the pulses from
a mode-locked laser do have both a beginning and
an end. The conclusion reached in this paper is
that the apparent speeding up of a light pulse in an
absorber is attributable to the finite response time
of the resonant atoms to an applied field. For an
attenuating medium, the inertia of the resonant
dipoles results in an asymmetric absorption of en-
ergy from the light pulse. More energy is absorbed
from the trailing half of the pulse than from the
leading half and this results in a motion of the pulse
maximum at a velocity greater than the phase ve-
locity. Under certain conditions this asymmetric
absorption of energy occurs in such a way that the
transmitted pulse has the same shape as the incident
pulse. The analysis carried out from this point of
view has the advantage of making it obvious that,
although the center of gravity of the attenuated
pulse is moving faster than the speed of light, no
signal or energy will propagate faster than the
phase velocity c/q of light in the medium.

The electric field of a coherent light pulse which
is linearly polarized in the x direction and prop-
agates in the positive z direction can be written as

h(z, t) = &„$(z, t) cos [~(t 'IIz /c) —p(z,—t)]. (1)

dt '
p, $(z t) e'P"' — «I

h
(4)

is satisfied. ' When this condition holds, the atomic
populations are not significantly altered and pulse
propagation is described by a dispersion theory of
the reduced wave equation. This dispersion theory
is developed in Ref. 7 and only the important equa-
tions will be reproduced here. The amplitude 8
and phase Q of the pulse envelope will evolve ac-
cording to

$(z, t)e"'""=(I/2w) f &(o, v)

xexp(- [tv (t —g z/c)+ A(v)z]tv, (5)

in the linear regime. The Fourier transform of the
amplitude and phase of the pulse at the medium
boundary z=0 is equal to

(6)

The quantity A(v) is defined in terms of the homo-
geneous relation time T& and the inhomogeneous
line-shape function g(d) according to

The constant o.p= 2vN& ppZ(0)/ti~ is positive
when the resonant atoms are initially in their ground
state (an attenuating medium) and negative when
the atoms are initially in their excited state (an
amplifier). In the work that follows it will be
assumed that the applied frequency (d is tuned to
the center of a symmetric absorption line so that
g(n) =g(- 6) and that the light pulse has no phase
modulation (P = 0).

The group-velocity approximation will be valid
for pulses having a spectral width narrow com-
pared with the total linewidth 1/Tz. If e(0, v) in
Eq. (5) is negligible for frequencies I v I & I/r,
then the major contribution to the integral comes
from the region I vI(1/r. Now if v is large com-
pared with the reciprocal of the linewidth T~, then
the quantity A(v) may be expanded about v= 0 and
only the first two terms kept, i.e. ,

When the amplitude g and phase P of the pulse
do not vary significantly over a distance of a wave-
length or in a time equal to an optical period, the
propagation of the pulse will be described to a good
approximation by the reduced wave equatione'9

A(v) = A(0)+ vA '(0)

Substituting this into Eq. (5) one obtains

$(z, t) = e ""'*$(0,t - z/v, )-,
where the group velocity is given by

(9)

a n 8 2'+—.——b(z, t) e""&= ~ (z, t) .
~z c ~t gc (2) vz= [rt/c —tA'(0)] ' (10)

The Beer's law absorption coefficient a can be
identified from Eq. (9) to be equal to 2A(0). The
derivation of Eq. (9) does not require that the pulse

The pulse propagation will be linear for time t
such that
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have a finite amplitude for all finite time.
It is useful to consider the specific case of a

Lorentzian inhomogeneous line shape

g (&) = (Tz /v) [1+(AT)) ] '

It was shown in Ref. 7 that for this line shape
A(0) = aoTz and —iA'(0) = aoTzz, where the total
linewidth is I/Tz = I/Tz + I/Q .

The polarization induced by a pulse of the form
of Eq. (9) can be obtained by substituting into Eq.
(3)

8 (z, f) = -A(0)+iA'(0) $(z, f) . (12)

8'(z, f)= a T $(z, t) —T $(z, t) . (13)
2wu)

If 8$/Bt were zero, Eq. (12) would give the ampli-
tude of the steady-state polarization induced by a
constant amplitude light beam. In the case of an
attenuating medium, A(0) is positive and this
term would lead to a macroscopic polarization
that would radiate 180' out of phase with respect
to the pulse that induced it. The field radiated by
this polarization would cancel part of the applied
field, resulting in a decrease in the amplitude of
the transmitted light beam. The term involving
8$/Bt is important for understanding the dynamic
response of the polarization to a light pulse. Con-
sider the polarization induced by a pulse which
has a roughly bell-shaped envelope. During the
front half of the pulse the amplitude is rising,
8$/Bf is positive and the second term in Eq. (13)
will result in a polarization with an amplitude less
than the steady-state value. During the trailing
half of the pulse 8$/Bf is negative and the second
term would increase the amplitude of the polariza-

For the specific case of a Lorentzian inhomogeneous
line shape this expression becomes

tion over the steady-state value. In an attenuator,
the macroscopic polarization is responsible for
absorption of energy from the pulse so that the
fact that the amplitude of the polarization is larger
during the trailing half of the pulse than during the
leading half implies that more energy will be ab-
sorbed from the tail of the pulse than from the
front. This asymmetric absorption of energy re-
sults in a forward motion of the center of gravity
of the pulse so that it appears that the pulse is
moving faster than c/q.

The evolution of a pulse of the form

$(o, f)= -'4"i" & (14)

with a value of 7 chosen so that Eq. (9) is valid,
is illustrated in Fig. 1. The figure shows the
pulse amplitude as a function of the retarded time
t —gz/c at various depths z in the a,ttenuating
medium. If the resonantly absorbing atoms were
absent, all the curves would coincide withthe z= 0
curve. This would indicate that the pulse prop-
agated without attenuation at the phase velocity
c/g. The presence of the absorbing atoms results
in an asymmetric absorption of energy from the
pulse which has the result that each successive
pulse envelope is Gaussian in shape, having a
center which has advanced to the left indicating
that the pulse is moving faster than c/g. In Fig.
1 the pulse amplitude for a given value of t-gz/c
and at a depth z) 0 is less than the corresponding
value for z = 0. It is shown in Appendix A that
this is a general property, i.e. ,

e-"""$(O, f —z/~, ) & $(O, f (q/c)z)— (15)

when the conditions that lead to the derivation of
Eq. (9) are satisfied. The implication of Eq. (15)
is that at no depth z or time t will the amplitude of
a pulse propagating according to the group-velocity
expression of Eq. (9) be greater than the ampli-

8(t,z)
Ik

FIG. 1. This figure shows the pulse
envelope as a function of the retarded
time t -nz/c for various depths in a
resonant attenuator. The input pulse
has a Gaussian shape and is long enough
to satisfy the approximations that lead
to Eq. (9).

-IO -5 lO t -qz/c
Tp
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tude that the pulse would have had if it were just
propagating at the phase velocity c/g without loss.
This result eliminates any possibility that an
energy or a signal velocity might exceed c/7l in a
resonant attenuator.

For an amplifier, A(0) is negative and an argu-
ment similar to the one presented above leads to
the conclusion that the macroscopic polarization
radiates more energy into the trailing half of the

pulse than it does into the leading half. This
asymmetric amplification of the pulse in an am-
plifier results in an apparent slowing down of the
pulse. This effect has been observed experimen-
tally. "

If the conditions that were required for the der-
ivation of Eq. (9) are not satisfied because the
pulse spectrum is too broad, then pulse dis-
tortion becomes important. In the case of an at-
tenuator the pulse distortion can take the form of
oscillations of the pulse envelope between positive
and negative values (corresponding to changes of
phase of the amount z). For an amplifier, the
pulse can show an asymmetric broadening. Be-
havior of this type was extensively studied in Ref.
7.

A result which is relevant to the experiments
of Faxvog et al. and Casperson and Yariv is
proven in Appendix B. In the case of a pulse having
an envelope which is initially symmetric about
t = 0 [that is, if 8 (0, t) = 8 (0, —t)], the pulse maxi-
mum will travel at the group velocity even when
the pulse's spectrum is so broad that the next
highest term in the expansion of Eq. (8) must be
retained and the pulse exhibits distortion. Thus
an experiment that determines the velocity of a
pulse by observing the arrival of its maximum
may confirm the group-velocity expression even
when the pulse is being distorted.

APPENDIX A

This appendix will establish conditions under
which

e """8(o,q —W'(0)z}&8(p, q) (Al)

will be satisfied. When q = t —gz/c, the left-hand
side of the inequality is the group-velocity expres-
sion for the propagation of the pulse. The right-
hand side is the amplitude of the pulse that would
have been observed at position z and time t if no
absorbing atoms were present. The above expres-

sion may be rewritten as

lnS(0, q —iA '(0)z}—lnS (0, q) & A(0)
—iA ' (0)z —iA '(0) (A2)

Considering the limit of Eq. (A2) for small z, one
finds that a necessary condition for Eq. (Al) to be
satisfied is

1
8(0, t)

88 (0, t) A(0)
st — -m '(0) (AS)

Written for the case of a Lorentzian line shape of
the form shown in Eq. (11), the condition becomes

r, sS(0, t)
8(0, t) st (A4)

Consider a pulse which propagates according to
Eq. (5}with Q = 0. Assume the pulse envelope
has a single maximum at t = 0 and is symmetric
about that point. It is necessary for

sS(z ) i'q
p z(0 }e-[i@a+A(u &I'jd

2s
(Bl)

[where q is equal to t —(q/c)z] to be satisfied in
order for the pulse to have a maximum. The
symmetry of the pulse envelope (8(0, t) = 8(0, —t)}
implies that e(0, v) = e(0, —v), and using this re-
sult shows that q = 0 and z = 0 does satisfy Eq. (Bl).
When A(v} is expanded up to and including the
quadratic term, Eq. (Bl) becomes

(- i/2w) f vz(0, v) exp(- iv[ +qiA'(0) ]-zA "(0)v'z)

xdve "'o"=0 . (B2)
The fact that A "(0)v is also symmetric about

v= 0 implies that Eq. (B2) will be satisfied for
t= ['g/c —iA '(0)]z. Thus the pulse maximum moves
along with the group velocity defined by Eq. (10)
even though the additional term will lead to pulse
distortion.

Equation (A4) will be satisfied when the pulse am-
plitude does not change a great deal in a time Tz.
The left-hand side of Eq. (AS) will be significantly
less than the right-hand side for a pulse that satis-
fies the conditions leading to Eq. (9).

The argument that leads to Eq. (AS) can be re-
versed if one considers a medium of thickness z
to be composed of many thin slices of thickness
nz. This means that Eqs. (Al) and (AS) are equiv-
alent.
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It is shown that the classical form of the binary-collision expansion follows naturally from
the multiple-scattering expansion for the T matrix. The limits of applicability of this classi-
cal expansion are discussed.

The classical limit of the Lee- Yang binary-colli-
sion expansion' was first discussed by Pais and
Uhlenbeck. They showed that the binary expansion
can be looked upon as a quantum-mechanical exten-
sion of the classical Ursell-Mayer expansion, and
that to each classical Ursell graph there corre-
sponds a class of quantum graphs. They gave a
prescription for writing down the contribution to the
cluster function from these quantum graphs, and
showed that in the limit as R-O, these contributions
can be summed to give the correct classical expres-
sion corresponding to the Ursell graph.

More recently, Hecht and Lind studied the par-
ticular case of hard spheres. They obtained an ex-
pression for the classical limit of the binary ker-
nel, and explicitly evaluated the terms appearing
in the binary-collision expansions of the first four
cluster coefficients. They showed that the correct
classical values for these cluster coefficients are
obtained provided one sums all the terms in the
series. For coefficients greater than the second,
these series contain an infinite number of terms.

The purpose of this note is to give an alternative
formulation of the classical limit. It is well
known ' that there is a close relationship between
the binary-collision expansion and the Watson mul-
tiple-scattering expansion for the T matrix —in
fact, the latter is the "time-independent" counter-
part of the former, and they are related by a La-
place transform. We shall show that the passage
to the classical limit follows more naturally in the
T matrix formalism, and that the character of the
resulting expansion is more readily apparent.

We first summarize the multiple-scattering form
of the binary-collision expansion for the quantum-
mechanical case. The details can be found in Refs.

2, 6, and 7. Consider a system of N particles in a
container of volume V with Hamiltonian

where H„ is the kinetic energy of the N particles
and e&& is a pair potential. The lth-cluster coeffi-
cient b, is given in terms of the lth-cluster operator
U, by

h, = lim(1/Vl! ) Tr(U, ) as V- ~, (2)

where the trace is to be taken over a complete set
of l-particle states. In order to obtain an expres-
sion for U, , we introduce a two-body scattering
operator T (z) defined by

T (z)=v +n Go(z) T (z),
where

Go(z) = l/(z —H')

n is a pair index and z is a complex variable. We
also need the operator

(6)

where C is a contour in the z plane enclosing the
spectrum of H„on the real axis. U, is then given
in terms of the T operator by

Ug=az Z (Go T~ Go T~ Go T~ Go) ~ (6)

The various terms under the summation sign in (6)
are represented by graphs. Each graph consists of
l vertical particle lines, and the T operators are
represented by horizontal "blocks" connecting two
particle lines. The sum in (6) is then over all pos-
sible connected l-particle graphs, with the following
restrictions: (a) No two adjacent T, 's can have the


